
In vitro models (2022) 1:29–40

Vol.:(0123456789)1 3

https://doi.org/10.1007/s44164-021-00003-8

REVIEWS

In vitro tools for orally inhaled drug products—state of the art 
for their application in pharmaceutical research and industry 
and regulatory challenges

Julia Katharina Metz1,2,3 · Marius Hittinger1 · Claus‑Michael Lehr2,3 

Received: 2 September 2021 / Revised: 2 September 2021 / Accepted: 26 September 2021 
© The Author(s) 2021

Abstract
The drug development process is a lengthy and expensive challenge for all involved players. Experience with the COVID-19 
pandemic underlines the need for a rapid and effective approval for treatment options. As essential prerequisites for success-
ful drug approval, a combination of high-quality studies and reliable research must be included. To this day, mainly in vivo 
data are requested and collected for assessing safety and efficacy and are therefore decisive for the pre-clinical evaluation of 
the respective drug. This review aims to summarize the current state of the art for safety and efficacy studies in pharmaceu-
tical research and industry to address the relevant regulatory challenges and to provide an outlook on implementing more 
in vitro methods as alternative to animal testing. While the public demand for alternative methods is becoming louder, first 
examples have meanwhile found acceptance in relevant guidelines, e.g. the OECD guidelines for skin sensitizer. Besides 
ethically driven developments, also the rather low throughput and relatively high costs of animal experiments are forcing 
the industry towards the implementation of alternative methods. In this context, the development of orally inhaled drug 
products is particularly challenging due to the complexity of the lung as biological barrier and route of administration. The 
replacement of animal experiments with focus on the lungs requires special designed tools to achieve predictive data. New 
in vitro test systems of increasing complexity are presented in this review. Limits and advantages are discussed to provide 
some perspective for a future in vitro testing strategy for orally inhaled drug products.
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Introduction

Brief introduction

The directive 2010/63/EU of the European parliament and of 
the council underlines that the final goal is ‘full replacement 
of procedures on live animals for scientific and educational 

purposes’ [1]. But it also states that for safety and efficacy, 
a ‘regulatory testing’ is necessary from which some require-
ments can only be fulfilled by animal experiments [1]. An 
example of a full replacement is the application of in vitro 
safety assessment of chemicals in the cosmetics industry 
[2]. The regulation (EC) No. 1223/2009 of the European 
Parliament and of the Council, which came into force on 
November 30, 2009, states that animal experiments for test-
ing finished cosmetics are forbidden by law [3, 4]. This regu-
lation underlines the political pressure on developing new 
alternatives and on the other side the ability of alternatives 
for predicting human data. For pulmonary drug develop-
ment, which is nothing else than inhaling chemicals with 
an intended safe use and a specific efficacy, several in vitro 
methods are available but animal experiments are still reg-
ulatory required. Within this review, we will summarize 
and discuss the aspects of chemical registration and drug 
approval in the context of a potential animal testing free 
drug development.
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The price we pay

Animal experiments are quite expensive, in some cases ethi-
cally unacceptable, and they often produce results that are 
not valid enough to predict potential safety issues in humans 
[5, 6]. In 2011, 1.3 billion € was spent on animal experiments 
for the safety assessment of chemicals in total, whereby the 
acute inhalation toxicity is calculated with 13.85 million € 
and sub-chronic toxicity studies with 61.95 million € [7]. 
In the first report for the ‘EU statistical data on the use of 
animals for scientific purposes’ in 1994, 11,790,485 animal 
experiments were conducted in the European Union [8]. The 
total number of animals was decreased to 9,390,000 in 2017, 
which is communicated in the newest report from the Euro-
pean Commission in 2020 [9].

Next to these considerable costs, the predictivity of 
animal experiments is called into question by numerous 
studies. Only 71% of two-species studies can predict the 
human toxicity studies [10], resulting in a 89% failure rate 
of new drugs after human clinical trials [5]. Reasons for this 
low predictivity are physiological differences between the 
species that lead to, among other things, diverse metabolism 
functions, varied microbiome constitutions, altered gene 
expression profiles and differently expressed disease 
phenotypes [10].

In response to these limitations of animal experiments, 
the demand for suitable in vitro methods is increasing. Goh 
et al. calculated all in vitro assays performed in the main 
three fields genotoxicity, safety pharmacology and ADME of 
pre-clinical studies from three pharma companies and three 
contract research organizations (CRO) in the years 1980 to 
2013 with the result that the percentage of performed in vitro 
assays in the pharma industry has increased by a remark-
able 20% since 2012 [11]. The actual market of in vitro 
toxicology testing was estimated at $ 22.7 billion in 2020 
and extrapolations demonstrate that the market size of the 
in vitro toxicology testing will be increased up to 11.4% in 
2028 [12]. This increasing number of in vitro assays used 
for scientific purposes can be related to a slight reduction in 
animal testing from 1990 until 2017 even if there are strict 
regulatory requirements.

Regulatory requirements 
for safety assessment of chemicals 
and pharmaceuticals

The European Union’s REACH regulation ((EC) 
1907/2006) legally regulates the market and safety of 
chemicals since 2007. According to the slogan ‘no data, 
no market’, chemical manufacturers must provide all nec-
essary data for a detailed safety evaluation for the product 

that they want to release to the market [13]. The best way 
for a uniform evaluation of the product is to adhere to 
certain guidelines. Relating thereto, the OECD, an inter-
national association with 36 member states aiming for the 
reduction of economic, political and environmental com-
plications through standardized procedures, is responsible 
for the development of such guidelines [14]. The inter-
nationally accepted OECD guidelines include the (bio)
safety assessment of chemicals and the protection of the 
environment and human health. This collection of guide-
lines for the testing of chemicals is divided into 5 sec-
tions: (1) physical–chemical properties; (2) effects on 
biotic systems; (3) environmental fate and behaviour; (4) 
health effects and (5) other test guidelines [15]. In the  4th 
section of guidelines, 80 OECD regulations describe suit-
able methods for identifying potential health risks of the 
substances under test. For example, the (acute) toxicity, 
genotoxicity, neurotoxicity, sensitization and corrosion 
effects of the test substance are addressed in in vitro and 
in vivo studies depending on the organ affected [16]. After 
the aforementioned health risks for human and environ-
ment can be assessed, the manufacturer has to apply to 
the ECHA (European Chemical Agency) for registration, 
depending on the production volume per year. If approved, 
the chemical can be placed on the market [17].

In contrast to chemicals, drugs have to demonstrate safety 
and efficacy for human application. As soon as a potent drug 
candidate has been identified, several development phases 
must be passed through. Often, the development process 
starts with a chemical optimization of the active compound, 
which serves to improve the physiochemical and biologi-
cal characteristics to achieve an increased efficacy (lead 
compound optimization) [18]. In the pre-clinical phase, the 
targeted compound is tested mainly in short- and long-term 
animal studies for toxicology and disease-modifying effects 
[19].

In principle, the pre-clinical testing for orally inhaled 
drug products is the same as for other routes of applications 
as parenteral or oral. The manufacturer must provide data 
which include especially in vivo repeat-dose toxicology (up 
to 9 months) studies. These studies are performed to exclude 
toxic effects directly in the lung tissue and avoid systemic 
toxicity. This will include respiratory tract malfunctions, 
e.g. larynx and nasal cavity irritancy. As examples, common 
drugs for inhalation, e.g. salbutamol, fluticasone or tobramy-
cin, were tested in this way [20, 21]. All these studies are 
performed in vivo, it is recommended to use one rodent and 
one non-rodent species to evaluate the safety of the drug 
formulation [21]. A first goal of this testing is the identifi-
cation of the no-observed-adverse-effect levels (NOAELs) 
which specify the initial dose for starting the clinical phase 
I [19, 22].
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If there are no safety concerns after the pre-clinical phase, 
the developing company can submit an approval for inves-
tigatory new drug (IND) to the US Food and Drug Admin-
istration (FDA) or clinical trial application (CTA) by the 
European Medicines Agency (EMA) [23]. After authorisa-
tion has been obtained from the IND or CTA, respectively, 
the clinical trials start. With an increasing number of par-
ticipants in the clinical phase, the safety and efficacy of 
the IND are evaluated in humans until the data situation 
allows for the preparation of a new drug application (NDA) 
which is then sent to the FDA or EMA. An independent 
advisory committee of the agency will discuss the results 
of the NDA and decide if the drug promises good treat-
ment options for the patients [22, 24]. During the final drug 
approval phase in Europe, the different national commit-
tees can sometimes also be involved in the ultimate approval 
decision [24]. Occasionally, the regular drug approval pro-
cess can be accelerated due to an emergency, like during the 
COVID-19 pandemic, where the BioNTech/Pfizer vaccine 
received approval after 10 months, compared to an average 
of 15 years or longer in the regular approval process [25]. 
Moreover, drug approval processes can be changed when it 
comes to the approval of orphan drugs including a reduced 
clinical phase II in 4 years compared to 6 years for stand-
ard approvals [24, 26, 27]. Figure 1 summarizes the drug 
development process which must be passed for a final FDA 
approval.

As mentioned above a key element during the drug devel-
opment process is the IND application, which is crucial for 

the start of clinical studies in humans. It stands to reason that 
potential safety issues of a new drug should be clarified in 
advance. This is done in IND enabling studies which cover 
the pre-clinical safety assessment by a complete description 
of the pharmacodynamics and kinetics (ADME properties), 
safety pharmacology, reproductive and developmental toxic-
ity, and genotoxicity studies [28]. The FDA provides various 
forms which must be submitted for IND application. One of 
the most important forms is the FDA 1571 Title 21, Code 
of Federal Regulations (CFR) Part 312 including a detailed 
description of the data situation in the pre-clinical evaluation 
[28–31]. To ensure FDA acceptance of the data integrated in 
an IND application, internationally accepted good laboratory 
and manufacturing practice (GLP/GMP) and quality guide-
lines from the ‘Organisation for Economic Co-operation and 
Development’ (OECD) and the ‘International Council for 
Harmonisation of Technical Requirements for Pharmaceu-
ticals for Human Use’ (ICH) should be met [32–34].

The ICH, a consortium of key players from regulatory 
authorities and pharmaceutical industries, has established 
standards on quality, safety and efficacy, and also pro-
vides the multidisciplinary guidelines, all of which help 
to unify the international drug development process [35]. 
These guidelines ensure that adequate data quality can be 
guaranteed, which makes a successful drug approval more 
likely. The ICH guidance document M3 (R2), for example, 
describes in detail the required data for the pre-clinical 
evaluation of pharmaceuticals to support subsequent clini-
cal trials [36, 37]. Safety assessments do not only play an 

Fig. 1  Overview of the drug development and approval process of 
new drugs by the FDA. An investigational new drug (IND) undergoes 
during their development various phases of pre-clinical research and 
clinical studies. After a successful synthesis and purification, the IND 
will be tested in the pre-clinical phase for their efficacy and safety 
by inter alia short- and long-term animal studies followed by an offi-

cial IND submission. Passing the three phases of clinical studies, 
the advisory committees decide for an approval of the drug product 
[22]. Reprinted from: ‘New Drug Development and Review Process’,  
copyright © 2020 FDA homepage, https:// www. fda. gov/ drugs/ cder- 
small- busin ess- indus try- assis tance- sbia/ new- drug- devel opment- and- 
review- proce ss, accessed 01/03/2021
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essential role during drug approval, they are also important 
for the registration and market authorization of chemicals 
and, consequently, their commercial distribution and indus-
trial processing [38].

In order to adequately comply with the law and, thus, 
ensure safety for humans and the environment, animal 
experiments are still required [39] and are essential from 
regulatory perspective (e.g. ECHA) as no adequate and valid 
alternatives are available [40].

Changing the perspective: replacing animal 
experiments by predicting human data

It is an obvious strategy that animal experiments might be 
replaced most efficiently by methods leading to the same 
results as animal experiments do. This concept will transfer 
all disadvantages such as low predictivity of human data as 
well. This low predictivity is mainly localized in efficacy 
and not safety-related questions. From this perspective and 
with focus on pulmonary drug development, a particular 
understanding of relevant lung diseases is necessary before 
developing adequate in vitro tools.

According to the World Health Organization (WHO), 
chronic obstructive pulmonary disease and lower respira-
tory infections occupy the  3rd and  4th places, respectively, 
of the most common causes of death worldwide [41]. The 
lethality of patients suffering from lung diseases will rise in 
the future due to the COVID-19 pandemic [42]. The most 
relevant lung disorders are divided into four main catego-
ries: (1) acute lung diseases, e.g. pneumonia and influenza; 
(2) chronic inflammatory diseases, e.g. chronic obstructive 
pulmonary disease (COPD) and asthma; (3) occupational 
lung disorders, such as various forms of lung fibrosis; and 
(4) parenchymal lung diseases, mostly related to immune 
disorders [43].

Chronic lung complications are a cause of underlying 
diseases mostly because of previous acute lung failures 
such as infections [44]. Chronic lung conditions such as 
asthma and COPD are mainly triggered by allergies and an 
increased inflammatory response due to air contaminations, 
e.g. cigarette smoke and noxious gases [45, 46]. Acute lung 
diseases such as pneumonia are caused by lower respiratory 
tract infections of bacteria or viruses [47], resulting mostly 
in acute lung injury (ALI) or acute respiratory distress syn-
drome (ARDS) depending on the symptom severity [48–50]. 
This diversity of lung diseases leads to an enormous range 
of treatment options. For example, in the ‘Guidelines for 
the management of adult lower respiratory tract infections’, 
the European Respiratory Society (ERS) has listed various 
antibiotic treatment options, e.g. amoxicillin or tetracyclines, 
depending on the degree and type of infection, and recom-
mended that vaccination is suitable for risk prevention [51]. 

The Global Initiative for Chronic Obstructive Lung Disease 
(GOLD) compiled a list with medical formulations and typi-
cal doses for the pharmacological treatment of COPD. Next 
to inhalable corticosteroids, anticholinergics,  beta2-agonists 
and various combinations can be applied via metered dose 
inhaler (MDI) or dry powder inhaler (DPI) to COPD patients 
[52, 53].

Apart from these classic pharmacological interventions, 
innovative therapies, especially for the cure of ARDS due 
to the spread of COVID-19, are on their way for regulatory 
approval. At the end of 2019, Silva et al. discussed that per-
sonalized medicine can offer targeted therapies including 
coordinated treatments for the individual patient’s biochemi-
cal and physiological reconstitution during ARDS [54]. In 
addition, cell therapies with (embryonic) stem cells prom-
ise in vivo a reconstitution of damaged lung epithelial cells 
during ALI/ARDS, whereas innovative gene therapies can 
influence protein expression responsible for the regulation 
of inflammatory signalling pathways [55]. A lot of active 
pharmaceutical ingredients (API) with potential ARDS 
treatment options are currently in the pre-clinical phase of 
drug development. Examples of such APIs are common 
anti-coagulants with effects against vascular dysfunction, 
immunomodulatory pleiotropic and pathway-specific conse-
quences (e.g. elafin and anti-INF-γ therapies), and anti-viral 
agents such as remdesivir and favipiravir which have been 
heavily promoted in their development during the COVID-
19 pandemic in 2020 [56]. A further example for an inno-
vative ARDS treatment is the hormone therapy based on 
PEG-adrenomedullin submitted as an orphan drug approval 
by Bayer AG Pharmaceuticals with indication for ARDS 
in clinical phase II [57, 58]. Next to the local treatment of 
lung diseases, the inhalative application route, e.g. for insu-
lin therapy or against hypertension, has various advantages, 
as a faster treatment, higher efficacy and a reduced systemic 
side effect than other ways of administration [59]. These 
drug developments and approvals are essential for new thera-
peutic options to treat the above-mentioned lung diseases. 
Nevertheless, only a few drug candidates pass the long and 
financially risky development process to eventually achieve 
official approval [60]. The reasons for the high failure rate 
and how in vitro models can be advantageously involved in 
the drug development process, also considering regulatory 
aspects, are described in the following section.

Validation is the challenge to face

Significant progress was achieved by replacing animal 
experiments with focus on skin data, such as the skin sen-
sitization test (No. 442 C-E) and the in vitro skin irritation 
test (No. 439), and also many in vitro genotoxicity tests, as 
the mammalian cell micronucleus test (No. 487). However, 
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no in vitro method for the inhalative safety assessment is 
yet recommended by the OECD. Consequently, the required 
data must still be generated by animal experiments. The offi-
cial guidelines for the applied in vivo methods are No. 403, 
433, and 436, reporting the acute toxicity, and the guidelines 
no. 412 and 413, analysing the sub-acute and sub-chronical 
effects to the lung after substance exposure (Table 1).

On December 12, 2013, the European Union Reference 
Laboratory for Alternatives to Animal Testing (EURL 
ECVAM) recommended the Direct Peptide Reactivity Assay 
(DPRA) testing to evaluate potential skin sensitizers [61]. 
The methods for in vitro evaluation of skin sensitizer were 
expanded to the cell-based assays KeratinoSens™, LuSens, 
h-CLAT, (m)MUSST showing a better predictivity to human 
data [62]. Urbisch et al. show that in silico methods as the 
QSAR (quantitative structure–activity relationship) Toolbox 
and TIMES (tissue metabolism simulator) were more reli-
able to identify skin sensitizer in comparison to the in vivo 
LLNA (local lymph node assay) [63]. In 2018, the ECHA 
recommended the in vitro skin sensitizing methods within 
the safety assessment to meet the REACH regulation accord-
ing to the OECD guidelines 442 C-E [64]. In addition, other 
in vitro test guidelines are officially accepted, e.g. test no. 
498: in vitro phototoxicity assay, test no. 490: in vitro mam-
malian cell gene mutation assay, and test no. 473: in vitro 
mammalian chromosomal aberration test [65]. A complete 
list of all validated in vitro test methods is given by the 
EURL ECVAM on their web page [66]. Although lot of 
in vitro assays, for examining the skin sensitizer, eye cor-
rosion and gene mutation, were successfully established in 
guidelines, no officially OECD test guidelines are available 
for an inhalation toxicity assessment of chemicals. To guide 
developers of in vitro methods to a potential validation and 

approval of their in vitro assays, the OECD published the 
‘Guidance Document on Good In Vitro Method Practices 
(GIVIMP)’ in 2018. Based on GMP/GLP system, all impor-
tant points during the establishment and application of an 
in vitro method are considered in this GIVIMP guideline. 
Starting with the qualification of the suppliers of the lung 
cell cultures (e.g. ATCC, DSMZ), to the necessary quality 
assurance (QA) and quality control (QC) during validation 
and application of the method, is described in detail. Further 
rules, such as the equipment of the facilities, as laminar flow 
benches, needed material (e.g. cell culture vessels, pipettes) 
and reagents (e.g. cell culture media, chemicals, supple-
ments), must also be audited and must comply with the 
GMP/GLP system. A suitable reference/control represent-
ing the applicability of the method must be selected within 
the assay, for example, in a cell viability assay, the unex-
posed control with buffer and a negative control with a cell 
destroying detergent. The results must be sufficiently docu-
mented and archived so that anyone can check the results 
for transparency, reproducibility, robustness and accuracy 
at any time [67]. There is currently no officially recognized 
in vitro method that fulfils the requirements just mentioned. 
But many systems are promising, are well-established and 
are in the starting blocks for validation. They differ in their 
complexity from simple monolayer 2D cultures to mixed 
cultures (co-cultures), 3D cultures and overly complex co-
cultures with more than three cell types. The costs of these 
test systems increase but the physiological relevance grows 
as well. But none of the test systems is validated under per-
mitted guidelines recommended from the OECD or ICH 
[68]. A complete validation of an applicable in vitro method 
implies a successful transfer from research to industry [68, 
69]. The coordination of this validation process is carried 

Table 1  OECD guidelines for the inhalative safety assessment of 
chemicals performed by in vivo studies. TG No., test guideline num-
ber; LC50, lethal concentration; GHS, Globally Harmonized System; 

BMC, benchmark concentration; NOAEC, no observed adverse effect 
concentration; LOAEC, lowest observed adverse effect concentration

TG No Indication Aim Instruments Reference

Acute toxicity
  403 Acute inhalation

Toxicity, 4 h
LC50 Inhalation chamber

(nose-only, whole-body)
[43]

  433 Fixed concentration
Procedure, 4 h

Evident toxicity Inhalation chamber
(head/nose-only, whole-body)

[44]

  436 Acute toxic class (ATC) method, 4 h Fixed concentrations, step 
wise to GHS

Inhalation chamber
(head-only, nose-only, snout-only)

[45]

Sub-acute toxicity
  412 Repeated dose

Inhalation toxicity, 28-day study
Quantitative risk
Assessments
BMC, NOAEC, LOAEC

Inhalation chamber
(head-only, nose-only, snout-only)

[46]

  Sub-chronic toxicity
413 Sub-chronic

Inhalation toxicity, 90-day study
Quantitative risk
Assessments
BMC, NOAEC, LOAEC

Inhalation chamber
(head-only, nose-only, snout-only)

[47]
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out by the US Interagency Coordinating Committee on the 
Validation of Alternative Methods (ICCVAM) [70] and, for 
the European Union, by the EURL ECVAM [71]. In the 
ECVAM status report from 2019, next to various in vitro 
assays, e.g. CATMoS (in silico models of acute oral sys-
temic toxicity), in vitro cytotoxicity test 3T3 Neutral Red 
Uptake and the MELN® human estrogen receptor transcrip-
tional activation assay, only two alternatives for respiratory 
in vitro alternatives are submitted for validation: (1) the 
in vitro system ALIsens, which should replace the respira-
tory local lymph node (LLNA) assay, and (2) undergoing 
validation at the time of publication, the EpiAirway™ sys-
tem, a reconstructed human lung epithelium for detecting 
acute inhalation toxicity studies [72].

The potential power of in vitro assays 
for chemical and pharmaceutical industry

Alternatives to animal experiment will dominate the future 
for ethical and economic reasons. The overall advantage is 
easily explained: in vitro models are cheaper and have an 
increased throughput [73]. However, the user will always 
have to weigh up which test is selected for the purpose 
including the best significance for predicting human data. 
For pulmonary development, we suggest a resources- and 
benefit-driven approach. Resources are all efforts required 
for the performance of the selected in vitro assay. Benefit 
includes the prediction of human data and chances for reg-
ulatory acceptance, including the status of its validation. 
Putting this information in a two-dimensional x–y diagram 
with x = benefit and y = resources, we achieve four quadrants 
from which we can use the first three clockwise for develop-
ing orally inhaled drug products (Fig. 2). By passing this 
way to advanced testing, drug formulation candidates should 
decrease, and the targeted formulation will be optimized.

Table 2 summarizes in vitro models classified according 
to their complexity, use of resources and benefits. However, 
the predictability for in vivo outcomes of the here presented 
in vitro lung models, especially for predicting the kinetics 
of absorption and permeability, is still a subject of discus-
sion [74].

To increase the predictivity, epithelial cells can be co-
cultured or even triple-cultured with immune cells (THP-1, 
monocyte-derived macrophages (MDM)) and human pul-
monary microvascular endothelial cells (HPMEC) to more 
accurately simulate the air-blood barrier [86–91]. Because 
the lung is constituted of many cellular and non-cellular 
(mucus, surfactant) barriers, whose spatial arrangement 
is essential for a functioning lung physiology, lung orga-
noids were developed. Organoids are defined as 3D in vitro 
tissue structures simulating a complete in vivo organ [92, 
93]. Most organoids are cultivated in a Matrigel matrix and 

are mostly generated from hPSC (human pluripotent stem 
cells) [94–97]. The main limitation of organoids is the low 
standardization of cell cultivation due to the complicated 
differentiation protocols with countless variations, which 
causes high costs [98]. Lung-on-a-chip models provide the 
cell cultivation in a microfluidic device. With a dynamic 
flow for media transport, a simulation of the function and 
exposure scenarios of the different lung areas is possible 
depending on the integrated cell types. However, this tech-
nology is still in its infancy [99–102]. A further development 
of complex in vitro lung systems is the 3D tissue cultures, 
which are commercially available, for example from MatTek 
and Epithelix. These systems include ciliated cells, goblet 
cells with a mucus layer and basal cells in the variant for the 
upper airways (MucilAir™, Epithelix) or the lower airways 
(SmallAir™, Epithelix), mucuciliary epithelium on fibro-
blasts (EpiAirway, MatTek), or the 3D constitution of alveo-
lar epithelial cells, fibroblasts and alveolar endothelial cells 
(EpiAlveolar™, MatTek) [103–106]. The overall advantage 
of these ready-to-use systems is the high degree of stand-
ardization which is demonstrated by their presence in the 
ECVAM validation process (EpiAirway™) as mentioned 
above [72]. Further advantages of these systems are the 
individual user adaption through various cells (e.g. immune 
cells), the availability of diseased models and the combina-
tion with innovative exposure systems [107]. Primavessy 
et al. summarized the advantages of commercially available 

Fig. 2  Benefits versus resources during an in  vitro method devel-
opment. Starting from the basic understanding to screening assays 
ending to advanced testing, the reduction of complexity increases to 
support the optimization of in  vitro assays. In addition, the in  vitro 
method, which gives no benefit, will be directly identified and no 
longer pursued
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exposure systems which enhance the quality of in vitro sys-
tems due to a physiological lung simulation and substance 
deposition in comparison to static experimental setups [108]. 
One of the most renowned manufacturers of exposure sys-
tems for inhalation toxicology is VITROCELL® Systems. 
These VITROCELL® devices can expose airborne parti-
cles or chemicals (gases, mixtures, NPs) to many formats of 
cell cultures cultivated in liquid–liquid interface (LLI) or in 
air–liquid interface (ALI) [109]. In 2019, Kooter et al. inves-
tigated asthma patients’ increased sensitivity to copper oxide 
nanoparticle aerosols using the MucilAir™ (Epithelix) and a 
VITROCELL® exposure system. They observed a changed 
response of the model in a diseased state after NP exposure 
in comparison to the healthy cells by performing a tran-
scriptomic analysis [110]. This experimental setup tries to 
simulate the particle concentration in the atmosphere more 
realistically than the calculation of particle concentration in 
dilution (LLI) [111].

Nevertheless, complex exposure experiments are still 
limited, due to technical restrictions as to simulating the 
highest dose of airborne particles and substances com-
pared with surrounding contaminant concentration [112]. 
Future challenges for the standardization of physiologi-
cally relevant exposure systems with ALI cell cultures are 
the validation of in vitro to in vivo outcomes, the simula-
tion of chronical exposure and the evaluation of the dosim-
etry (gas versus particles) to identify the exact NOAEL/
LOAEL [112, 113].

These challenges were discussed during an international 
workshop with respiratory toxicology experts in 2018, 
which evaluated the necessary conditions and setup for 
an in vitro test system for respiratory safety assessment 
aiming the ECVAM validation. During the discussion, the 
main question arose as to which results can be validated to 
which endpoints regarding, for example, respiratory irrita-
tion, sensitization or inflammation. The problem being that 
no standardization of the established in vitro methods is 
possible, and, most critically, in vitro models are not com-
pared to human clinical data and only correlated to animal 
data [68]. Based on these challenges, further research and 
additional data are still required for the improvement, vali-
dation and regulatory acceptance of respiratory in vitro 
models in order to establish them as alternatives to animal 
testing and to widen the implementation of the Three Rs 
principle in pharmaceutical research and industry.
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