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To address increasingly prominent energy problems, lithium-ion batteries have been

widely developed. The high-nickel type nickel–cobalt–manganese (NCM) ternary cathode

material has attracted attention because of its high energy density, but it has problems

such as cation mixing. To address these issues, it is necessary to start from the surface

and interface of the cathode material, explore the mechanism underlying the material’s

structural change and the occurrence of side reactions, and propose corresponding

optimization schemes. This article reviews the defects caused by cation mixing and

energy bands in high-nickel NCM ternary cathode materials. This review discusses

the reasons why the core-shell structure has become an optimized high-nickel ternary

cathode material in recent years and the research progress of core-shell materials. The

synthesis method of high-nickel NCM ternary cathode material is summarized. A good

theoretical basis for future experimental exploration is provided.

Keywords: lithium ion battery, high nickel type, ternary cathode material, surface, core-shell

INTRODUCTION

As environmental issues have become a major concern, reducing the use of fossil fuels has become
a key issue. Lithium-ion batteries are the most commonly used energy storage devices due to their
high energy density and long cycle life (Wang et al., 2020f; Zhang et al., 2020). The new energy
industry powered by lithium-ion batteries has been greatly developed (Pant and Dolker, 2017;
Barcellona and Piegari, 2020; Mossali et al., 2020; Wang et al., 2020d). However, fierce competition
in this industry has brought about higher requirements for lithium-ion batteries (Zubi et al., 2018).
The nature of the electrode material is the fundamental factor affecting the performance of the
battery. Analyzing and optimizing the electrode material is an important approach to solving the
bottleneck of the lithium ion battery (Lipu et al., 2018; Zhang et al., 2018).

LiCoO2 has good cycle stability in the cathode material of lithium batteries, but the actual
capacity is low (Yang et al., 2018; Wang et al., 2020b). LiMn2O4 has excellent cycle performance but
is prone to spinel phase degradation (Dai et al., 2012; Bhuvaneswari et al., 2019). LiMnO2 has good
cycle performance but low preparation efficiency (Zheng et al., 2016; Zhou et al., 2016). LiNiO2

has high energy density but is prone to structural disorder (Liu et al., 2007; Deng et al., 2019). A
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layered lithium nickel–cobalt–manganese (NCM) oxide
LiNixCoyMnzO2 (LNCM) ternary cathode material with the
combined advantages of LiCoO2, LiNiO2, and LiMnO2 has been
generated (Park and Choi, 2018). In LNCM, the valences of
nickel, cobalt, and manganese cations are usually +2, +3, and
+4, respectively (Kang et al., 2006; Lin et al., 2014). Among
them, +4 valence Mn guarantees structural stability, whereas
+3 valence Co regulates cationic disorder and reduces surface
energy (Garcia et al., 2017). The redox couple energy of Ni2+/4+

and Co3+/4+ can increase the battery’s capacity (Lee et al., 2014).
According to the crystal field theory, Ni mostly exists in the form
of +2 valence. The radius of Ni2+ is close to the radius of Li+.
Cation mixing easily occurs in high-nickel type NCM ternary
cathode materials. Ni4+ has strong oxidizability; Li1−xNiO2

formed after delithiation has poor thermal stability; Ni4+ easily
reacts with organic electrolyte (Hong et al., 2012). The main
lattice of the highly delithiated electrode surface releases oxygen,
which reacts with the organic electrolyte (Abraham et al., 2002).
The surface of the high-nickel material reacts with the external
CO2 and H2O to form a lithium-containing compound (Liu
et al., 2016; Gao et al., 2019).

This review starts with the surface and interface of the
high-nickel NCM ternary cathode material. The causes of the
defects in the material are analyzed. The core-shell structure
that improves the performance of the high-nickel NCM ternary
cathode material is explained. The methods of generating high-
nickel-type NCM ternary cathode material are mentioned.

STUDY ON THE SURFACE AND
INTERFACE STRUCTURE OF
HIGH-NICKEL NICKEL–COBALT–
MANGANESE TERNARY CATHODE
MATERIALS

The stable electrode surface and interface structure are the key
factors that determine the quality of the battery. Structural
defects and side reactions on the surface of the high-nickel
NCM ternary positive material affect the transfer of electrons
and the deintercalation of lithium ions, thereby affecting the
performance of the battery (Wang et al., 2020c). The changes
in the chemical properties of lithium-ion batteries in terms of
surface and structure need to be elucidated.

Surface Structure and Evolution of
High-Nickel Cathode Materials
The high-nickel NCM ternary cathode material has a-NaFeO2

structure; the space group is hexagonal R-3m; Li+ is embedded
in the layered structure of transition metal and oxygen atoms
and inserted and extracted in the 2D gap (Li et al., 2014; Liu
Y. et al., 2019). In high-nickel type LNCM cathode materials,
Ni2+ and Li+ are prone to cation mixing (Yang et al., 2019b).
Cation mixing shifts the hierarchical R-3m space group to the
tightly packed spinel Fm-3m space group. This tight structure
leads to shorter ion spacing and larger interactions, making Li+

diffusion difficult (Zhang et al., 2017). Studies have suggested that

structural changes occur on the surface of high nickel layered
oxides (Li J. et al., 2020; Liu et al., 2020).

In layered NMC materials, Li+ jumping and migration
barriers are very sensitive to local structures (Van der Ven
and Ceder, 2001; Kang and Ceder, 2006). Based on this, the
diffusion rate of Li+ in LiNi0.8Mn0.1Co0.1O2 (NMC811) is found
to be the main reason for the structural change of the material.
When the degree of lithiation deepens, the volume of a single
positive electrode particle continues to shrink after delithiation.
The lattice parameters change along with the material structure
(Märker et al., 2019). Fu et al. (2014) found that with increasing
number of lithium sources, the lattice parameters (a and c) and
the thickness of the intercellular space decrease, and the Li+/Ni2+

mixed arrangement causes structural changes. Wang et al. (2017)
studied the LiNi0.6Co0.2Mn0.2O2 (NMC622) material and found
that spinel skeleton defects and a sharp drop in lattice parameter
c cause lattice distortion. Moreover, the spinel structure causes
the instability of the material surface and structure. Figure 1
shows the processing of high nickel NCM ternary cathode
material, which is due to cation mixed discharge caused by
structural changes (Wang et al., 2017). Many studies believe
that heterogeneous ions can be inserted into the lattice through
doping, thereby changing the bond energy and lattice parameters
and suppressing the deterioration of the internal structure of the
lattice (Binder et al., 2018; Yu et al., 2020).

Mechanism of Surface Redox of
High-Nickel Nickel-Cobalt-Manganese
Ternary Cathode Material
The thermal decomposition products of high-nickel LNCM
cathode materials at high temperature may include the following:
LixMn2O4, LiNiO2, (NiO)x(MnO)y, CoO, CoCO3, LiF, and
various oxides of manganese, nickel, and cobalt (Wang et al.,
2020a). The electronic structure of the active element in the
transition metal layer is a factor that directly affects the redox
reaction. Co and Ni have a +3 valence, and the energy band
is (t2g)

6(eg)
0, which is in a low spin state. The release of more

than half of Li+ ions from the layered LiCoO2 will cause O2−

2p electron loss. The top of the O2− 2p band overlaps with
the t2g band with Co3+/4+ redox activity, resulting in structural
instability. The overlapping position of the eg band of Ni3+/4+

and the top of O2− 2p band is lower than that of the t2g
band of Co3+/4+, indicating that the delocalization effect of
Ni3+/4+ is smaller, the structure is more stable, and the reversible
performance is better (Hou et al., 2017). The eg band of Mn
does not overlap with O2− 2p, and the overlap of the t2g
band and O2− 2p is lower than that of Co3+/4+. Thus, the
stability of Mn is higher. Julien et al. (2014) established a ternary
LiNiyMnyCo1−2yO2 oxide with better stability on the basis of
LiNiO2 and LiCoO2 oxide structures (Julien et al., 2014).

Many studies have hoped to influence the energy band
through doping and thereby improve the material’s stability.
Common doping approaches are as follows: anion doping: F−

(Zhao et al., 2019), Cation doping: K+ (Liu Z. et al., 2019),
Al3+ (Trease et al., 2016; Do et al., 2018), Zr4+ (Sivaprakash
and Majumder, 2009), Mg2+ (Jin et al., 2019), Ti4+ (Zhang
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FIGURE 1 | High-nickel cathode material in four-stage microstructure of the atomic distribution and order of the schematic explanation.

et al., 2019), Co-doping: Mn4+-PO3−
4 (Qiu et al., 2019), and

Al3+-Mg2+ (Woo et al., 2009). However, the doping of foreign
elements can cause structural collapse because of the doping ions’
inability to integrate into the layered structure.

Side Reaction of High Nickel
Nickel-Cobalt-Manganese Ternary
Cathode Material Interface Structure
High-nickel LNCM cathode materials are prone to side reactions
at the interface with the electrolyte. Side reactions and the
products of such reactions can affect battery performance.

Usually, the decomposition of the electrolyte is as follows (Van
Ree, 2020):

In general : LiPF6 (s)↔LiF(s)+ PF5 (g) (1)

In the presence of H2O :PF5 +H2O → POF3 + 2HF (2)

2POF3 + 3Li2O → 6LiF↓ + P2O5↓(or LixPOFy) (3)

The high-nickel type LNCM positive electrode easily reacts with
the surrounding environment due to its high surface reactivity
(Jung et al., 2018). LiF, Li2CO3, LiOH, and other impurities
are easily deposited on the interface between the active high
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nickel LNCM positive electrode and the electrolyte, thereby
suppressing the diffusion of Li+ and reducing the electrochemical
performance. To effectively prevent the side reaction between the
electrode and the electrolyte, coating modification is proposed,
such as coating metal oxides: Al2O3 (Liao and Manthiram,
2015; Yan et al., 2016), ZrO2 (Yang et al., 2019a), MgO (Yoon
et al., 2012), ZnO (Chang et al., 2010), lanthanide oxides:
La4NiLiO8 (Li L. et al., 2020), phosphate: AlPO4 (Zhao et al.,
2017), Cu3(PO4)2 (Zhao et al., 2016), fluoride: AlF3 (Ding et al.,
2017), transition metal oxide: Li2ZrO3 (Xu et al., 2016), multiple
coating: Li2TiO

_
3Li2ZrO3 (Li J. et al., 2020), and LiFePO_

4Al2O3

(Seteni et al., 2017). The double modification method combines
doping and coating, as follows: Sr doping–LaMnO3 coating (Li
et al., 2019), N doping–C coating (Nanthagopal et al., 2019),
Zr doping–ZrO2 coating (Wang et al., 2020e), and Sn doping–
Li2SnO3 coating (Zhu et al., 2020).

STUDY ON HIGH-NICKEL
NICKEL–COBALT–MANGANESE TERNARY
CATHODE MATERIALS WITH CORE-SHELL
STRUCTURE

The high-nickel type NCM cathode material is a combination
of three transition metal elements. This material does not solve
the defects of any one element. Although element doping,
surface coating, and double modification can improve defects,
these solutions only involve the simple processing of the
body material and do not fundamentally solve the problem.
Sun et al. (2005) extended the concept of cladding to the
core shell and proposed the concept of using the core shell
material for lithium ion batteries. The high-nickel nickel–
cobalt–manganese ternary cathode material with a core-shell
structure has evolved from a common core-shell structure to
a core-shell gradient structure, and finally, to a full gradient
core-shell structure.

Simple Core-Shell Structure
In the high-nickel type NCM cathode material with a simple
core-shell structure, a synergistic effect exists between the
core and the shell. The core material has high specific
capacity performance, and the shell material has structural
and thermal stability. Sun et al. (2006b) used Li[Ni0.8Co0.2]O2

with high specific capacity as the core and Li[Ni0.5Mn0.5]O2

with high structural stability as the shell. They obtained
a simple core-shell Li[(Ni0.8Co0.2)0.8(Ni0.5Mn0.5)0.2]O2

cathode material. Compared with the Li[Ni0.8Co0.2]O2

electrode, the capacity retention rate and thermal stability
of the abovementioned synthesized cathode material
are significantly improved. Shi et al. (2014) synthesized
Li[(Ni0.8Co0.1Mn0.1)0.7(Ni0.45Co0.1Mn0.45)0.3]O2 with (Ni0.8
Co0.1Mn0.1)0.7 as the core and (Ni0.45Co0.1Mn0.45)0.3 as the
shell. The core-shell material cyclicity and thermal stability
showed significant improvement. Jun et al. (2017) used
LiNiO2 as the core and Li[Ni0.8Co0.1Mn0.1]O2 as the shell to
obtain Li[Ni0.95Co0.025Mn0.025]O2 core-shell material, which
provided excellent discharge capacity while exhibiting excellent

cyclic performance. The simple core-shell structure effectively
improves the performance of the battery, but the composition
of the core and shell materials in this structure is significantly
different, thereby producing a large interface resistance and
hindering Li+ diffusion. The high-temperature calcination
process easily causes metal ion diffusion, resulting in structural
changes in the material.

Concentration Gradient Core-Shell
Structure
The concentration gradient core-shell structure is a
new concept. It is proposed on the basis of a simple
core-shell structure. A high-nickel-type NCM ternary
material is coated with a shell material whose nickel
concentration continuously decreases from the inside out.
Liao et al. (2016) obtained the concentration gradient of the
LiNi0.76Co0.1Mn0.14O2 cathode material from the double-shell
[Ni0.9Co0.1]0.4[Ni0.7Co0.1Mn0.2]0.5[Ni0.5Co0.1Mn0.4]0.1(OH)2
precursor’s sintering, which significantly improves the capacity
retention rate. Song et al. (2015) synthesized a concentration
gradient LiNi0.5Co0.2Mn0.3O2 material. Figure 2 shows the
principle of sintering a concentration gradient positive electrode
material from a double-shell precursor (Song et al., 2015).
The concentration gradient of the CG-LiNi0.7Co0.15Mn0.15O2

cathode material is prepared from the multilayer precursor,
which effectively reduces side reactions and rapid Li+ kinetics
(Hou et al., 2018). With the concentration gradient of the
Li1.2Ni0.13Mn0.54Co0.13O2 cathode material, the initial reversible
capacity and capacity retention rate are improved (Ma et al.,
2019). Liao and Manthiram (2015) used a concentration gradient
[Ni0.2Mn0.8]0.3 shell to encapsulate a high nickel [Ni0.8Co0.2]0.7
core and coated Al2O3 on the surface of the shell to obtain a
sample with better cyclic stability, rate performance, and thermal
stability. The concentration gradient core-shell structure has a
shell material with continuous concentration changes, which
effectively reduces the interface resistance between the core
and the shell and strengthens the synergistic effect between the
core and the shell. However, the final surface of this structure
still has a relatively high Ni content and a relatively low Mn
content. When the high-temperature and high-voltage states
are cycled for a long time at a high ratio, the electrochemical
performance deteriorates.

Full Concentration Gradient Core-Shell
Structure
The full concentration gradient core-shell material refers to the
entire ternary precursor cathode material from the inside to
the outside. The Ni ion content gradually decreases, and the
Mn and Co ion contents increase continuously. The structure
abandons the concept of having a clear core-shell interface and
overcomes the problem of uneven coating of the shell layer or
the large difference between the shell and core components. Ju
et al. (2013) synthesized a full concentration gradient core-shell
material from the center of the particle (Ni is 0.62–0.74 mol%;
Co is 0.05 mol%) to the surface (Ni is 0.48–0.62 mol%; Co is 0.18
mol%). FCG-Li[Ni0.59Co0.16Mn0.25]O2 cathode material has a
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FIGURE 2 | Schematic diagram of using a multi-shell precursor to control a positive electrode with a high nickel concentration gradient.

maximum discharge capacity of 188 mAh·g−1. The FCG cathode
material that gradually changes from Li[Ni0.86Co0.07Mn0.07]O2

at the center of the particle to Li[Ni0.67Co0.09Mn0.24]O2 at the
surface shows high capacity performance (Noh et al., 2014). Full
concentration gradient core-shell material LiNi0.7Co0.10Mn0.2O2

has higher cycle performance and high temperature stability and
rate performance (Liang et al., 2015). The relative molar content
of Ni in the full concentration gradient core-shell material
LiNi0.8Co0.1Mn0.12 cathode material gradually decreases from
84% to 76%, the relative molar content of Mn gradually increases,
and the Co content shows a slow gradient variation. The capacity
retention rate of this material after 100 cycles at 5C rate reaches
90% (Jiang et al., 2019).

METHOD FOR SYNTHESIZING
HIGH-NICKEL
NICKEL–COBALT–MANGANESE TERNARY
CATHODE MATERIAL

Different synthesis methods will affect the microstructure and
electrochemical performance of the prepared materials. At
present, the methods for preparing the high-nickel nickel-cobalt-
manganese ternary cathode material for lithium ion batteries
mainly include the co-precipitation and high-temperature solid
phase methods.

A material synthesized by the co-precipitation method has a
small and uniform particle size and is typically used for coating
the high-nickel NCM ternary cathode material and for the
synthesis of the core-shell structure. For example, the following
are prepared by co-precipitation method: LiNi0.6Mn0.2Co0.2O2

(Ren et al., 2017), LiNi0.8Mn0.8Co0.1O@Li3PO4@PPy (Chen
S. et al., 2017), Li[(Ni0.8Co0.1Mn0.1)1−x(Ni0.5Mn0.5)x]O2 (Sun
et al., 2006a), LiNi0.8Co0.1Mn0.1O2@x[Li-Mn-O] (Li et al., 2018),
and LiNi0.8Co0.1Mn0.1O2@active material core-shell material
(Su et al., 2019). High temperature solid phase method is
typically used for doping modification, as follows: Ca doping
LiNi0.8(1−x)Co0.1Mn0.1Ca0.8xO2 (Chen M. et al., 2017), Mn
doping LiNi0.82−xCo0.12−xMn0.06+2xO2 (Cho et al., 2018), and
Mo doping LiNi0.6Co0.2Mn0.2O2 (Xue et al., 2018). Sol-gel,
hydrothermal, and spray drying methods, as well as other
preparation methods, are also available. Sol-gel method is
used to prepare γ-Al2O3-coated NCM622 (Wu et al., 2019)
and tungsten oxide-coated NCM-811 (Becker et al., 2019).
LiNi0.7Co0.15Mn0.15O2 is prepared by hydrothermal method
(Tian et al., 2015). NCM811 is prepared by spray drying (Huang
et al., 2019).

CONCLUSIONS

For high-nickel-type LNCM ternary cathode battery materials,
improving energy density, cycle performance, and thermal
stability are the focus of future research. The energy band and
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structure from the material surface and interface need to be
analyzed to come up with an improved optimization plan.

High-nickel type NCM ternary cathode materials easily
phase change and release oxygen due to the high nickel
content. Traditional modification does not essentially solve
the structural problems. The core-shell structure promotes the
development of high-nickel NCM ternary cathode materials. The
high-nickel NCM ternary material with core-shell structure is
usually composed of a high-nickel core and a high-manganese
shell, which effectively inhibit phase transition and improve
cycle performance and thermal stability. The high energy
density of the cathode material is ensured. In the core-
shell interface of the simple core-shell, the transition metal
components cause structural mismatch due to mutations. The
final surface of the concentration gradient core-shell still has
high Ni content and low Mn content. Under high-strength
electrochemical conditions, the structure remains unstable.
The full concentration gradient core-shell structure abandons

the traditional core-shell boundaries and effectively solves
the abovementioned problems. Summarizing the method of
synthesizing high-nickel NCM ternary cathode material guides
the experiment. In future research, the application of first
principles to build amodel of synthetic materials for performance
calculation can broaden the research ideas and save time and cost.
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