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Abstract

The microbiota can play important roles in the development of human immunity

and the establishment of immune homeostasis. Lifestyle factors including diet,

hygiene, and exposure to viruses or bacteria, and medical interventions with antibi-

otics or anti‐ulcer medications, regulate phylogenetic variability and the quality of

cross talk between innate and adaptive immune cells via mucosal and skin epithelia.

More recently, microbiota and their composition have been linked to protective

effects for health. Imbalance, however, has been linked to immune‐related diseases

such as allergy and cancer, characterized by impaired, or exaggerated immune toler-

ance, respectively. In this AllergoOncology position paper, we focus on the increas-

ing evidence defining the microbiota composition as a key determinant of immunity

and immune tolerance, linked to the risk for the development of allergic and malig-

nant diseases. We discuss novel insights into the role of microbiota in disease and

patient responses to treatments in cancer and in allergy. These may highlight oppor-

tunities to improve patient outcomes with medical interventions supported through

a restored microbiome.

K E YWORD S

allergy, cancer, hygiene hypothesis, microbiota, oncoimmunology

1 | INTRODUCTION

1.1 | Why studying microbiota is important for the
field of AllergoOncology

The collective genome of all microorganisms living in and on the sur-

faces of the human body is defined as the microbiome and contains

150 times more genes than the 23 000 protein‐coding genes of

human origin (Table 1). The human microbiome project1 has con-

tributed to understanding of the composition, function, and diversity

of the human microbiota, that is, all microorganisms populating the

inner and outer surfaces of the human body, including viruses, fungi,

protozoa, archaea, and bacteria (Table 2).

The human microbiota show remarkable variability and have a

mutualistic relationship with the human host. The microbiome pro-

foundly affects the epithelium and the mucosal immune system and
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vice versa. Thereis growing evidence that microbiota play a para-

mount role in the control of immune‐mediated diseases such as

allergy and cancer, the two complementary diseases in the frame of

AllergoOncology.2

1.2 | Hygiene hypothesis in allergy: from
epidemiology to mechanisms

The allergy epidemics correlate with improved hygiene practices

associated with urban lifestyles (Table S1). Milestone studies

revealed that this epidemic can be counter‐regulated in part by

exposure to a traditional farming environment. The cornerstones of

the allergy protective farm effect are (a) farm activities during preg-

nancy, (b) early life farm exposure, and (c) raw milk consumption, but

farms are also protective against viral infections. Protection depends

on the farm dust levels in an area and depends on the type of

farming. To give an example, children from Amish traditional pre‐
industrial farming communities were less prone to allergy development

than Hutterites who use modern industrial farming methods. Amish

farm dust initiated innate immune pathways associated with protec-

tion from allergy development in a mouse model. Additionally, rich

microbial exposure by cohabitation with wild mice improves the

immune response in laboratory mice. In line with this, dog keeping is

reported to protect children from asthma. Also helminth infections

can support the establishment of protective microbiota (for summary

and references, see Table S1).

Molecular mechanisms are increasingly understood. Viral antigens

due to molecular mimicry counteract specific allergen sensitization

and induce specific T effector memory responses. Exposure to N‐gly-
colylneuraminic acid (Neu5Gc), a sialic acid compound in farm dust,

induces regulatory pathways. Endotoxin exposure of bronchial

epithelial cells counteracts allergen‐induced Th2 responses. Prenatal

farm exposure supports Treg and Th17 cell differentiation. The

GRAPHICAL ABSTRACT

Increasing scientific evidence indicates the influence of microbiota on the immune response contributing to the prevention or progression of

immune‐related diseases such as allergy and cancer. A variety of factors have been identified influencing microbiota composition. This opens

new avenues to beneficially modulate patients’ responses to cancer or allergy treatments.

TABLE 1 Definitions

Term Definition

Microbiota Microorganisms (bacteria, viruses, fungi, protozoa, and

archaea) populating the inner and outer surfaces of the

human body

Microbiome Collective genome of all microorganisms

Mutualism A relationship between two organisms of different

species resulting in benefits for both organisms from

the interaction

Symbionts Two different organisms of the same or of different

species with a close and persistent biological

interaction
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protective immunity associated with the consumption of raw milk

induces FOXP3 demethylation and T regulatory cells (Tregs). Expo-

sure of bronchial epithelia to farm dust, for instance containing CpG‐
DNA, or of gut epithelia to farm milk enhances epithelial barrier

integrity, resulting in protective innate immunity to allergens and

viruses (Table S1).

In accordance, immature gut microbial composition at age 1 year

was positively associated with asthma risk at 5 years in children with

asthmatic mothers.3 There were inverse associations with relative

abundances of genera Faecalibacterium, Bifidobacterium, Roseburia,

Alistipes, Lachnospiraceae incertae sedis, Ruminococcus, and Dialister

and a positive association with Veillonella. Inverse associations of rel-

ative abundances of genera Lachnospira, Veillonella, Faecalibacterium,

and Rothia at age 3 months and atopy and wheeze at age 1 year

were observed in another study,4 as was amelioration of lung inflam-

mation in adult offspring of germ‐free mice inoculated with these

taxa. The group at highest risk for multisensitized atopy (2‐years)
and asthma (4‐years) was characterized by lower abundance of gut

bacteria Bifidobacterium, Akkermansia, Faecalibacterium, and Lacto-

bacillus and higher abundance of fungi Candida and Rhodotorula at 1‐
11 months.5 Decreased gut microbiome diversity was correlated

with CD4+ T‐cell decline in immune‐deficient patients.6 Increasing

use of antibiotics has been linked with dysbiosis and enhanced

TABLE 3 Bacterial composition of the microbiota is modified in allergy and depends on the diet

Phylum Class Order Family Species

Allergy

Firmicutes↑ Clostridia↑ Clostridiales↑ Clostridiaceae↑ Clostridium spp.↑

Ruminococcaceae↑ Ruminococcus spp.↑

Bacteroidetes↓ Bacteroidia↓ Bacteroidales↓ Bacteroidaceae↓ Bacteroides spp.↓

Diet

Ominivore Firmicutes↑ Clostridia↑ Clostridiales↑ Lachnospiraceae↑

Oligosacharrides Actinobacteria↑ Actinobacteria↑ Bifidobacteriales↑ Bifidobacteriaceae↑ Bifidobacterium spp.↑

Western diet/fat Firmicutes↑ Erysipelotrichia↑ Erysipelotrichales↑ Erysiopelotrichaceae↑

Vitamin D Firmicutes↓ Clostridia↓ Clostridiales↓ Lachnospiraceae↓ Coprococcus↓

Actinobacteria↓ Actinobacteria↓ Bifidobacteriales↓ Bifidobacteriaceae↓ Bifidobacterium spp.↓

TABLE 2 Prevalent bacteria at different sites in healthy subjects

Phylum Class Order Family Species

Skin Actinobacteria Actinobacteria Actinomycetales Propionibacteriaceae Propionibacterium acnes

Firmicutes Bacilli Bacillales Staphylococcaceae Staphylococcus epidermis

Gut

Upper part Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus spp.

Lactobacillaceae Lactobacilli spp.

Distal part Firmicutes Clostridia Clostridiales Clostridiaceae Clostridium spp

Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacterium spp.

Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides spp.

Lung Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella spp.

Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus spp.

Proteobacteria Gammaproteobacteria Pasteurellales Pasteurellaceae Actinobacillus spp., etc.

Nose Actinobacteria Actinobacteria Actinomycetales Corynebacteriaceae Corynebacterium spp.

Firmicutes Bacilli Bacillales Staphylococcaceae Staphylococcus spp.

Highlights

• Microbiota composition has been linked to health protec-

tive effects representing a key determinant of immunity

and immune tolerance.

• Microbiota imbalance is increasingly recognized to be

associated with an enhanced risk for immune-related dis-

eases such as allergy and cancer.

• Novel insights into the role of microbiota in disease and

patient responses to cancer or allergy treatments high-

light opportunities to improve patient outcomes through

a restored microbiome.
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prevalence of allergies and asthma.7 Also, the pharmacologic impair-

ment of gastric digestion is associated with gut dysbiosis and has

been correlated with allergy in mice and humans.8,9 However, study

results of probiotic supplementation in childhood asthma or wheeze

are inconclusive.10

1.3 | Hygiene hypothesis in oncology: from
epidemiology to mechanisms

Increased incidence of certain cancers in Westernized countries11

may be associated with under‐exposure to certain microbial species,

modern lifestyle, and consumption of sterilized food.12 Higher

socioeconomic status is associated with increased incidence of

Hodgkin lymphoma,13 while daycare attendance and higher number

of childhood infections are linked with lower risk of acute lym-

phoblastic leukemia14 and adult chronic lymphoid leukemia.15

Increased cancer risk is observed in patients with autoimmune dis-

eases and chronic allergic disorders.16 Mice with rapid melanoma

growth and poor immunosurveillance, exhibited relatively low levels

of Bifidobacterium species which, when restored by oral feeding and

co‐housing, resulted in enhanced tumor antigen presentation and

reduced malignant growth.17

Epidemiological studies have also examined specific bacteria,

viruses, periodontal disease, and circulating antibodies to selected

pathogens in relation to cancer risk.18 Carriage of Porphyromonas gin-

givalis and Aggregatibacter actinomycetemcomitans in prediagnostic

oral wash samples was positively associated with pancreatic cancer

risk, and Fusobacteria and its genus Leptotrichia were inversely asso-

ciated.19 Tannerella forsythia was positively associated with esopha-

geal adenocarcinoma and Porphyromonas gingivalis with squamous

cell carcinoma.20 Greater abundance of genera Corynebacterium and

Kingella was inversely associated with head and neck squamous cell

cancer.21

An omnivore, but not a vegetarian, diet promotes butyrate‐
producing Lachnospiraceae (Firmicutes/Clostridiales). Bifidobac-

terium spp (Actinobacteria/Bifidobacteriales/Bifidobacteriaceae) are

strongly stimulated by dietary intake of oligosaccharides as present

in milk, while Erysipelotrichi (Firmicutes/Erysipelotrichales/Erysipelotri-

chaceae) are stimulated by high fat, Western diets.22 A prudent diet

(rich in whole grains and fiber) was associated with a lower risk of

Fusobacterium nucleatum‐positive colorectal cancer incidence.23 Afri-

can Americans fed a high‐fiber, low‐fat diet and rural Africans fed a

high‐fat, low‐fiber diet, demonstrated reciprocal changes in colonic

mucosal inflammation and biomarkers of cancer risk and in colonic

microbiota and metabolome including saccharolytic fermentation and

butyrogenesis, and secondary bile acid synthesis.24

It has also been postulated that the use of antibiotics may

support cancer progression through subversion of immunosurveil-

lance. In a transgenic mouse model of spontaneous mammary

carcinoma development, treatment with metronidazole and ciproflox-

acin resulted in accelerated development of these tumors.25

Repeated antibiotic use may also increase risk of certain human

malignancies.26

2 | METABOLITES CRITICALLY SHAPE THE
MICROBIOME

2.1 | Dietary micronutrients

Micronutrients being essential food for microbes substantially influ-

ence microbiota composition. Most bacteria require iron and have

evolved multiple strategies for sequestration including the production

of hemophores and low molecular iron chelators named siderophores.

Iron supplementation promotes the establishment of bacteria relying

on this metal (Table 3). In atopy, a poor iron status is associated with

allergy, whereas an improved status abrogates or seems to prevent

the onset of allergy. In cancer, iron contributes to tumor growth with

high serum iron increasing the risk of several cancers (Table 4).27

Vitamins A and D (Tables 3 and 4) are important for mucosal

immunity.28 Retinol supplementation does not change the risk of

allergy29 or cancer,30 though increased serum retinol levels are associ-

ated with prostate cancer.31 Vitamin D supplementation slightly

decreases respiratory infections and the incidence of asthma in off-

spring,32 prevents hematologic malignancies in elderly women and

advanced colorectal adenomas,33 but seem not to impact allergy risk.34

Vitamin D supplementation decreases the abundance of Bifidobac-

terium and Coprococcus.35

Serum folate levels are associated with serum IgE,36 high plasma

folate is associated with decreased risk of wheezing,37 and folic acid

supplementation has been linked with an increased risk for lung can-

cer.38 Folate can be produced by most Bacteroidetes, Fusobacteria,

and Proteobacteria, but rarely from Actinobacteria and Firmicutes.39

In summary, dietary micronutrients shape the microbiome which

contributes products essential for an effective immune defense.

2.2 | Nondigestible Oligosaccharides

Nondigestible oligosaccharides (NDO) are potential substrates for

bacterial metabolism in the colon, and a declining microbial diversity

in the gut is implicated in the rising incidence of allergic disorders in

early life.40 Manipulation of the gut microbiota with NDO from natu-

ral sources or supplemented galacto‐oligosaccharides (GOS), lactose,

and fructooligosaccharides (FOS) holds great promise for the treat-

ment of inflammatory and allergic diseases (Table 4). NDO feeding

reduced the development of atopic dermatitis (AD) in infants at risk

of allergy which was associated with increased Bifidobacterium and

Lactobacilli,41,42 re‐balancing the immune response from a predomi-

nant Th2‐type allergic profile at birth to a more Th1‐type and Treg

profile. NDO protect against allergic manifestations in experimental

models of food allergy and allergic asthma43,44 and reshape the gut

microbiota with increased levels of short‐chain fatty acids (SCFAs).45

Less is known concerning the anti‐cancer effects of NDO.46 Experi-

mental models show encouraging effects of GOS, FOS, agaro‐oligo-
saccharides,47 and butyrate46 in influencing microbiota diversity (eg,

increased Fusobacterium) and the prevention and progression of col-

orectal cancer.48 NDO showed potential in the protection against

the development of cancer in healthy subjects.49 Since Western
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diets are typically low on NDO, increasing the intake of NDO may

benefit human health via an improved microbiome and/or via direct

effects on the immune system.

2.3 | Microbiota metabolites

Dairy products such as yogurt and butter contain short‐chain fatty

acids (SCFAs), while SCFAs are also produced by intestinal bacteria

following their fermentation of fibers present in vegetables and

fruits.50 The major SCFAs are acetate, propionate, and butyrate.

SCFAs are an important energy source for intestinal epithelial cells

and regulate the assembly and organization of epithelial tight junc-

tions. Abnormalities in the production of these metabolites (due to

dietary factors and/or microbial dysbiosis) might play a role in the

pathogenesis of type 2 diabetes, obesity, inflammatory bowel disease,

colorectal cancer, and allergies.51,52 Butyrate influences the activity of

histone deacetylases (HDAC), responsible for decreasing dendritic cell

IL‐12 and IL‐6 secretion, and allows dendritic cells to promote Tregs.

Propionate can also contribute to the induction of T‐cell Foxp3

expression by dendritic cells (DC), while acetate does not have this

activity, possibly due to the lack of HDAC activity.53 G Protein–cou-
pled receptors GPR109a and GPR43 have been described to con-

tribute to these effects, while GPR43 expression on colonic inducible

Treg cells is associated with their expansion and IL‐10 secretion.54,55

3 | MICROBIOTA REGULATING CELLULAR
PLAYERS IN INNATE AND ADAPTIVE
RESPONSES

3.1 | Cells of the epithelial barrier

Epithelial cells have a very close interaction with compartment‐speci-
fic microbiota (Figure 1A). These cells are able to sense conserved

TABLE 4 Diet and microbiota metabolites in allergy and cancer

Compound Structure Effects in allergy and cancer

Miscellaneous

Iron Fe Poor iron associated with allergy and high serum iron increases risk of several cancers

Folate Serum folate is not correlated with allergic reactions, but with serum IgE. High plasma

folate decreases risk of wheeze in children

Vitamins

Vitamin A Retinol supplementation has no effect on allergy. Vit A increases Proteobacteria. Increased

serum retinol is associated with prostate cancer

Vitamin D Vitamin D supplementation reduces respiratory infections (not associated with allergy) and

possibly reduces asthma incidence in offspring. Vitamin D reduces abundance of

Bifidobacterium and Coprococcus and increases Proteobacteria. Vitamin D may prevent

hematologic malignancies and advanced colorectal adenomas

Nondigestible oligosaccharides

Galacto‐
oligosaccharides

Bacterial fermentation of NDO induces a shift from Bacteroides and Prevotella species to

beneficial Bifidobacterium and Lactobacillus species

Specific NDO feeding reduced the development of AD in infants at risk of allergy, which

was associated with increased Bifidobacterium and Lactobacilli

Specific NDO reduce allergic manifestations in experimental models for allergy

Specific NDO influence microbiota diversity and prevent the progression of colorectal

cancer

Fructooligosaccharides

Agaro‐
oligosaccharides

Short‐chain fatty acids

Butyrate Butyrate and propionate inhibit HDAC activity and promote Treg cells

Propionate

Acetate Acetate does not inhibit HDAC
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microbial‐associated molecular patterns by innate pattern recognition

receptors (PRR) such as TLRs and Nod‐like receptors. These interac-

tions can control epithelial cell proliferation and barrier function.56

Not only direct interaction, but also microbiota‐derived metabolites

such as SCFAs and bacterial quorum sensing (QS) can have an

impact on epithelial cells. In the intestine, SCFAs stimulate the

inflammasome pathway via binding to GPRs on the surface of

epithelial cells. Associated with enhanced epithelial IL‐18 secretion,

barrier integrity is enhanced and epithelial cells secrete more antimi-

crobial peptides.57,58 Both, SCFA and QS signals, have immunomod-

ulatory potential by stimulating survival pathways and contributing

to intestinal homeostasis.59-61 Thus, microbiota and metabolites have

a paramount influence on epithelial cell function.

3.2 | Dendritic cells

As professional antigen presenting cells (APC), DC are in contact with

both invading pathogens and commensal microbiota and maintain the

balance between inflammatory and tolerogenic immune responses.

Human monocyte‐derived dendritic cells (moDCs), when matured in

the presence of the SCFA butyrate (Figure 1D), increase IL‐10, but
decrease IL‐6 and IL‐12 expression.62 Similarly, treatment of mice with

the SCFA propionate generates new bone marrow DC precursors with

high phagocytic capacity but an impaired ability to promote T helper

type 2 (Th2) responses in the lung. This effect is dependent on G pro-

tein–coupled receptor 41 (GPR41, also called free fatty acid receptor 3

or FFAR3), but not GPR43 (also called free fatty acid receptor 2 or

FFAR2).55 DCs can also exert roles in adoptive T‐cell therapy (ACT) in

cancer (Figure 1E), and the composition of the gut microbiome or

treatment with antibiotics could lead to an increase in CD8α+ DCs,

and consequent IL‐12 release that sustains the anti‐tumor ACT.63

3.3 | Macrophages

The microbiota and its metabolites such as SCFAs strongly influence

myelopoiesis and the tissue‐resident macrophages. In the intestine,

microbial SCFA butyrate activates its endogenous receptor GPR109a

promoting anti‐inflammatory properties in colonic macrophages that

induce differentiation of Treg cells and IL‐10‐producing T cells. Such

responses may be beneficial in food tolerance, but perhaps not in can-

cer. Moreover, butyrate exerts an anti‐inflammatory effect on lamina

propria macrophages by inhibition of IL‐6, IL‐12, and NO via inhibition

of HDACs.64 Noteworthy, this mechanism did not affect primary LPS

response genes such as Tnfα and Ccl2. Microbiota can also affect

macrophage phenotype and response if they are not in contact with the

innate immune system. In the CNS of germ‐free mice, macrophages (mi-

croglia) display an altered phenotype. In the lungs of mice treated with

antibiotics, macrophages are polarized toward a M2 pro‐allergic pheno-
type by prostaglandin E2 (PGE2) enhanced by commensal fungi.65

3.4 | Mast cells

Mast cells (MC) are crucial effector cells in allergy and other inflam-

matory diseases.66 They also play important roles in regulating the

microenvironment of various tumors.66 There is increasing evidence

that MC function can be modulated by commensal, symbiotic, and

pathogenic microorganisms.67 Microorganisms may influence MC

activation via direct interaction or via secreted metabolites. For

example, co‐culture with Lactobacillus rhamnosus (Figure 1C) down-

regulates gene expression for the high‐affinity IgE receptor and his-

tamine H4 receptor in human MC, while increasing IL‐8, IL‐10,
CCL2, and TNF‐α.67 Stabilization of MC by L rhamnosus is possibly

induced indirectly via targeting the KCa3.1 channel.68 Some

F IGURE 1 Microbiota engineering. The three main approaches to microbiota engineering are depicted: left, interventions to modify the
microbiota species composition; right, engineering biosynthetic pathways for the production of compounds benefiting human health and
homeostasis; bottom, engineering selected commensal strains for therapeutic protein live delivery. At the center of each circled approach, a
single bacterial cell is depicted as commensal representative. These approaches have possible overlaps that allow better tailored design. All
approaches can be envisaged to ameliorate or even prevent both allergy and cancer
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Lactobacillus strains, such as Lactobacillus paracasei, inhibited IgE‐
mediated activation of murine MC with a possible involvement of

TLR2. Inhibition by L casei is cell contact‐dependent, but TLR‐ or

Nod1/2‐independent.67 Inhibition of MC activation by microbiota‐
derived metabolites such as SCFA may be mediated via the surface

receptors GPR41, GPR43, and GPR109A69,70 nuclear receptor family

peroxisome proliferator‐activated receptors (PPAR) or direct inhibi-

tion of histone deacetylase activity.71 The bioactive milk peptide gly-

comacropeptide (GMP) increased intestinal Lactobacillus and

Bifidobacterium levels in rats and decreased allergen‐induced MC

activation.72

3.5 | Eosinophils

Eosinophils are granulocytic leukocytes that exert important func-

tions in protective immune responses against helminths and other

pathogens.73 They also serve as key effector cells in allergies and

other inflammatory diseases. Recent studies demonstrated that

eosinophils crucially participate in maintaining the specific tissue‐
resident microbiome.74 Conversely, functions of eosinophils are

regulated by pathogenic as well as probiotic microorganisms; for

example, human eosinophils were found to ingest Clostridium diffi-

cile (Figure 1B), which subsequently stimulated the release of eosi-

nophil‐derived neurotoxin.75 In contrast, ingestion of the probiotic

strain Bifidobacterium bifidum resulted only in a minor neurotoxin

release.75 Comparably, mouse eosinophils were found to take up

the probiotic Lactobacillus reuteri.76 Using various mouse models of

asthma and AD, probiotics like Lactobacillus fermentum and L rham-

nosus were found to improve allergic inflammation associated with

decreased eosinophil infiltration, although a direct effect of probi-

otic bacterial strains on eosinophils was not demonstrated in these

studies.77,78

3.6 | ILCs

Innate lymphoid cells (ILCs) develop normally in the absence of the

microbiota; however, signals from commensal microorganisms influ-

ence the maturation and acquisition of the tissue‐specific functions

of ILCs. ILC3 cells maintain tolerance to commensal‐specific T‐cell
responses and their depletion and subsequent abrogation of IL‐22
production, results in loss of intestinal bacteria.65 Moreover, ILC3s

release GM‐CSF and induce tolerance when intestinal macrophages

release IL‐1β in response to microbial sensing. A recent study

demonstrates that TNF‐β production by ILC3s is crucial for the pro-

duction of IgA and for microbiota homeostasis in the intestine.

Another ILC subtype, ILC2s, is activated by IL‐25 produced in a

microbiota‐dependent manner by epithelial tuft cells. Deletion of the

ILC1‐lineage transcription factor T‐bet in the innate immune system

results in ILC‐dependent and Helicobacter typhlonius‐driven inflamma-

tion of the intestine, connected to cancer initiation and promotion.65

Taken together, the microbiota and their metabolites shape the

spectrum of different immunoregulatory ILCs and modulate their

ability to prevent tumor immune evasion or allergic responses.

3.7 | Tregs

Tregs are potent immune‐regulating cells that play a central role in

controlling immune responses (Figure 1A). Tregs can support the

reduction of allergic diseases, and, on the other hand, the progres-

sion of cancer.79 Multiple mechanisms are employed by Treg cells

and include production of inhibitory cytokines (IL‐10, TGF‐β, and IL‐
35), cytolysis of effector T cells and APCs (via granzymes A and B),

direct inhibition of DCs (eg, via PD‐1 and CTLA4) and metabolic dis-

ruption of effector cells (CD25, cAMP, adenosine, CD39, and

CD73).80 Germ‐free mice do not fully develop Tregs, similarly to

mice treated with antibiotics or mice lacking Toll‐like receptors

(TLRs). However, not all bacterial strains are equally effective in

inducing Tregs. Bifidobacterium longum 35624, Clostridia, and Bac-

teroides fragilis have been shown to induce intestinal Treg cells, while

other bacterial strains do not induce Tregs.81,82 Pattern recognition

receptor activation on DCs seems to be an important mechanism by

which intestinal microbes may promote Treg cell differentiation.83

3.8 | B cells and Bregs

B cells are known to promote allergy through antigen presentation

and class‐switching to IgE, whereas under certain conditions, tumor‐
infiltrating B cells can be associated with improved patient survival

in cancer.79,84 In contrast, Breg‐associated immune tolerance can

lead to control of allergy or tumor progression in cancer.79

The microbiome may have a role in mediating these multifaceted

and opposing B‐cell effects in allergy and cancer. Microbiota regulate

activation and differentiation of B cells.85 Gut microbiota antigens

directly trigger B‐cell activation by binding BCRs, and microbial prod-

ucts activate TLR‐expressing B cells, increasing B‐cell survival, antigen
presentation, and antibody production.86 Microbiota also mediate the

release of epithelial cell and eosinophil‐derived cytokines/chemokines

that activate and recruit B cells, and may promote T follicular helper

cell‐mediated differentiation of plasma cells.85 Conversely, the gut

microbiome reportedly induces DCs to produce cytokines, such as IL‐
1β and IL‐6, which promote B‐cell differentiation to Bregs.87

These findings point to a functional cross talk between humoral

immunity and the microbiome.

4 | MOLECULAR CROSS TALK OF
MICROBIOTA WITH INNATE AND SPECIFIC
IMMUNE DEFENSE

4.1 | Redox regulation in allergy and cancer

Recent reports demonstrated that certain microbes can stimulate

intracellular signaling, involving PTEN, MAPK, and PTP via the genera-

tion of reactive oxygen species (ROS) in epithelia, when harboring reg-

ulatory redox‐sensitive thiolates.88 Commensal bacteria alter the

epithelial redox environment by production of oxygen radicals, cause

epithelial cell DNA damage, and may harbor carcinogenic properties,

for example, in colon carcinoma development.89 Furthermore, allergic
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asthma is associated with an increase in endogenous ROS formation,

leading to oxidative stress–induced damage to the respiratory system

and weakened antioxidant defenses. These may result in abnormal

physiologic function of DNA, proteins, and lipids that can augment

bronchial hyperresponsiveness and inflammation.90

Overall, the microbiome is implicated in redox regulating path-

ways, which are relevant for both chronic inflammation and cancer.

4.2 | Lipocalins

Human lipocalins, such as tear lipocalin 1 and lipocalin 2 present in

the nasal mucosa, can interfere with bacterial iron sequestration,27

and may directly modulate site‐specific microbial composition. The

immunomodulatory and apoptosis‐regulating properties of LCN2

have been linked to its ability to shuttle iron.91 In line with the

hygiene hypothesis, the limited “microbial exposure” of allergic indi-

viduals may also result in deficiencies of the immune regulatory

machinery and this can lead to hyper‐reactive responses.92 Interest-

ingly, nearly all major mammalian allergens belong to the lipocalin

family,93 and are similarly able to bind to bacterial and plant‐derived
iron chelators, pointing to a potential role for interference of LCN2

function. In several cancer types and in line with a perturbed iron

regulation, LCN2 plays an important role in oncogenesis and cancer

progression and may serve as a disease biomarker.94

4.3 | Antibodies

Microbiota‐associated antigens can induce IgA‐producing plasma

cells in the gut; CD40‐ligand and IL‐21 from T follicular helper cells,

APRIL and BAFF from DCs, induce activation‐induced cytidine deam-

inase (AID) expression by B cells, promoting IgA class switch recom-

bination. As the composition of the microbiota changes, so do the

IgA repertoires.95

In a recent mouse study, IL‐33‐deficient mice, with significantly

lower levels of intestinal IgA and colon‐residing IgA+ B cells, had

increased DNA damage‐induced tumors; observations that were

ameliorated upon microbiome restoration by co‐housing deficient

animals with wild‐type mice.96 In humans, altered gut microbiota

diversity and low total IgA levels may be associated with the devel-

opment of allergies and asthma,97 and IgA‐deficient individuals have

a moderately increased risk of cancer, with higher risks in gastroin-

testinal cancer.98 This disease risk may be a result of impaired muco-

sal barrier function. However, the associations between microbiota‐
driven antibody production with allergies and cancer are not yet suf-

ficiently understood.

5 | TRANSLATIONAL IMPLICATIONS OF
MICROBIOTA

5.1 | Oncoimmunology and allergy

Specific microbes and the microbiota in general can be considered as

important drivers of immunomodulation and can contribute to

establishing immune tolerance, with differential impact on the many

diverse immune‐mediated diseases. Due to the close interaction and

the bidirectional influence of intestinal microbiota on the mucosal

immune system, the gut can be considered as an essential site of

immune cross talk in the human host. When it comes to allergy or

cancer, however, regulation of tolerance has an opposing impact on

disease development and treatment.79

In cancer, the impact of microbiota was for a long time primarily

considered in the context of dysbiosis, increased epithelial transloca-

tion and carcinogenic effector mechanisms.99 However, in recent

years, emerging knowledge points to the role of microbiota, espe-

cially in the gut, in anti‐cancer immune mechanisms.100 This is due

to studies describing a reduced anti‐cancer efficacy of chemothera-

peutics such as cyclophosphamide and platinum salts in germ‐free
and antibiotic‐treated mice. Moreover, the redox equilibrium of mye-

loid cells contained in the tumor microenvironment is influenced by

intestinal microbiota and due to the importance of the gut in

immune fitness, intestinal microbes are essential for the availability

of immunomodulators.

In cancer immunotherapy, major advances have been made in

the past years to understand the contribution of microbiota compo-

sition to successful treatment. Studies are now starting to evaluate

the role of the gut microbiome in anti‐PD‐1 immunotherapy,101,102

including the first clinical study focusing on PD‐1 checkpoint inhibi-

tor response in metastatic melanoma. In a recent ground‐breaking
study, the authors were able to demonstrate a correlation between

response to PD‐1 checkpoint inhibitor treatment and diversity of

microbial strains in the intestine. Moreover, high abundance of Fae-

calibacterium and low abundance of Bacteroidales were associated

with good prognosis and longer progression‐free survival after

checkpoint inhibitor treatment.101 Moreover, toxicity‐related side

effects and a dysfunctional intestinal epithelial barrier seem to be

attenuated by a beneficial microbiota composition, potentially act-

ing not only via modulation of the host immune response but also

via modulation of cancer metabolism.103,104

Even though immunotherapy has been the treatment of choice for

allergic diseases for more than a century, it seems that the cancer field

is more advanced than allergy research with regard to evaluating the

role of microbiota. There is a growing number of studies proving the

major immunomodulating effects of intestinal microbiota and dietary

supplementation with probiotic strains, as well as growing evidence

demonstrating the role of intestinal microbial colonization in preven-

tion and onset of allergic disease.9,105 However, only a limited number

of studies have so far evaluated the influence of beneficial bacterial

strains in the context of successful allergen‐specific immunotherapy

(AIT). Beneficial immunomodulatory and clinical effects of probiotic

supplementation were observed when using different probiotic strains

such as L rhamnosus in a randomized clinical trial of peanut oral

immunotherapy or in grass‐pollen sublingual immunotherapy (SLIT) or

by combining SCIT with Clostridium butyricum supplementation.106-108

Thus, major research efforts will be essential in the future to close this

current knowledge gap and to ensure optimized AIT formulations for

efficient treatment of allergic patients.
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F IGURE 2 Interaction of microbiota
with immune cells in health and disease. A,
Bidirectional interaction between gut
microbiome and players of the immune
system. Cells from the epithelial barrier
(epithelial cells and DC) sense the
microbiome through the expression of a
large panel of receptors. In health, such
interactions are essential for the
maintenance of the local microbial
homeostasis and the integrity of epithelial
barriers. This mechanism involves a variety
of regulatory immune cells resident in the
gut mucosa as well as molecules secreted
by the epithelial layer. B, Human
eosinophils were shown to secrete, among
others, high amounts of neurotoxin
following phagocytosis of the pathogenic
bacteria Clostridium difficile that were
limited following the engulfment of
Bifidobacterium bifidum. C, In vitro
interaction of human mast cells with
Lactobacillus rhamnosus and SCFAs results
in their modified functions and phenotypes
with the implication of the KCa3.1 channel
as well as Gpr41, 43, and 109a,
respectively. D, The differentiation of
human monocytes into moDC in the
presence of SCFAs induces modified
secretory capacities compared to controls.
E, The efficacy of adoptive T‐cell therapy
was proven to be associated with the
microbiome. The success of adoptive T‐cell
therapy correlates with a peripheral
increase and a more abundant tumor
infiltration of CD8α+DC producing IL‐12.63

Mouse treatment with SCFA results in the
recruitment of bone marrow‐derived DC
with impaired capacity to induce Th2
responses in the lung.55 Probiotics
administered by gavage reduce the
severity of allergic airway inflammation
and AD through the reduction of
eosinophil infiltration into the lung and
skin, respectively77,78
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5.2 | Microbial translocation in cancer and allergy

Under certain conditions, the normal gut epithelial barrier can

become leaky, permitting the passage of microbes and microbial

molecules into the systemic circulation, known as microbial translo-

cation. Microbial products, especially cell walls of gram‐negative bac-

teria (lipopolysaccharide [LPS] or endotoxin), are powerful

stimulators of innate immunity and of B‐cell activation, resulting in

inflammation that can lead to disease states, and even septic shock

if present in very high doses.109 Microbial translocation can be

assessed by measuring the immune molecules stimulated by LPS,

including soluble CD14 (sCD14), LPS‐binding protein (LBP), and anti-

bodies recognizing the core LPS antigen (Endocab).109

Gut barrier permeability is well‐established in the setting of HIV

infection. Two different prospective cohort studies reported that

immune markers reflecting microbial translocation are associated with

an elevated risk of AIDS‐related non‐Hodgkin lymphoma (NHL),110,111

presumably due to increased B‐cell activation resulting from the trig-

gered innate inflammation signals. Both studies found that sCD14,

measured years prior to diagnosis, was associated with a twofold to

fourfold increase in NHL risk, but the findings were inconsistent with

respect to the other measures. Besides implications of microbial

translocation in food allergy and asthma, it also strongly influences

AD.112 A randomized trial among adult AD patients, given either

selected probiotics or placebo, resulted in clinical improvement,

decreased T helper type 2 (Th2) immune activation, and reduced

plasma LPS as a measure of microbial translocation.112 Thus, microbial

translocation may play a role in the etiology of both AIDS‐related lym-

phoma and AD. It may therefore be possible to decrease risk by reduc-

ing microbial translocation through the selective use of probiotics.

5.3 | Outlook: microbiota engineering

The beneficial effect of a balanced microbiota on human health can

be restored or potentiated by external/medical intervention. There

are three main routes to microbiota engineering (Figure 2). Firstly, in

pathological conditions, commensal bacteria could be administered

to move toward a species composition more representative of a

healthy microbiota. Examples are fecal transplantation and vaginal

swab, but other types of more specific interventions are being stud-

ied. Secondly, bacterial biosynthetic pathways could be engineered

for de novo or enhanced production of compounds that can pro-

mote healthier mucosal environments and homeostasis. Thirdly,

selected commensal bacterial strains (especially lactic acid bacteria)

could be engineered for the live delivery of recombinant therapeutic

proteins either to prevent or to combat disease.113,114 To this end,

live recombinant protein delivery could occur via secretion, mem-

brane‐anchorage, or intracellular load. Engineering biosynthetic path-

ways or exogenous recombinant protein production implies the

genetic modification of commensal bacteria; therefore, sophisticated

strategies to control their survival in the host and in the local envi-

ronment are being devised.115 Cancer and allergy are widely the

focus of many of these efforts (Figure 2), with a number of studies

showing how microbiota composition and its engineering may ame-

liorate or support the appropriate immune response to contribute to

clinical benefits for each condition.116

6 | CONCLUSION

The biodiversity hypothesis is a cornerstone in the understanding of

the allergy epidemics. Subsequently, the era of microbiota research

has opened up novel perspectives on allergy pathogenesis,117 but also

on cancer due to the immunomodulatory properties of the mutualistic

microbes. The impact of the microbiota can be direct or indirect by

cellular cross talk with and among innate or specific immune cells, by

translocation of microbiota via epithelia into tissues, or by the

exchange of molecules which may stimulate inflammatory or regula-

tory cells. The subsequent result can be inflammation or reconstitu-

tion, with opposing consequences in allergy and cancer. Importantly,

the composition of the human microbiota can be disturbed by envi-

ronmental factors, composition of the diet, and especially by medical

interventions such as antibiotics and anti‐ulcer medications. Phyloge-

netic variability and stable composition of microbiota seem to be

determined in early life, defining this as a critical period for establish-

ing health and homeostasis. However, it also offers a potential win-

dow of opportunity for interventions aiming at the establishment of a

healthy microbiota to support long‐term human health.
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