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Uncertainty quantification based 
cloud parameterization sensitivity 
analysis in the NCAR community 
atmosphere model
Raju Pathak1, Sandeep Sahany1,2* & Saroj K. Mishra1

Using uncertainty quantification techniques, we carry out a sensitivity analysis of a large number (17) 
of parameters used in the NCAR CAM5 cloud parameterization schemes. The LLNL PSUADE software 
is used to identify the most sensitive parameters by performing sensitivity analysis. Using Morris One-
At-a-Time (MOAT) method, we find that the simulations of global annual mean total precipitation, 
convective, large-scale precipitation, cloud fractions (total, low, mid, and high), shortwave cloud 
forcing, longwave cloud forcing, sensible heat flux, and latent heat flux are very sensitive to the 
threshold-relative-humidity-for-stratiform-low-clouds ( rhminl) and the auto-conversion-size-
threshold-for-ice-to-snow (dcs). The seasonal and regime specific dependence of some parameters in 
the simulation of precipitation is also found for the global monsoons and storm track regions. Through 
sensitivity analysis, we find that the Somali jet strength and the tropical easterly jet associated with 
the south Asian summer monsoon (SASM) show a systematic dependence on dcs and rhminl . The 
timing of the withdrawal of SASM over India shows a monotonic increase (delayed withdrawal) with 
an increase in dcs . Overall, we find that rhminl , dcs , ai, and as are the most sensitive cloud parameters 
and thus are of high priority in the model tuning process, in order to reduce uncertainty in the 
simulation of past, present, and future climate.

Reliable projections of future climate change (CC) are of utmost importance for the assessment of impacts 
and adaptation planning. Quantifying and reducing uncertainties in climate projections are of high priority. 
In general, ensemble simulations with multiple global climate models (GCMs) or a single model with different 
parameterizations have been used in the past to characterize uncertainties due to physical and/or dynami-
cal  processes1–4. Insufficient physical understanding, coarse grid resolution, and the resolution dependency of 
parameterization schemes have limited the ability of GCMs to simulate CC  reliably4–8. In GCMs, subgrid-scale 
processes are parameterized using some physical assumptions and empirically designed parameters. The empiri-
cally designed parameters lead to various levels of uncertainties in model  simulations9,10.

The process of parameter calibration (or tuning) adjusts the parameter values to better match the simulated 
climate features with those observed. Parameter values are typically determined from limited measurements (or 
from theoretical calculations). Tuning becomes more cumbersome when the number of uncertain parameters 
is too  large11. In this situation, researchers use an alternative statistical approach (known as a sensitivity analy-
sis (SA)) to screen out the most sensitive parameters for calibrating GCMs. SA reduces the required number 
of iterations for parameter tuning, and the computational cost, without affecting the model  performance12–15. 
SA is broadly categorized into two types-local and global, and it can adopt either a qualitative or quantitative 
 approach16–23. The main difference between local SA (LSA) and global SA (GSA) is that the LSA approach 
explores the changes of model performance by perturbing one parameter at a time while keeping all other 
parameters fixed, whereas the GSA approach explores the model performance by perturbing all parameters at 
the same time. The simplest and most preferred LSA is the differential LSA, which uses partial derivatives at a 
fixed parameter location as the measure of parametric sensitivity. On the other hand, GSA involves two steps: 
(a) generating a sample set of parameters within their feasible range using a particular sampling method (e.g., 
Monte Carlo, Latin  Hypercube24 (LH), Orthogonal  Array25 (OA), and OA based  LH26), and (b) computing the 
qualitative or quantitative attribution of variation in the simulation of a climate variable to the perturbation in 
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parameter values. Some GSA methods require special sampling techniques. For example, Morris One-At-a-Time 
(MOAT) uses the Morris sampling  technique17, and the Sobol method uses the Saltelli sampling  technique13.

However, most of the discussed sampling methods require more than 10,000 simulations to cover the full 
parametric space and increase exponentially with an increase in the number of uncertain parameters, thus, 
requiring more computational resources. Therefore, researchers use an alternative cost-effective emulator to 
estimate the model outputs using a small number of model simulations from a specific sampling technique at the 
selected points, to minimize the high computing resource  demand19,27–36. In this study, we perform the qualita-
tive SA analysis using the Morris  method37,38 due to its computational efficiency. This method is quite efficient 
in determining the few potentially important ones amongst a large number of selected parameters. However, 
a drawback of the Morris approach is that it cannot distinguish the non-linear effects of a parameter from the 
interaction effects between different parameters, and cannot estimate the effect of a parameter in relation to 
other  parameters37.

The effect of deep convection on climate sensitivity has been widely studied for global as well as regional 
climate simulations by many  researchers6,37–40. The effect of cloud microphysics and macrophysics has also 
been studied extensively, and its representation in global and regional climate models has been substantially 
 improved23,38,39,41. However, it remains the dominant source of large uncertainty in climate  simulations28,31,35,42–44. 
Clouds are centrally important in climate studies to understand the radiative energy budget of the Earth’s atmos-
phere system, hydrological cycle, and precipitation. For example, low-level clouds play a crucial role in the radia-
tion budget of the Earth by modulating the shortwave cloud radiative forcing, and high clouds play a vital role in 
the radiation budget by modulating the longwave cloud radiative forcing. However, their proper representation in 
GCMs has been an unresolved  issue45–47. Recently, Zelinka et al.48 using CMIP6 models have shown an increase 
in climate sensitivity due to a weaker response of extratropical cloud cover and water content to a change in 
surface temperature, and such change is noticed to be linked to cloud parameterizations.

Some of the above studies have carried out SA to quantify uncertainties in the simulation of few global climate 
variables to cloud-related parameter perturbation but limited only to few parameters. Qian et al.23 have reported 
that global mean precipitation does not respond linearly and monotonically to the change in some cloud param-
eters. He et al.39 have shown that increasing the value of ice- and snow-fall speed parameters can lower the value 
of longwave cloud forcing (LWCF), and a larger value of auto-conversion size threshold for ice to snow ( dcs) 
can lead to larger LWCF. Sanderson et al.49 have reported that the uncertainty in ice-fall speed can significantly 
affect climate sensitivity. Zhang et al.37 have reported that changes in threshold relative humidity parameter for 
high clouds can substantially affect the model performance, and reducing its value can increase the stratiform 
condensation and decrease atmospheric humidity. Golaz et al.27 have reported that the cloud droplet number 
limiter ( cdnl ) has the largest source of uncertainty in cloud-aerosol interaction. In addition, Bony and  Dufresne50 
have reported spatially varying cloud feedback and noted the trade cumulus regime to be most important for 
cloud feedback. Hazra et al.51 have reported a significant bias in the simulation of the meridional tropospheric 
temperature gradient and vertical moisture distribution due to improper vertical cloud distribution over south 
Asia, and hence weaker Indian summer monsoon  simulation52,53.

It is, therefore, crucial to systematically characterize the sensitivity of climate simulations at global and 
regional scales during different seasons (especially for different monsoon and storm track regions), as well as the 
characteristics of South Asian summer monsoon (SASM) to cloud microphysics and macrophysics parameters 
to reduce uncertainty in climate simulations. The quantification and reduction of uncertainty in climate simula-
tions due to parameter sensitivity over the SASM region are also one of the main objectives of the DST CoE in 
Climate Modeling, IIT Delhi, India, for the improvement of SASM  simulations5–8,54. In this paper, we examine 
the GSA for the majority of physical parameters in microphysics and macrophysics parameterizations used in 
the NCAR CAM5, using MOAT sensitivity analysis for different simulated climate variables.

Results and discussion
Global spatial variance distribution. Figure 1 shows the spatial variance distribution of annual (ANN), 
June–August (JJA), and December-February (DJF) mean precipitation (total, convective, and large-scale), and 
cloud fraction (low, medium, and high) from 180 model simulations. The variance in each of the different vari-
ables shown in Fig. 1 is a measure of the variability in the 180 simulations performed by perturbing the param-
eters within their upper and lower bounds. For the total precipitation (PRECT), large variance occurs over the 
tropics, South Pacific Convergence Zone (SPCZ), South America, Central Africa, and Himalaya during ANN 
(Fig. 1a). Qian et al.23 have also noticed large variance over the tropical regions during ANN from the perturba-
tion of cloud and aerosol related parameters. On a seasonal scale, the variance in PRECT is relatively higher (~ 2 
times) than that for ANN over the regions mentioned above, and over the Indian land, Indian ocean, eastern 
China, and subtropical northwestern Pacific region during JJA, and the subtropical northeastern Pacific and 
Atlantic stratus region during DJF (Fig. 1b,c). For the convective precipitation (PRECC), the region of large 
variance for ANN, DJF, and JJA is similar to PRECT, except over the subtropical Pacific and Atlantic region (in 
all periods) and the subtropical western Indian ocean (in DJF), where the large variance occurs in large-scale 
precipitation (PRECL) (Fig. 1d–i). Also, PRECC and PRECL are the primary contributors of PRECT over the 
tropical and subtropical regions,  respectively8,55.

For the cloud fraction, large variance in low-level clouds (CLDLOW) occurs over the tropical oceanic and 
Arctic regions, and moderate to small variance occurs over the global continental land areas for  ANN32, JJA, and 
DJF (Fig. 1j–l). It is to be noted that CLDLOW over the oceanic region is sensitive to the SST, but this study uses 
prescribed climatological SST and hence coupled model simulations could show somewhat different patterns. 
For medium-level clouds (CLDMED), large variance occurs over the equatorial region and small to moderate 
over the higher latitudes across the different periods (Fig. 1m–o). For high-level clouds (CLDHGH), the pattern 
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of variance (Fig. 1p–r) over the tropical regions is similar to CLDMED; however, its magnitude over the tropical 
region is slightly higher than CLDMED and CLDLOW. In general, CLDHGH and CLDLOW contribute almost 
equally to the total cloud (CLDTOT), in line with the findings of Kay et al.56.

In addition, large variance in shortwave cloud forcing (SWCF) occurs over the tropical oceanic region and 
small to moderate over the continental land areas, with highest over the eastern Pacific, Atlantic, and Indian 
Ocean during ANN. The seasonal SWCF variance follows the sun seasonal migration (i.e., it is highest in JJA 
over the northern hemisphere’s oceanic region from 10° S to 40° N, and in DJF over the southern hemisphere’s 
oceanic region from 10° N to 40° S) (Fig. 2a–c). The smaller SWCF variance over land than the oceanic region is 
also reported from SA of cloud parameters in Lin et al.57 and Cloud Unified By Binormals (CLUBB) parameters 
in Guo et al.32 during ANN. The large SWCF over the subtropical region has been reported in previous studies 
due to persistent low-level stratus  clouds58, and the SWCF bias over that region is reported to be a serious concern 
in existing CMIP5 models, and hence the unsatisfactory simulation of mid-latitude westerly  jet59. Further, large 

Figure 1.  Global spatial inter-simulation variance distribution from 180 CAM5 model simulations from 
the perturbed parameter set for ANN, JJA, and DJF periods for mean PRECT, PRECC, PRECL, CLDLOW, 
CLDMED, and CLDHGH. NCAR Command Language (NCL) version-6.4.0 (scientific data analysis and 
visualization software; https ://www.ncl.ucar.edu/) is used for computing the inter-simulation variance at each 
grid point and plotting over the global region.

https://www.ncl.ucar.edu/
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variance in longwave cloud forcing (LWCF) occurs over the inter-tropical convergence zone (ITCZ), similar 
to the large PRECC variance region across different periods (Fig. 2d–f). Ardanuy et al.58 have reported that the 
large LWCF variability over the ITCZ region could be due to the high sensitivity of high-level tropical clouds 
associated with deep convection (Fig. 1).

Sensitivity analysis for global climate simulations. Spatial distribution of relative importance. Fig-
ure 3 shows the spatial distribution of relative importance (RI) of 17 uncertain parameters from the MOAT 
sensitivity analysis in the simulation of mean annual PRECT. We find highest RI of—(a) rhminl over tropical 

Figure 2.  Global spatial inter-simulation variance distribution from 180 CAM5 model simulations from 
the perturbed parameter set for ANN, JJA, and DJF periods for mean SWCF and LWCF. NCAR Command 
Language (NCL) version-6.4.0 (https ://www.ncl.ucar.edu/) is used for computing the inter-simulation variance 
at each grid point and plotting over the global region.

Figure 3.  Spatial distributions of the RI of parameters for annual mean total precipitation (PRECT) simulation 
from 180 model simulations. PSUADE version-1.7.8b software (https ://compu ting.llnl.gov/proje cts/psuad 
e-uncer taint y-quant ifica tion) is used for RI computation using the Morris method at each grid point, and 
NCAR Command Language (NCL) version-6.4.0 (https ://www.ncl.ucar.edu/) is used for plotting over the global 
region.

https://www.ncl.ucar.edu/
https://computing.llnl.gov/projects/psuade-uncertainty-quantification
https://computing.llnl.gov/projects/psuade-uncertainty-quantification
https://www.ncl.ucar.edu/
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oceanic and subtropical stratus region, (b) dcs over SPCZ, North America, Europe, and northwestern Asia, (c) 
as over Indo-Pacific warm pool and northwestern Pacific storm tracks region, and (d) ai over the Arctic region, 
and northern parts of the Arabian Sea and Bay of Bengal (BoB). Some parameters show moderate RI, such as 
dp1 over the land areas of South America, Asia, Africa, and over the oceanic region of southern subtropical and 
equatorial Pacific, and wsub over Central Asia. We also find parameters which show lesser spatial RI for ANN, 
but show seasonal dependence, such as, (a) cdnl shows highest RI over the northeastern Pacific region, and mod-
erate over South America and South Africa during JJA and northeastern Asia during DJF, (b) dp2 shows higher 
RI over northcentral Pacific during DJF, and (c) ecr shows highest RI over the southern subtropical Pacific region 
during JJA (Supp. Figs. S1, S2).

Some of the most sensitive parameters in the annual mean spatial PRECT simulation reported here agree well 
with previous findings on SA. For example, Qian et al.23 have reported that the largest uncertainty in PRECT 
simulation over the oceanic region is primarily controlled by rhminl and dcs . He and  Posselt39 have shown dcs , 
ai , and rhminl as the most sensitive parameters in the simulation of tropical cyclones. Covey et al.38 have also 
reported large sensitivity of rhminl in global mean PRECT simulation. Plausible physical mechanisms through 
which the most sensitive parameters influence the annual and seasonal mean PRECT simulation and other 
important global climate variables are discussed in “Impact of parameters to global climate simulations” section.

RI of parameters on simulation of important climatic variables. In this section, we first discuss the RI of specific 
parameters on simulation of important climatic variables at the global scale, monsoon regions, and storm track 
regions during ANN, JJA and DJF (see Table 1 list of variables), and then the plausible mechanisms through 
which these variables get affected. In this regard, from Fig. 4, we find the global mean PRECT simulation is most 
sensitive to parameters that reported highly sensitive in spatial PRECT  pattern23,37 (Fig. 3). However, PRECC 
and PRECL simulation are highly sensitive to ( rhminl, dcs, ai, as, dp1) , and ( dcs, rhminl, ai, as, dp1) , respectively. 
Please note in the text the sensitivity of parameters is discussed in decreasing order of sensitivity. Further, CLD-
LOW, CLDMED, CLDHGH, and CLDTOT simulation is most sensitive to (rhminl)37, ( dp1, dcs) , ( ai, dcs) and 
(rhminl, dcs, ai) , respectively, across the different periods. The large sensitivity of rhminl in CLDLOW simulation 
was also reported in Zhang et al.20. The SWCF, LWCF, latent heat flux (LHFLX), and sensible heat flux (SHFLX) 
simulation is most sensitive to (rhminl) , ( dcs, ai, as) , (rhminl) and (rhminl) during all periods, respectively. The 
outgoing longwave flux (FLUT) is highly sensitive to (dcs, ai, as) during JJA and ANN, while it becomes slightly 
less sensitive to ( as) during DJF. Furthermore, from Fig. 4, we notice that the simulation of surface air tempera-
ture (TAS) is most sensitive to ( dcs , rhminl , cdnl , sh2 ) during JJA, to ( cdnl , as , sh2) during DJF, and to ( rhminl , 
dcs, ai) during ANN.

The RI of specific parameters on global climate simulation seen in Fig. 4 can be better understood in Fig. 5. 
In general, parameters with a large value of modified means (µ) are considered to have large main effects, and 
parameters with a large value of standard deviation (σ) are considered to have large interactive effects (i.e., 
interactions with other  parameters38). However, parameters with a small value of µ and σ are considered less 
sensitive, and parameters with a large value of µ and σ are considered most sensitive (which is usually referred 
to as  RI60). Thus, we find that for PRECT simulation, ( rhminl , dcs , ai , as ) are most sensitive, with very large main 
and interactive effects during all periods. Morris results also show few parameters, such as collection efficiency 
of ice aggregation ( eii ), deep convection cloud fraction ( dp1 ), and the threshold relative humidity parameter 
for high clouds ( rhminh) with small to moderate level of sensitivity to PRECT simulation, and rest are highly 

Table 1.  List of climate variables used to assess simulation sensitivity.

Sr. no. Variable Description Unit

1. PRECT Total (convective + large-scale) precipitation rate mm/day

2. PRECC Convective (deep + shallow) precipitation rate mm/day

3. PRECL Large-scale precipitation rate mm/day

4. TAS Surface air temperature K

5. FLUT Upwelling longwave flux at the top of the model W/m2

6. SWCF Shortwave cloud forcing W/m2

7. LWCF Longwave cloud forcing W/m2

8. LHFLX Surface latent heat flux W/m2

9. SHFLX Surface sensible heat flux W/m2

10. CLDTOT Vertically-integrated total cloud Fraction (0–1)

11. CLDLOW Vertically-integrated low cloud (lower than 700 hPa) Fraction (0–1)

12. CLDMED Vertically-integrated mid-level cloud (700 to 400 hPa) Fraction (0–1)

13. CLDHGH Vertically-integrated high cloud (400 to 50 hPa) Fraction (0–1)

14. TMQ Total precipitable water kg/m2

15. Z3-500 Geopotential height at 500 hPa meter

16. DTCOND-850 T tendency—moist processes at 850 hPa K/s

17. LWP Liquid water path kg/m2

18. IWP Ice water path kg/m2
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insensitive. The spatial patterns of main and interactive effects of all parameters in PRECT simulation are also 
shown in Supp. Figs. S3 and S4.

We also report the seasonal and regime-specific dependence of some parameters for the monsoon and storm 
track regions (see Table 2 for latitude and longitude details), such as local summer precipitation over the monsoon 
region of India, Australia, North Africa, South America and the storm track region of BoB are most sensitive 
to dp1 . In contrast, the local winter precipitation over—India is more sensitive to wsub , Australia is more sensi-
tive to dcs , North Africa and South America are more sensitive to cdnl (Fig. 6). The western Pacific storm track 
region also shows seasonal dependence; it is more sensitive to cdnl in JJA, whereas more sensitive to wsub in 
DJF. The large sensitivity of dp1 over the monsoon region is evident due to the large convective activity during 

Figure 4.  RI in the simulation of various climate variables over the global region during (a) JJA, (b) DJF, and 
(c) ANN, using the Morris method. The y-axis shows the various climate variables, and the x-axis shows various 
parameters used in the sensitivity study. A higher value is indicative of higher sensitivity (see Table 3 for details 
on parameters and Table 1 for details on variables).
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the summer  period52,61,62. However, irrespective of the regions and seasons, CLDLOW and CLDHGH are most 
sensitive to rhminl and ai , respectively (Fig. 6).

Impact of parameters to global climate simulations. Furthermore, in response to the perturbation of various 
important parameters, we present the global annual mean variation of different climatic variables in Figs. 7 and 
8. We find PRECT to decrease monotonically from ~ 3.15 to 2.95 mm/day in response to increase in rhminl , and 
increase monotonically from ~ 3.0 to 3.15 mm/day in response to an increase in ai , which is in line with the find-
ings of Qian et al.23 (Fig. 7). Since rhminl directly affects the amount of stratiform low cloud, increased rhminl 
decreases the CLDLOW (from ~ 50 to ~ 35%), which then lowers the SWCF (from ~  − 65 to − 45 W/m2) (Fig. 8). 
The linear decrease in LHFLX (from ~ 92 to 86 W/m2) in response to an increase in rhminl can be seen as a result 
of an increase in near-surface (2-m) specific humidity. The increase in near-surface specific humidity with an 
increase in rhminl could be linked to the fact that increasing the rhminl makes it difficult for moisture to precipi-
tate out in the form of stratiform precipitation (PRECL), and hence leading to a buildup of low-level moisture. 
The decrease in PRECL with an increase in rhminl can be seen in Fig. 7. The increase in near-surface specific 
humidity along with an increase in relative humidity (since TAS does not change much with rhminl ) is causing a 
reduction in the surface evaporation (could be seen from the decrease in LHFLX) (Fig. 8). The linear decrease in 
liquid water path (LWP) with an increase in rhminl is also found in some previous  studies23,33,34 (Fig. 7). In line 
with the findings of Lin et al.57, the decrease in PRECC to an increase in rhminl is also seen by indirectly affecting 
the stability of the low-level atmosphere and hence the convection (Fig. 7).

We find opposite responses of dcs and ai , and both show a large response to CLDHGH. In general, the increase 
in dcs leads to lesser conversion of ice to snow, so more ice clouds remain in the upper  troposphere39, and hence 
more ice water path (IWP) and LWCF. Since the increase in ice clouds makes the atmosphere more stable, there 
is a reduction in convective activity, and hence, a decrease in PRECC and PRECT. The increase in ai , however, 
leads more ice particles to fall, and therefore a decrease in CLDHGH, which then lowers LWCF and  IWP64. As 
a result of the reduction in LWCF, TAS decreases mildly due to reduced greenhouse  effect33,49,58. Falling of more 
ice with increasing ai causes more precipitation (PRECT and PRECC), most likely due to increased convective 
 instability65,66. The effect of dcs and ai on SWCF is small and non-linear, in line to the response of as , which acts 
quite similar to ai , but for snow.

In addition, we also find non-monotonic behavior of cdnl , which, in general, increases cloud droplet number 
concentration with increasing cdnl through the increased activation of smaller aerosol  particles27,67. The strong 
response of cdnl is found in the simulation of CLDLOW and hence, SWCF, such that the global mean annual 
SWCF increases with a decrease in cdnl and vice-versa. An increase in CLDLOW is found consistent with an 
increase in LWP and PRECL. The response of CLDHGH to cdnl is minimal, and the same is the case for LWCF. 
More specifically, cdnl affects SWCF by increasing the albedo from the increased number of cloud concentra-
tion and liquid clouds lifetime. Sensitivity to wsub perturbations is similar to cdnl , but smaller in amplitude. 
Since cdnl and wsub strongly influence the liquid  clouds35, they have a relatively lower impact on TAS than other 
parameters. We also find the linear response of dp1 to CLDHGH, increasing dp1 increases CLDHGH, which 
then causes the increase in IWP and LWP, and hence LWCF. The increase in dp1 also increases CLDLOW sub-
stantially, and hence SWCF.

Sensitivity analysis for SASM features. RI of parameters on simulation of SASM features. Model bi-
ases over South Asia during the summer monsoon are very large, not only in this model but also in many of the 
CMIP5  models68,69. The spatial precipitation distribution, onset and withdrawal, and interannual and intrasea-
sonal variability are some important SASM features and are not satisfactorily simulated in existing  models51,68,69. 

Figure 5.  The bars show first-order sensitivity (main effect) in the simulation of total precipitation over the 
global region during ANN using the Morris method. The marker line spread on the bar graph shows sensitivity 
due to interactive effects with other parameters. Large values of modified means of gradients and marker line 
spread of a parameter are indicative of higher sensitivity.
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Previous findings suggest that the skill of SASM simulation is largely dependent on a model’s ability to simulate 
the strength of the low-level Somali jet (SJS), upper-level tropical easterly jet (TEJ), inter-tropical convergence 
zone (ITCZ), local Hadley circulation strength (HCS), meridional tropospheric temperature gradient (MTTG), 
and the easterly vertical shear of zonal wind (ESZW) over the Indian  region6,51,52,68. Hence, we further attempt to 
understand how the sensitive parameters in cloud parameterizations affect the SASM simulation. In this respect, 
we first find the most sensitive parameters related to some essential features of SASM using MOAT SA and then 
present the likely physical mechanisms causing such sensitivity.

Figure 9 shows the RI of sensitive parameters on the simulation of monsoon onset, withdrawal, SJS, TEJ, and 
HCS. SASM onset over India is defined when MTTG changes from negative to positive value on an annual cycle, 
and vice-versa for the withdrawal  date52,70,71. MTTG is calculated by subtracting the vertically (600–200 hPa) 
averaged air temperature over BOX2 (5° N–15° S; 40°–100° E) from that of BOX1 (5°–35° N; 40°–100° E). We 
find the SASM onset over India to be highly sensitive to ( wsub, dcs, dp1, as, rhminl ), and withdrawal to be highly 
sensitive to 

(

wsub, rhminl, ai, dcs, as, dp1
)

 . The SJS, defined as the weighed-area-averaged speed over (15° S–15° 
N; 37.5°–62.5° E)72, is highly sensitive to ( cdnl , as, ai, dcs, rhminl, dp1 ). Also, the TEJ, defined as the wind speed 
at 150 hPa along 10° N from 40°–110° E, is highly sensitive to ( rhminl, dp1,wsub, dcs) . Further, we find the HCS, 
defined as the difference in the weighted-area-averaged meridional wind strength between 850 and 200 hPa over 
(70°–105° E; 5°–30° N)73 is mildly sensitive to ( dp1, cdnl, eii).

Impact of parameters to SASM features. Figure 10 shows the perturbation response for different parameters in 
the simulation of onset and withdrawal dates, SJS, TEJ, HCS, and some other dynamical features responsible for 
maintaining SASM. We find that the onset date increases monotonically with rhminl (up to ~ 5 days), dp1 (up 
to ~ 4 days), as (up to ~ 5 days), decreases with eii (up to ~ 4 days), and responds non-monotonically to dcs , ai , 
and cdnl . The withdrawal date increases monotonically with dcs (up to ~ 22 days), rhminl (up to ~ 15 days), and 
responds non-monotonically to wsub and cdnl.

The onset and withdrawal dates, strength, and sustenance of SASM are noted in previous studies to be strongly 
influenced by MTTG 68,70,73,74. In this regard, we find that the MTT (BOX1) is increasing substantially with dcs (up 
to ~ 1 °C), and rhminl (up to ~ 0.5 °C), and decreasing with ai (up to ~ 1 °C). It shows a non-monotonic response 
to as and dp1 . We also find that the response of MTT (BOX2) is similar to MTT (BOX1) (Supp. Fig. S5). Hazra 
et al.51 have reported that the MTTG simulation reliability from GCMs largely depends on the reliability of 
the simulation of vertical cloud distribution. In line with the results in “Impact of parameters to global climate 
simulations” section for global annual means, we find that LWCF increases with increase in dcs and dp1 , and 
decreases with increase in ai and rhminl over BOX1 and BOX2 (with different amplitudes of response; Supp. 
Figs. S5, S6). SWCF also shows a similar response to parameters as noted in LWCF (except for rhminl over BOX1, 
and dcs and ai over BOX2, that do not show any significant changes). The uneven changes in LWCF and SWCF 
over BOX1 and BOX2 to parameter perturbations modulate the vertical temperature distribution unevenly over 
BOX1 and BOX2 and hence change the MTTG simulation, which then affects the onset and withdrawal, and 
the strength of SASM (Fig. 10).

We further find that SJS monotonically increases with dcs and dp1 , and decreases with ai , and non-monoton-
ically responds to as . TEJ monotonically increases with rhminl , and non-monotonically responds to dcs , cdnl , 
dp1 , and wsub . HCS shows only a mild increase with an increase in rhminl and eii , and a mild decrease with an 
increase in dp1 , and responds non-monotonically to cdnl . In addition, the ESZW calculated as a difference of 
wind strength between 850 hPa (EW_850) and 200 hPa (EW_200) over (0°–15° N; 50°–90° E) also influences 
SJS (Fig. 10). The ESZW strength exceeding 20 m/s during JJAS was reported to be critical for maintaining the 
 SASM52,53. ESZW is affected by the parameter perturbations through the changes in the vertical temperature and 
cloud distribution. We find that the ESZW monotonically increases with an increase in rhminl  (up to ~ 3 m/s) and 
non-monotonically responds to dp1 and cdnl . Specifically, we find that EW_850 increases substantially with dcs 

Table 2.  Details of the various monsoons and storm track regions (see Bal et al.63 for more information).

Sr. no. Monsoon regions Longitude; latitude

1. Indian monsoon (IND) 67–97 E; 10–35 N

2. East Asian monsoon (EAS) 115–125 E; 28–46 N

3. Australian monsoon (AUS) 110–150 E; 5–15 S

4. Western north Pacific monsoon (WNP) 110–115 E; 10–28 N

5. North African monsoon (NAF) 25–30 W; 5–15 N

6. South African monsoon (SAF) 5–90 E; 0–30 S

7. North American monsoon (NAM) 50–125 W; 0–30 N

8. South American monsoon (SAM) 30–80 W; 5–30 S

Storm track regions

9. North Atlantic Ocean (NAO) 45–75 W; 10–30 N

10. East Pacific Ocean (EPO) 85–150 W; 10–20 N

11. West Pacific Ocean (WPO) 120–150 E; 10–30 N

12. Bay of Bengal (BoB) 75–105 E; 5–25 N
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(up to ~ 2 m/s), rhminl (up to ~ 1.5 m/s), and dp1 (up to ~ 1 m/s). However, EW_200hPa decreases substantially 
with an increase in rhminl , and non-monotonically responds to dp1 and cdnl (Supp. Fig. S5).

Conclusions
In this study, we have performed the sensitivity analysis of 17 parameters from the cloud microphysics and 
macrophysics parameterizations used in the NCAR CAM5. Morris method has been used to identify parameters 
that have large main and interactive effects on the global climate simulation, global monsoons (with a special 
emphasis on SASM), and storm track regions on an annual and seasonal basis.

We find the highest variability in PRECT over the tropical convective region and moderate variability in 
PRECT over the subtropical stratiform region, which arise due to the large variance in PRECC and PRECL, 
respectively, from 180 inter-parameter perturbed  simulations8,55. Also, the large variance in LWCF, CLDHGH, 

Figure 6.  The RI measure in the simulation of PRECT, PRECC, PRECL, CLDLOW, CLDMED, and CLDHGH 
over the global monsoons and storm track regions (see Table 2 for latitude/longitude). Each box in a panel 
shows three different periods—ANN, JJA, and DJF. The y-axis shows the RI, and the x-axis shows various 
domains for ANN, JJA, and DJF. A higher value of RI is indicative of higher sensitivity.
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CLDMED, total precipitable water (TMQ), LWP, and IWP are found over the large PRECT variance  region39,58. 
The large variance in LWP and IWP over the tropical and subtropical regions could be one of the reasons for 
the large variance in PRECT  simulation32. For the annual mean spatial PRECT simulation, we find the highest 
spatial RI of the following parameters: rhminl, dcs, as, ai, dp1,wsub, andcdnl, across the different periods. RI find-
ing reported here is in line with previous studies for some parameters, such as rhminl and dcs are reported most 
sensitive over the tropical  regions23, dcs , ai , and rhminl are reported most sensitive over the western  Pacific39, 
and rhminl is reported most sensitive over the global region on PRECT  simulation38. In addition, we find large 
main and interactive effects of rhminl , and moderate main and interactive effects of dcs , ai , and as on PRECT 
 simulation23,37. Parameters rhminl and dcs are most sensitive for PRECC and PRECL simulations, respectively.

Simulations of cloud fraction (total, low, mid, and high) are very sensitive to rhminl and dcs . Zhang et al.20 
have also reported the large rhminl sensitivity and suggested that rhminl tuning can better simulate the clouds 

Figure 7.  The response of various important global annual mean climate variables (PRECT, PRECC, PRECL, 
SWCF, LWCF, CLDLOW, CLDMED, CLDHGH, IWP, and LWP) to perturbations in some of the most sensitive 
cloud parameters from 180 model simulations. A solid dark gray line shows the average effect for a parameter. 
See Table 1 for the full name of the variables and unit details.
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in CAM. Simulation of SWCF and LWCF are most sensitive to rhminl , and dcs and ai , respectively. Simula-
tion of SHFLX and LHFLX are most sensitive to rhminl and dcs . Notably, we find seasonal dependence in the 
sensitivity of some parameters, for example, in the simulation of TAS, dcs and rhminl are most sensitive during 
JJA, whereas as and cdnl are most sensitive during DJF. In addition to the seasonal dependence, we find regime 
specific dependence of some parameters, such as the summer precipitation over the different monsoon and storm 
track regions are more sensitive to dp1 , while the winter precipitation does not show any systematic sensitivity. 
The large sensitivity of dp1 during the summer period over the monsoon region could be due to the presence of 
large convective  clouds52,61,62,65.

Figure 8.  The response of global annual mean TAS, LHFLX, 2-m specific humidity (QREFHT), and 10-m wind 
(10-m Wind) to the perturbation of parameters from 180 model simulations. A solid dark gray line shows the 
average effect for a parameter.

Figure 9.  RI in the simulation of the various important SASM features during JJAS, such as onset, withdrawal, 
SJS, TEJ, and HCS. The y-axis shows the RI, and the x-axis shows various important SASM features. A higher 
value of RI is indicative of higher sensitivity.
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In response to parameter perturbation, we find a monotonic decrease in PRECT with rhminl due to reduced 
low-level stratiform and shallow cumulus clouds and hence the reduced LWP and  SWCF20,32,33. We find an 
increase in LWCF and IWP with dcs as the increase in dcs leaves more ice clouds at high-level, thereby decreas-
ing the stability of the atmosphere and hence the decrease in PRECC and PRECT. We also find that the response 
of precipitation simulation to ai and as is opposite to dcs—increase in ai ( as ) causes more ice (snow) particles 
to fall; thus, it reduces CLDHGH, LWCF, and  IWP64–66. With the increase in cdnl and wsub , there is an increase 
in PRECL and LWP due to an increase in stratiform low clouds and low-level cloud droplet concentration, 
respectively.

Further, analyzing the SASM simulations, we find that the monsoon onset and withdrawal  dates68,69 are highly 
sensitive to some of the cloud parameters through their considerable influence on MTTG. In general, we find 
that the sensitivity of MTTG occurs via changes in vertical cloud distribution and cloud radiative  forcings51. We 
find MTTG to be most sensitive to dcs , due to the higher sensitivity of MTT (BOX1) to dcs , as there are more 
high-level clouds during SASM over BOX1 (Supp. Figs. S5, S6). We find SJS to be most sensitive to dcs . According 
to Krishnamurti et al.74, SJS is strongly related to the tropospheric temperature over the Indian land (roughly 
represented by MTT (BOX1)). The increase in dcs , increases MTT (BOX1) by increasing the cloud forcings (Supp. 
Figs. S5, S6), and hence increases SJS. We also find that ESZW and TEJ are most sensitive to rhminl , and caused 
by the higher sensitivity of EW_200hPa than EW_850hPa to rhminl (Supp. Fig. S5). The higher sensitivity of 
EW_200hPa could be due to high sensitivity in the strength of the Tibetan anticyclone, thus leading to higher 
sensitivity in the sub-tropical westerly jet. The high sensitivity of EW_200hPa also explains the high sensitivity 
of the TEJ to dcs . We do not find HCS to show high sensitivity to any of the parameters discussed above.

Thus, through the identification of the most sensitive parameters in the cloud parameterization schemes 
used in the NCAR CAM5, our study helps prioritize tuning efforts, not only for the model used in this work 

Figure 10.  The response of various important SASM features to the perturbation of parameters from 180 model 
simulations. The important features are—ONSET, WITHDRAWAL, SJS, TEJ, HCS, MTTG, and ESZW. A solid 
dark gray line shows the average effect of a parameter.
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but also for any global or regional model using similar parameters in their cloud parameterization schemes. 
Informed tuning efforts complemented by observational constraints to the most sensitive parameters used in 
climate models will be crucial for reducing parameter-sensitivity induced uncertainty in both historical climate 
simulations and climate change projections.

Methodology
Model description and simulation details. NCAR CAM5 under the framework of CESM1.2.2 has been 
used to carry out the model simulations for sensitivity analysis. CAM5 uses the finite volume dynamical core 
from Lin and  Rood75 and  Lin76, shallow convection scheme from Park and  Bretherton77, deep convection scheme 
from Zhang-McFarlane78 with modifications to include dilute parcel computations by Neale et al.79, momentum 
transport by Richter and  Rasch80. Also, CAM5 uses the radiation scheme from Iacono et al.81 and Mlawer et al.82, 
two-moment cloud microphysics scheme from Morrison and  Gettelman83, and Gettelman et al.84, cloud macro-
physics scheme from Park et al.85, and moist turbulence scheme from Bretherton and  Park86. For more details on 
CAM5 configuration, see Neale et al.87.

We have conducted a set of 180 simulations for 6-year each (a total of 1080 years of model integration) at a 
horizontal resolution of 0.9° latitude × 1.25° longitude and 30 vertical levels, using prescribed monthly climato-
logical sea surface temperature (SST). The last five years of the simulations are used in this analysis, discarding 
the first year as spin-up. The average values of the selected climate variables (see Table 1) for each 5-year simula-
tion on annual (ANN) and seasonal (i.e., for June–August (JJA) and December–February (DJF)) time-scales are 
considered as one sample for ANN, JJA, and DJF, respectively.

Parameters. Parameters from cloud microphysics and macrophysics parameterization schemes are used in 
this study (see Table 3), and the climate variables used to assess sensitivity are shown in Table 1. Generally, there 
are many uncertain parameters in cloud physics parameterizations; we choose to highlight the sensitivity analy-
sis for those parameters that are not explored much in the regional and seasonal context. We used 17 parameters: 
9 from cloud microphysics and 8 from cloud macrophysics schemes (see Table 3 for lower and upper bound). 
The 15 parameters (out of 17 parameters) have been chosen from a large set of parameters explored in the exist-
ing  literature23,33,38,39. The default values, lower, and upper limits of these parameters are taken from previous 
 studies23,39. For the two additional parameters related to shallow cloud fraction, the lower and upper bounds 
are taken from the 95% interval of high posterior probability from our SCAM5 results (and this range matches 
to ~ 50% on both sides of the default value).

Morris method based sensitivity analysis. The Morris method based on MOAT  sampling17 is used to 
quantify the elementary (main) effects of the parameters. This method can identify parameters whose effects 

Table 3.  List of cloud microphysics and macrophysics parameters used in this study.

Parameter name Description

Range

RemarksLow Default High

Parameters in cloud microphysics

dcs Auto-conversion size threshold for ice to snow 1e−4 2.5e−4 5e−4 Affect mainly to the high cloud distribution; higher dcs-value corre-
sponds to the lesser conversion of cloud ice to snow

eii Collection efficiency aggregation ice 0.001 0.1 1.0 Affect mainly to the ice water content

ecr Collection efficiency, accretion of cloud water by rain 0.5 1.0 1.5 Affect mainly to the cloud liquid water content

ac Fall speed parameter for cloud water 1.5e+7 3e+7 4.5e+7 Affect mainly to the cloud water content

ai Fall speed parameter for stratiform cloud ice 350 700 1400 Affect mainly to the ice water content

as Fall speed parameter for stratiform snow 5.860 11.72 23.44 Affect the snow and the ice water content; larger as-values corresponds 
to the larger cloud water-fall speed

cdnl cloud droplet number limiter 0 0 1e−6 Affect mainly to the cloud droplet number concentration

wsubi Minimum subgrid vertical velocity for ice nuclei 1e-6 0.001 0.2 Affect mainly to the cloud droplet number concentration

wsub Minimum subgrid vertical velocity for liquid nuclei 0 0.2 1.0 Affect mainly to the cloud droplet number concentration

Parameters in cloud macrophysics

rhminl Threshold relative humidity for stratiform low clouds 0.80 0.8875 0.99 Affect mainly to the low clouds; higher rhminl-value corresponds to the 
lesser low-level stable clouds below 700 hPa

rhminh Threshold relative humidity for stratiform high clouds 0.65 0.80 0.85 Affect mainly to the high clouds; higher rhminh-value corresponds to 
the lesser high-level stable liquid clouds above 400 hPa

rhminl-adj-land rhminl adjustment for snow-free land 0.05 0.10 0.15 Affect mainly to the low-level clouds over the snow-free land

icecrit Critical relative humidity for ice clouds 0.47 0.93 1.4 Affect mainly to the ice clouds; higher icecrit-value corresponds to 
lesser ice clouds

dp1 Parameter for deep convection cloud fraction 0.05 0.10 0.15 Affect mainly to the deep convective cloud fraction

dp2 Parameter for deep convection cloud fraction 250 500 750 Affect mainly to the deep convective cloud fraction

sh1 Parameter for shallow convection cloud fraction 0.02 0.04 0.06 Affect mainly to the shallow convective cloud fraction

sh2 Parameter for shallow convection cloud fraction 250 500 750 Affect mainly to the shallow convective cloud fraction
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may be negligible or linear or non-linear (or involved in interactions with other parameters). For each parame-
ter, two global sensitivity measures (µ and σ) are computed, where µ shows the overall influence of the parameter 
on model output (climate variables) and σ shows higher-order effects (i.e., interactions with other parameters) 
of the parameter on climate variables. In the Morris method, each input parameter is varied across ‘ m ’ levels in 
the parameter space. The input parameters are selected from set {0, 1/(m− 1), 2/(m− 1), . . . , 1} (in our case 
m = 4 ), and a single parameter is perturbed by � = (m/2)/(m− 1) . To compute the elementary effect, let us 
consider k parameters (in our case k = 17 ), and a random sample S1 = {x1, x2, . . . , xk} and another sample 
S2 = {x1, x2, . . . , xi +�i , . . . , xk} by perturbing the ith parameter by �i . The elementary effect of ith param-

eter xi is defined as Ei = {f (S2)−f (S1)}
�i

 , where f  stands for the weighted-area-averaged value of a particular cli-
mate variable for which sensitivity effect will be analyzed. However, the Ei computed here has the unit of f /� 
(which varies based on the parameter unit and variable unit) and can not be directly used for the comparison 
and ranking between the variables and other parameters. It is thus normalized according to Covey et al.38 as 
Ei = {f (S2)−f (S1)}/f (S1)

�/(xh−xl)i
 , where xh and xl refer to the high and low values of a particular parameter range. Further, 

a third sample S3 =
{

x1, x2, . . . , xi +�i , . . . , xj +�j , . . . , xk
}

 is generated by perturbing another parameter 
from remaining k − 1 parameters 

(

j is not equal to i
)

 , and by repeating this process until all the parameters are 
varied, we get k + 1 samples 

(

S1, S2, . . . , Sk+1

)

, collectively called a single trajectory, and k elementary effects 
( E1,E2, . . . ,Ek) . The above procedure is repeated to get r trajectories. Hence, the total numbers of simulations 
required to determine the sensitivity of the parameters are r ∗ (k + 1)  samples17,37. Here, we have used r = 10 , 
similar to Zhang et al.37, and hence the total number of simulations to be performed is 180 (i.e., 10 ∗ (17+ 1) . 
Furthermore, µi is defined as the mean of |Ei| , and σi as a standard deviation of Ei.

Parameters with a large value of µi and σi are considered to be most sensitive with large main and interactive 
effects. Once µi and σi are computed for each parameter, the relative importance (RI) measure of a given param-

eter is calculated by combining µi and σi effects in a relationship by βi =
√

µ2
i +σ 2

i
s  , with equal weightage to µi 

and σi , where ‘ s ’ is the standard deviation of 
√

µ2
i + σ 2

i  values of different parameters (here ‘i’ corresponds to a 
particular parameter), and is used to normalize the importance of different model  parameters60.

To perform the Morris sensitivity analysis, we use a newly developed software package by  Tong88. It is known 
as the non-intrusive Problem-Solving environment for Uncertainty Analysis and Design Exploration (PSUADE). 
This software package has a variety of tools to conduct global SA, uncertainty analysis, and parameter calibration 
with a large set of uncertain parameters. PSUADE has a variety of (~ 15) sampling methods, including the Mor-
ris sampling technique, and provides users with the option to choose any method from ~ 10 in-built global SA 
techniques (where MOAT GSA is one of them). This software  package for GSA and uncertainty quantification 
has been widely used since its  development89–92.

Data availability
All the data used in this study is in the public domain and can be downloaded freely.
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