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Abstract

Purpose: To synthesize a dual-energy computed tomography (DECT) image from an

equivalent kilovoltage computed tomography (kV-CT) image using a deep convolu-

tional adversarial network.

Methods: A total of 18,084 images of 28 patients are categorized into training and

test datasets. Monoenergetic CT images at 40, 70, and 140 keV and equivalent kV-

CT images at 120 kVp are reconstructed via DECT and are defined as the reference

images. An image prediction framework is created to generate monoenergetic com-

puted tomography (CT) images from kV-CT images. The accuracy of the images gen-

erated by the CNN model is determined by evaluating the mean absolute error

(MAE), mean square error (MSE), relative root mean square error (RMSE), peak sig-

nal-to-noise ratio (PSNR), structural similarity index (SSIM), and mutual information

between the synthesized and reference monochromatic CT images. Moreover, the

pixel values between the synthetic and reference images are measured and com-

pared using a manually drawn region of interest (ROI).

Results: The difference in the monoenergetic CT numbers of the ROIs between the

synthetic and reference monoenergetic CT images is within the standard deviation

values. The MAE, MSE, RMSE, and SSIM are the smallest for the image conversion

of 120 kVp to 140 keV. The PSNR is the smallest and the MI is the largest for the

synthetic 70 keV image.

Conclusions: The proposed model can act as a suitable alternative to the existing

methods for the reconstruction of monoenergetic CT images in DECT from single-

energy CT images.

K E Y WORD S

deep learning, artificial Intelligence, dual-energy CT, image synthesis

1 | INTRODUCTION

In a conventional kilovoltage computed tomography (kV-CT) image,

the value of a pixel represents the photon attenuation of the tissue

in that pixel. However, materials with similar absorbances have the

same CT numbers. Therefore, distinguishing between these materials

becomes challenging; for example, it is difficult to distinguish

between iodinated contrast medium and hemorrhage.1,2
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Dual-energy computed tomography (DECT) is based on the fact

that x-ray attenuation depends primarily on the photoelectric effect

and Compton scattering in the diagnostic energy range, and that

these attenuation phenomena are energy dependent.3 DECT scans

are acquired using two different tube potentials, which can be used

to estimate the Compton scattering and the photoelectric effect

components of the attenuation. Subsequently, this information is

used to distinguish between tissues and characterize materials. Using

this technique, the monoenergetic CT number, effective atomic num-

ber, urinary stone characterization, and virtual noncontrast-enhanced

images may be reconstructed.4 The monoenergetic CT image can be

reconstructed at an energy level ranging from 40 to 140 keV.5 Fur-

thermore, it can achieve better soft-tissue contrasts for radiotherapy

treatment planning and radiation diagnosis by reducing the effect of

image artifacts resulting from the presence of metal.6 The GE Revo-

lution CT scanner with Gemstone Spectral Imaging (GSI) allows for

dual energy kV-CT acquisitions that can be used to generate

monoenergetic, iodine contrast-enhanced, calcium-enhanced, and

effective atomic number images.7 The disadvantages of DECT are

that it requires a higher radiation dose and more expensive than

conventional multidetector CT.

Image synthesis with deep learning is used for image-to-image

translation from magnetic resonance (MR) images to CT images and

for multicontrast MR images with convolutional neural networks

(CNNs).8 CNNs can capture and represent high-dimensional input–-
output relationships. CNNs have been applied to medical image seg-

mentation and computer-aided detection.9 Florkow et al. designed a

two-dimensional (2D) CNN model that generates a synthetic CT

images from a T1-weighted MR images. In the kV-CT images synthe-

sized from MR images, a large difference with variations of up to

17% was observed in terms of the mean absolute error and varia-

tions of up to 28% specifically in bone images. These differences are

attributable to the spatial resolution of MR images being poorer than

that of CT images.10 The current study proposes the image synthesis

of monoenergetic CT images from kV-CT images, both of which

have the same resolution.

Recently, an image synthesis method based on a generative neu-

ral network (GAN) has been used. The GAN based on the CNN

model operates by training two different networks: a generator net-

work to synthesize an image and a discriminator network to distin-

guish between synthesized and reference images.11 Herein, the

synthesis of monoenergetic CT images at 40, 70, and 140 keV from

equivalent kV-CT images using the GAN model is proposed.

2 | MATERIALS AND METHODS

2.A | Data acquisition

A total of 18,084 images from 28 patients were analyzed as part of

an institutional review board-approved study. DECT images for each

patient were acquired using the Revolution DECT scanner (GE

Healthcare, Princeton, NJ, USA). DECT acquisitions at 80 and

140 kV tube voltages and an exposure of 560 mA were performed.

The other scanning parameters were a field-of-view of 360 mm, slice

thickness of 0.5 mm, and rotation time of 1.0 s. The monoenergetic

CT images at 40, 70, and 140 keV and the equivalent kV-CT images

were reconstructed using GSI and defined as the reference images.

2.B | Deep learning model

In the current study, a 2D CNN model comprising a GAN was

designed. An overview of the GAN network model is depicted in

Fig. 1. It includes a generator to estimate the monoenergetic CT

image and a discriminator to distinguish the real monoenergetic CT

image from the generated one. The generator attempts to produce

realistic images that confuses the discriminator. Notably, these two

networks are trained simultaneously. Hyperparameter optimization

was performed in the training dataset, and the test set settings were

adjusted only once for each algorithm. Image red–green–blue (RGB)

channels are typically used as inputs to the neural network.12 A 16-

bit DICOM image was converted to an 8-bit RGB portable network

graphics (PNG) image, and the output 8-bit RGB PNG image from

the 2D CNN model was converted to 16-bit DICOM images. The

pixel number in the CT image ranged from −1000 to 3079 Houns-

field units (HU). Subsequently, the values of the pixel in CT images

were converted to 8-bit (0–255) images by dividing with 16, which

is the value obtained by dividing the maximum pixel value, that is,

3079 HU, by 256. In this study, monoenergetic CT images were gen-

erated at 40, 70, and 140 keV from an equivalent kV-CT image at

120 kVp.

The dataset of 18,084 images comprised DECT images scanned

from the feet to the chest of 28 patients. The data were categorized

into two sets: 16146 images (20 patients) for model training and

1938 images (8 patients) for model testing. The training–testing pro-

cesses were repeated three times for cross-validation, as depicted in

Fig. 2. Furthermore, the performance of the predictive model was

evaluated with the training data reduced to one-half and one-quar-

ter; this was done to reduce the instabilities with respect to changes

in the number of samples, as depicted in Fig. 3.

The proposed models were implemented using TensorFlow pack-

ages (V1.7.0, Python 2.7, CUDA 9.0) on a Ubuntu 16.04 LTS system.

All the three models were trained using instance normalization and

identical hyperparameters except for the batch size. In the instance

normalization, the mean and standard deviation were calculated and

normalized across each channel in each training example. At each

iteration, a minibatch of 2D images was randomly selected from the

training set. The batch size was limited by the graphics processing

unit (GPU) memory. Three hundred epochs were used to operate

the 2D model on an 11-GB NVIDIA GeForce GTX 1080 GPU.

2.C | Evaluation

The prediction accuracy of the model for synthetic and real monoen-

ergetic CT images were evaluated using the following five metrics:

relative mean absolute error (MAE), relative root mean square

(RMSE), structural similarity index (SSIM), peak signal-to-noise ratio
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(PSNR), and mutual information (MI). These metrics are defined as

follows:

MAE¼ 1
nxny

∑
nxny

i, j

r i, jð Þ� t i, jð Þj j
r i, jð Þ (1)

Here, r i, jð Þ is the value of pixel i, jð Þ in the synthetic CT image, t i, jð Þ
is the value of pixel i, jð Þ in the reference image, and nxny is the total

number of pixels. RMSE is defined as

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nxny
∑
nxny

i, j

r i, jð Þ� t i, jð Þ
r i, jð Þ

� �2
vuut (2)

The SSIM is discrete form, as follows, and luminance to compute a

similarity score between two images.

The SSIM between two images x
~
and y

~
can be computed as Ref. [13].

SSIM x
!
, y
!� �

¼ 2μxμyþC1
� �

2σxyþC2ð Þ
μ2x þμ2x þC1
� �

σ2x þσ2y þC2

� � (3)

C1 ¼ k1Qð Þ2, k1 ¼0:01 (4)

C2 ¼ k2Qð Þ2, k2 ¼0:03 (5)

C1 and C2 are constants that are used to prevent a zero denomina-

tor and to maintain the stability of the formula. Q is the maximum

CT value for the synthetic and reference images. The values of k1

and k2 are generally obtained from Ref. [14]. σx is an estimate in the

discrete form, as follows.

σx ¼ 1
N�1

∑
N

i¼1
xi�μxð Þ2

� �1=2

(6)

The correlation coefficient between x
~
and y

~
is denoted as σxy , which

is expressed as follows.

F I G . 2 . Generation and testing of the prediction model. Model
performance was evaluated via cross-validation.

F I G . 3 . Evaluation of the predictive model based on the number
of samples. Training dataset was reduced to one-half and one-
quarter.

F I G . 1 . GAN framework. Generator learns to generate monoenergetic CT images of an anatomy similar to the kV-CT images. Meanwhile,
discriminator learns to discriminate between the synthetic and real monoenergetic CT images.
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σxy ¼ 1
N�1

∑
N

i¼1
xi�μxð Þ yi�μy

� �
, (7)

and μx is the mean intensity and can be expressed as

μx ¼
1
N
∑
N

i¼1
xi: (8)

The PSNR is calculated as follows:

PSNRGL ¼10� log10
MAXð Þ2
MSE

 !
: (9)

Here, MAX and MSE are the possible maximum signal intensity and

the mean square error (or difference) of the image, respectively. The

MI is used as a cross-modality similarity measure15 and is calculated

as follows:

I r : tð Þ¼ ∑
m∈ Ir

∑
n∈ It

p m,nð Þlog p m,nð Þ
p mð Þp nð Þ
� �

: (10)

Here, m and n are the intensities in the reference monoenergetic CT

image Ir and synthesized monoenergetic CT image It, respectively.

p(m, n) is the joint probability density of Ir and It, whereas p(m) and

p(n) are marginal densities. Furthermore, p(m, n) can be calculated as

follows:

p m,nð Þ¼ h m,nð Þ
∑m∈ It

∑n∈ It
h m,nð Þ , (11)

where h m,nð Þ is the histogram of the pixel values in the reference

monoenergetic CT image Ir and synthesized monoenergetic CT image

It. Furthermore, the difference in the synthesized and reference

monoenergetic CT numbers in the region of interest (ROI) was eval-

uated for several slices, starting from the feet to the chest in a man-

ually drawn ROI, as depicted in Fig. 4

3 | RESULTS

Figures 5–7 show the samples obtained by cross-modality genera-

tion for the synthetic monoenergetic CT images at 40, 70, and

140 keV. Table 1 presents the difference in the monoenergetic CT

numbers between the synthetic and reference images. As can be

seen, the difference is within 9.8 HU at 40 keV, −16.4 HU at

70 keV, and −7.6 HU at 140 keV. Furthermore, the difference in

the monoenergetic CT numbers in the ROIs between the synthetic

and reference images was within the appropriate range of the SD

values.

Tables 2–4 lists the average MAE, MSE, RMSE, PSNR, and MI

from the feet-to-chest slice for synthetic monoenergetic CT images

at 40, 70, and 140 keV. There were no significant differences

between the image synthesis performance in cross-validation from

the results of the MAE, MSE, RMSE, PSNR, SSIM, and MI. Moreover,

there were no significant differences between image synthesis per-

formance due to the number of samples from the result of the MAE,

MSE, RMSE, PSNR, SSIM, and MI. The MAE, MSE, and RMSE were

the smallest for the synthetic monoenergetic CT image at 140 keV

and the largest for the synthetic monoenergetic CT image at 70 keV.

The PSNR was the smallest for the synthetic monoenergetic CT

image at 70 keV and largest for the synthetic monoenergetic CT

image at 140 keV. The MI was the largest for the synthetic

F I G . 4 . Measurement of the monoenergetic CT number from the feet-to-chest slice. Average and SD values of the monoenergetic CT
number were measured by creating a circular ROI of 2 cm in diameter.
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monoenergetic CT image at 70 keV and smallest for the synthetic

monoenergetic CT image at 40 keV.

The time required to create the image synthetic model was

approximately 154.8 � 3.2 h for image synthesis. The times to cre-

ate the synthetic monoenergetic CT images using all the trained

models were 7.8–8.2 images/s.

4 | DISCUSSION

Zhao et al. developed a deep learning model to map low- to high-en-

ergy images using a two-stage CNN. They evaluated the virtual non-

contrast (VNC) imaging reconstructed by DECT from the kV-CT

image scanned using single-energy CT (SECT).15 The difference in

the monoenergetic CT numbers between the predicted and original

high-energy CT images was below 4.0 HU in the abdominal region.

In this regard, the current study proposes a prediction model for the

generation of monoenergetic CT images from kV-CT images using

GAN in the feet-to-chest region. The difference in the monoener-

getic CT numbers in the ROIs between the synthetic and reference

images ranged from −16.4 to 9.82 HU, which was within the SD.

Furthermore, in the conversion of a gray level image from 16-bit to

8-bit color, the SD value used was 16 HU; this value was also within

the SD range in a phantom with 120-kV CT images. Our proposed

model successfully yielded highly accurate DECT images in the pres-

ence of noise from the kV-CT images. The standard deviation values

vary with the scan mAs used, but were not considered in the current

study. To highlight the prediction performance, the relationship of

the mAs, the SD, and the accuracy of the image synthesis is needed

to investigate.

F I G . 5 . Samples obtained from
monoenergetic CT image generation at the
pelvic level: input image is the equivalent
kV-CT image, synthetic and reference
images are the monoenergetic CT images
at 40, 70, and 140 keV, and MAE is the
difference between the synthesized and
reference monoenergetic CT images.

F I G . 6 . Samples obtained from
monoenergetic CT image generation at the
abdominal level: input image is the
equivalent kV-CT image, synthetic and
reference images are the monoenergetic
CT images at 40, 70, and 140 keV, and
MAE is the difference between the
synthesized and reference monoenergetic
CT images.
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F I G . 7 . Samples obtained from
monoenergetic CT image generation at the
chest level: input image is the equivalent
kV-CT image, synthetic and reference
images are the monoenergetic CT images
at 40, 70, and 140 keV, and MAE is the
difference between the synthesized and
reference monoenergetic CT images.

TAB L E 1 Difference (Δ) and SD values of the monoenergetic CT number between the synthetic and reference monoenergetic CT images at
40, 70, and 140 keV for Model 1.

40 keV 70 keV 140 keV

Δ(HU) SD (HU) Δ(HU) SD (HU) Δ(HU) SD (HU)

① 9.82 19.15 ① -5.26 9.32 ① -1.90 7.38

② 6.17 20.09 ② -5.03 8.15 ② -1.15 5.10

③ 3.06 15.26 ③ -7.40 7.78 ③ -2.09 8.92

④ 3.61 70.49 ④ -3.61 31.51 ④ -1.19 16.31

⑤ -3.17 21.42 ⑤ -6.74 12.94 ⑤ 4.76 11.01

⑥ 0.39 23.84 ⑥ -8.95 14.75 ⑥ 2.05 7.85

⑦ -7.61 24.12 ⑦ -2.89 9.82 ⑦ -1.52 6.89

⑧ -7.70 23.18 ⑧ -5.95 9.71 ⑧ 0.81 6.88

⑨ 4.00 17.62 ⑨ 4.00 17.62 ⑨ -7.01 7.02

⑩ -0.65 18.07 ⑩ -0.65 18.07 ⑩ 1.97 6.81

⑪ 0.02 58.49 ⑪ 0.02 58.49 ⑪ 4.00 11.10

⑫ 3.38 15.22 ⑫ -3.58 9.12 ⑫ -2.34 7.39

⑬ 4.79 16.10 ⑬ -6.90 8.87 ⑬ -0.18 6.02

⑭ -4.59 17.44 ⑭ -8.12 9.18 ⑭ 1.05 5.15

⑮ -3.46 43.44 ⑮ -5.93 20.75 ⑮ -1.06 12.82

⑯ 0.30 15.68 ⑯ -3.12 8.63 ⑯ -1.73 5.34

⑰ -6.44 10.55 ⑰ -6.44 10.55 ⑰ -7.38 6.91

⑱ -1.72 12.34 ⑱ -1.72 12.34 ⑱ -7.62 7.91

⑲ 5.30 12.54 ⑲ 5.30 12.54 ⑲ -7.02 8.81

⑳ -3.03 42.98 ⑳ -3.03 42.98 ⑳ -6.11 19.27

㉑ 7.54 182.01 ㉑ 7.54 182.01 ㉑ -6.92 197.10

㉒ -7.00 51.98 ㉒ -7.00 51.98 ㉒ -5.42 80.94

㉓ 0.26 37.22 ㉓ -8.84 93.06 ㉓ 0.19 96.82

㉔ -6.58 12.61 ㉔ -4.26 8.70 ㉔ 2.04 5.38

㉕ -3.96 12.61 ㉕ -6.33 18.09 ㉕ -2.35 14.11

㉖ -4.45 72.94 ㉖ -16.71 33.37 ㉖ 5.34 19.97

㉗ 0.23 13.89 ㉗ -8.48 8.72 ㉗ -1.60 5.34
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The current study used 8-bit PNG image converted from 16-bit

DICOM image for the deep learning model. The images in PNG for-

mat can be utilized by any deep learning framework.16 However, the

image conversion of the 16-bit to 8-bit has a potentially merit and

demerit. A decrease scale resolution from 2-byte images such as 16-

bit per pixel to one-byte such as 8-bit per pixel usually implies a

halving of the digital storage space needed for the image. On the

other hand, a decrease scale resolution causes that important diag-

nostic information may be lost in the process. Smith et al reported

that a 2-byte to 1-byte reduction in gray scale resolution may be

done without significant loss of diagnostic information for MR

images.17 The future work will be performed to evaluate of the

image quality and lesion detectability due to the difference of the

scale resolution in the SECT and DECT images.

The monoenergetic CT image at 140 keV indicated the smallest

values for MAE, MSE, and RMSE but the largest for PSNR and SSIM.

In the monoenergetic CT image at a high energy, the contrast scale

in the monoenergetic CT number from low to high density was smal-

ler than that at a lower energy. It is therefore easier to predict the

pixel values for small contrast scales at high energies. Notably, the

MAE, MSE, RMSE, PSNR, and SSIM values were found to be depen-

dent on the contrast scale with monoenergetic CT images.

The MI with the monoenergetic CT image at 70 keV was the lar-

gest. Yu et al. reported that the effective energies of 80 and 140 kV

were in the range 59.8–81.5 keV.18 The monoenergetic CT image at

70 keV, which is close to the effective x-ray energy at 120 kV, con-

tained pixel information similar to that with a continuous energy of

120 kV. Meanwhile, the monoenergetic CT image at 70 keV indi-

cated the smallest MAE, MSE, RMSE, PSNR, and SSIM. As presented

in Table 2, the average difference in the monoenergetic CT numbers

between the synthesized and reference monoenergetic CT images

was −0.42 HU at 40 keV, −4.45 at 70 keV, and −1.57 HU at

140 keV. This suggests that the image prediction model with the

monoenergetic CT image at 70 keV generated a systematic error.

Further studies involving an increase in the number of epochs or

modification of the model architecture are required.

The current study demonstrates that highly accurate monoener-

getic CT images can be generated from kV-CT images using a GAN

TAB L E 2 Average MAE, MSE, RMSE, PSNR, and SSIM values computed from the feet-to-chest slice for synthetic monoenergetic CT images
at 40 keV using cross-validation, and validation by changing number of samples.

MAE MSE RMSE PSNR SSIM MI

Average SD Average SD Average SD Average SD Average SD Average SD

Model 1 0.023 0.002 0.004 0.002 0.058 0.018 39.992 2.81 0.988 0.001 2.299 0.151

Model 2 0.025 0.003 0.004 0.000 0.062 0.009 39.281 1.232 0.987 0.002 2.263 0.183

Model 3 0.022 0.002 0.004 0.002 0.057 0.011 39.729 2.625 0.989 0.001 2.293 0.142

One-half data 0.022 0.001 0.004 0.000 0.059 0.011 39.652 1.344 0.988 0.001 2.255 0.188

One-quarter data 0.023 0.002 0.004 0.002 0.060 0.012 39.832 1.352 0.988 0.001 2.229 0.174

TAB L E 3 Average MAE, MSE, RMSE, PSNR, and SSIM computed from feet-to-chest slice for synthetic monoenergetic CT images at 70 keV
with cross-validation, and validation by changing number of samples.

MAE MSE RMSE PSNR SSIM MI

Average SD Average SD Average SD Average SD Average SD Average SD

Model 1 0.015 0.003 0.001 0.001 0.026 0.005 46.753 1.605 0.994 1 2.185 0.112

Model 2 0.016 0.004 0.001 0.000 0.028 0.003 45.921 0.912 0.993 1.920 2.151 0.136

Model 3 0.014 0.003 0.001 0.001 0.025 0.003 46.445 1.499 0.995 1.000 2.179 0.105

One-half data 0.014 0.002 0.001 0.000 0.027 0.003 46.355 1.344 0.994 0.670 2.144 0.139

One-quarter data 0.015 0.003 0.001 0.002 0.028 0.004 46.411 1.352 0.988 0.892 2.142 0.132

TAB L E 4 Average MAE, MSE, RMSE, PSNR, and SSIM computed from feet-to-chest slice for synthetic monoenergetic CT images at 140 keV
with cross-validation, and validation by changing number of samples.

MAE MSE RMSE PSNR SSIM MI

Average SD Average SD Average SD Average SD Average SD Average SD

Model 1 0.022 0.003 0.002 0.001 0.041 0.010 42.842 2.098 0.988 0.001 1.936 0.099

Model 2 0.024 0.004 0.002 0.000 0.044 0.005 42.080 0.920 0.987 0.002 1.906 0.120

Model 3 0.021 0.003 0.002 0.001 0.040 0.006 42.560 1.960 0.989 0.001 1.931 0.093

One-half data 0.021 0.002 0.002 0.000 0.042 0.006 42.478 1.198 0.988 0.001 1.899 0.123

One-quarter data 0.022 0.003 0.002 0.001 0.042 0.005 42.472 1.232 0.988 0.001 1.901 0.112
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model employing a deep learning approach. Our proposed model is

therefore capable of generating monoenergetic CT images at ener-

gies ranging from low to high, that is, from 78 to 82 s for 640 kV-

CT images in a single sequence. The lower energies offer better con-

trasts for soft tissues, whereas higher energies reduce the beam

hardening artifacts, thereby further enhancing the material decompo-

sition accuracy.

In the current study, 120 kV-CT images reconstructed via DECT

was used. Tawfil et al. investigated the difference in the image qual-

ity of 120 kV-CT images scanned via SECT and the equivalent

120 kV-CT images reconstructed via DECT based on the data of

clinical patients.19 Notably, the subjective image quality scores

between the DECT and SECT groups did not indicate a significant

difference. Hence, DECT images can be obtained from SECT images

using the proposed model. As such, the method can significantly

improve the scan time, thereby reducing the scanning dose and

imaging cost as well as improving the efficiency of analysis, such as

segmentation and image registration. For radiation diagnosis,

monoenergetic CT images should assist in lesion detectability.

Recently, concerns regarding the application of deep learning in

medical images have been reported. More samples used may yield

poorer performances. In the current study, cross-validation was per-

formed, and the effect of using different number of samples on

image synthesis was evaluated. It was discovered that the number of

samples did not significantly affect the image quality of the synthe-

sized images. However, small perturbations may result in severe arti-

facts in the reconstruction. Furthermore, an equivalent kV-CT image

at 120 kVp reconstructed from DECT images via GSI was used in

the current study. It was discovered that no perturbation occurred

by the body movement and respiratory motion. However, perturba-

tion in the sampling domain by the inevitable noise dominated or

equipment malfunction may occur. This can generate a myriad of dif-

ferent artifacts. Furthermore, failure to reconstruct a small structural

change may occur. Hence, the image quality should be evaluated in

the lesion or in each organ. This is a limitation of the current study;

therefore, it will be performed in a future study.

5 | CONCLUSION

Synthetic medical image generation can be a cost-saving approach

for developing automated diagnostic technology. The image predic-

tion framework of a kV-CT image equivalent to a monoenergetic CT

image was proposed. It is expected that the proposed model can

serve a suitable alternative to the existing methods for the recon-

struction of monoenergetic CT images in DECT from SECT images.
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