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Genome‑wide variance 
quantitative trait locus analysis 
suggests small interaction effects 
in blood pressure traits
Gang Shi

Genome-wide variance quantitative trait loci (vQTL) analysis complements genome-wide association 
study (GWAS) and has the potential to identify novel variants associated with the trait, explain 
additional trait variance and lead to the identification of factors that modulate the genetic effects. 
I conducted genome-wide analysis of the UK Biobank data and identified 27 vQTLs associated 
with systolic blood pressure (SBP), diastolic blood pressure (DBP) and pulse pressure (PP). The top 
single-nucleotide polymorphisms (SNPs) are enriched for expression QTLs (eQTLs) or splicing QTLs 
(sQTLs) annotated by GTEx, suggesting their regulatory roles in mediating the associations with 
blood pressure (BP). Of the 27 vQTLs, 14 are known BP-associated QTLs discovered by GWASs. The 
heteroscedasticity effects of the 13 novel vQTLs are larger than their genetic main effects, which 
were not detected by existing GWASs. The total R-squared of the 27 top SNPs due to variance 
heteroscedasticity is 0.28%, compared with 0.50% owing to their main effects. The overall effect size 
of the variance heteroscedasticity is small in GWAS SNPs compared with their main effects. For the 
411, 384 and 285 GWAS SNPs associated with SBP, DBP and PP, respectively, their heteroscedasticity 
effects were 0.52%, 0.43%, and 0.16%, and their main effects were 5.13%, 5.61%, and 3.75%, 
respectively. The number and effects of the vQTLs are small, which suggests that the effects of gene–
environment and gene–gene interactions are small. The main effects of the SNPs remain the major 
source of genetic variance for BP, which would probably be true for other complex traits as well.

Variance quantitative trait locus (vQTL) refers to a locus that is associated with the difference in the variance in 
a quantitative trait1–4. Such variance heteroscedasticity may be induced by gene–environment interactions2,5–8, 
gene–gene interactions4, multiple linked functional variants at the locus9,10 or scale effects11,12. Since standard 
genome-wide association studies (GWASs) focus on testing differences in the means across genotypes, genetic 
variance attributable to variance heteroscedasticity is missed. Genome-wide vQTL analysis complements GWASs 
and has the potential to identify novel variants associated with a trait. In addition, the variance heteroscedasticity 
of a vQTL is genotype-dependent, therefore, could explain additional trait variance that is genetically related. 
Without the need to measure environmental factors, genome-wide vQTL analysis has been used to screen poten-
tial gene–environment interactions and search for factors that modulate the genetic effects2,5,6,8.

To date, the identified vQTLs are largely for obesity-related traits. Yang et al. found that the FTO gene locus 
was not only associated with the mean of body mass index (BMI), but also the variance of it13. In the analysis of 
BMI with UK biobank data, Young et al. identified 48 genome-wide significant loci that demonstrated smaller P 
values from the test including variance heteroscedasticity effect than from the test of additive effect in trait mean 
only5. In the analysis of 13 quantitative traits from the UK Biobank, Wang et al. discovered 75 significant vQTLs 
for 9 traits, 60 of which were for those related to obesity6. Their interaction analysis showed that the vQTLs were 
enriched with gene-environment interactions. In the analysis of the genetic risk score of BMI with 376 variants, 
Sulc et al. demonstrated that while the genetic risk score explained 5.2% of BMI variance, its interactions with 
environmental factors explained an additional 1.9%7. Marderstein et al. showed that the discovery and replication 
rates of gene-environment interactions for BMI were significantly higher when prioritizing variants in vQTLs 
compared to when accessing all genetic variants. They also demonstrated strong gene-environment interactions 
mediated the genetic contribution to body weight and diabetes risk.
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A recent study of blood pressure (BP) shows that some portions of the BP variance could be attributed to 
gene–environment interactions14. In this work, I propose statistical methods for vQTL analysis at the biobank 
scale that are based on a linear mixed model and regressions. I conducted genome-wide vQTL analysis of BP 
data in the UK Biobank to search for novel single-nucleotide polymorphisms (SNPs) associated with BP and 
evaluated additional BP variance explained by their variance heteroscedasticity.

Material and methods
Mixed model analysis.  A variety of heteroscedasticity tests have been suggested for finding vQTLs, which 
have been reviewed previously11,15. In this work, I employ a linear mixed model and test the variance heterosce-
dasticity of a vQTL using the maximum likelihood approach, similar to that in (Sulc et al., 2020)7. Neverthe-
less, it focuses on testing the variance heteroscedasticity due to the interactions between a polygenic score and 
unknown environmental factors. The method is statistically powerful when the quantitative trait approximately 
follows a normal distribution.

Suppose that a quantitative trait y is associated with a genetic factor G and n covariates Xi, i = 1,…,n, as follows:

where βG and βC
i  , i = 1,…,n, are the genetic and covariate effects, respectively, and ε ∼ N

(

0, σ 2
)

 is the random 
error. Here, G is assumed to be additive, which could be the dosage or coded genotype of a SNP. Ei, i = 1,…,m 
are m environmental factors that modulate the genetic effect, and βE

i  and βI
i  are the environmental and interac-

tion effects, respectively. Without loss of generality, Ei, i = 1,…,m may include other factors that modulate the 
genetic effect.
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variance depends on the genetic factor in a quadratic manner

where

I further assume that γ1 and γ2 follow a bivariate normal distribution

Note that σ 2 and τ1 are not identifiable in the present model. I merge the error ε with the random effect γ1 as the 
new γ1 and have the linear mixed model

whose mean and variance are

In this case, τ1 is the variance of γ1 + ε in the original model, and τ2 is the covariance between γ2 and γ1 + ε.
I solve the linear mixed model (1) numerically by the maximum likelihood method based on its profiled likeli-

hood function and Newton–Raphson algorithm16. To alleviate computational burden, one can also first regress 
the trait on the covariates and genetic factor and then use the residual ê to solve the variance component model
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To test the variance heteroscedasticity, the null hypothesis is H0: τ2 = τ3 = 0 , and the alternative hypothesis 
is that at least one of them is nonzero. The likelihood ratio statistics follows a 0.5:0.5 mixture distribution of 
a chi-square with 1 degree of freedom (df) and a chi-square with 2 df17. All tests proposed in this paper were 
implemented in the program “heter”, which is available at https://​github.​com/​eat10​00/​heter.

Regression analysis.  To solve the linear mixed model (1) or the variance component model (2), it is 
usually desirable for the starting values of the iterating parameters to be close to their estimates. I extend the 
Breusch–Pagan test for heteroscedasticity18 into a quadratic form, and the squared residual is regressed on the 
genetic factor as follows:

where ε is the random error. The estimated τ̂1 , τ̂2 and τ̂3 by linear regression can be used as the starting values 
of the variance parameters for solving model (1) or (2). Alternatively, the heteroscedasticity test can also be 
performed by linear regression (3) by testing τ2 and τ3 jointly, and the likelihood ratio statistics follows a Chi-
square distribution with 2 df.

Since the squared residual ê2 is nonnegative, linear regression (3), which assumes normally distributed ε , 
could be suboptimal. An improved Chi-square regression analysis is formulated as follows:

where χ2
1  is a random variable following a Chi-square distribution with 1 df. I iteratively solve the Chi-square 

regression (4) by the maximum likelihood method with starting values estimated by linear regression (3). The 
test for variance heteroscedasticity is conducted based on testing τ2 and τ3 jointly using the likelihood ratio test, 
and the test statistics follows a Chi-square distribution with 2 df. It can be shown that the likelihood function 
of Chi-square regression (4) coincides with that of the variance component model (2) and that of the gamma 
regression with a shape parameter of 1/2 and a scale parameter modeled as 2τ1 + 4τ2G + 2τ3G

2.
Notably, τ1 , τ2 and τ3 are unconstrained when solving regression models (3) and (4), and no distributions of 

γ1 and γ2 have to be assumed. Nevertheless, γ1 and γ2 are assumed to follow a bivariate normal distribution in the 

linear mixed model (1) and variance component model (2), and 
(

τ1 τ2
τ2 τ3

)

 are constrained to be positive 

semidefinite.

UK Biobank data and analyses.  The UK Biobank is a large propective study in the United Kingdom 
with more than 500,000 participants aged between 40 and 69 years at the time of recruitment. The study design 
was described previously19. Deep phenotyping, genomic, and health-related data have been collected and are 
available for research investigating a wide range of diseases caused by a combination of genes, lifestyles, and 
environmental factors20. The UK Biobank has obtained informed consent from all participants and has obtained 
Research Tissue Bank approval from its ethics committee. This research has been approved by the UK Biobank 
under application number 44080 and I have complied with all relevant ethical regulations in this work.

Genome-wide genotype data of 487,422 individuals were imputed with the Haplotype Reference Consor-
tium (HRC) reference panel by the UK Biobank, resulting in 93,095,623 autosomal SNPs, short indels and large 
structural variants20. I conducted genome-wide vQTL analysis of BP data in the UK Biobank using imputed 
genotype data. I restricted the analysis to autosomal SNPs that have minor allele frequencies higher than 0.01 
and information scores larger than 0.9, obtaining 9,117,915 SNPs that passed the filters. I excluded quality con-
trol outliers for heterozygosity or missingness and samples with sex discordance between the self-reported and 
genetically inferred sex according to the sample quality control files provided by the UK Biobank. I also excluded 
non-European samples, samples from pregnant women, one sample in each related pair up to second-degree 
relatives, and samples from participants who had withdrawn consent.

Systolic blood pressure (SBP) and diastolic blood pressure (DBP) in the genome-wide vQTL analysis were 
averaged over multiple measurements assessed at baseline, which were further adjusted for antihypertensive 
medication use by adding 15 and 10 mm Hg21 to SBP and DBP, respectively. Pulse pressure (PP) was computed 
as the difference between SBP and DBP and then logarithmically transformed. Covariates in the analysis included 
sex, age, age squared, BMI and the top 10 principal components (PCs). Samples with BP or BMI values that 
were 5 or more standard deviations outside the respective means and those with missing BP values or covariates 
were also excluded. The total sample sizes in the analyses were 396,077, 396,079 and 396,077 for SBP, DBP and 
PP, respectively.

Simulation studies.  I conducted simulation studies to examine the distributions of the four test statistics 
under the null hypothesis and their statistical power to detect a vQTL with different heteroscedasticity effects. 
Covariates and genotype data in the UK Biobank were used for the simulation studies.

I simulated an SBP trait under the null hypothesis as follows:

(2)ê = γ1 + γ2G.

(3)ê2 = τ1 + 2τ2G + τ3G
2
+ ε,

(4)ê2 =
(

τ1 + 2τ2G + τ3G
2
)

χ2
1 ,

SBP = 86.5+ 5.65sex+ 0.00827age2 + 0.909BMI+ 0.0647PC4 + 0.0349PC9 +

54
∑
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in which the intercept, covariate effects and standard deviation of the random error ε were from the fitted model 
by using the SBP and covariates in the UK Biobank, the 54 SBP-associated SNPs and their effects were as reported 
in the literature22, and ε was normally distributed with a zero mean and standard deviation of 18.44. Genotypes 
of the SNPs were called as those with the largest probabilities and then coded as being additive. For the 396,387 
samples who passed quality controls and had non-missing covariates, their SBP values were simulated. Since 
the simulated SNP effects are constants across samples, there is no variance heteroscedasticity in this simula-
tion. Then, I carried out four vQTL analyses on 10,000 SNPs randomly chosen from SNPs on 22 autosomes that 
passed the quality controls.

To evaluate the statistical power of the vQTL tests, I assumed that the effect of one SBP-associated SNP, 
rs880315, was random, following a normal distribution N

(

−0.475, σ 2
)

 in the simulated samples. Here, the 
mean −0.475 is the average effect per reference allele as reported in the literature22, and σ 2 is the variance of the 
effect. The effects of covariates and the other 53 SNPs remained the same as previously described. I considered 
5 levels of heteroscedasticity with σ 2 = 1, 2, 3, 4, and 5. For each level, I simulated the SBP of 396,387 samples 
with 1000 replicates. I conducted the four vQTL analyses on SNP rs880315. The results of P values smaller than 
the genome-wide significance threshold of 5 × 10−8 23 were considered to be significant, and a portion of the 
significant results among the 1000 replicates was the empirical power.

Results
Simulation results.  Under the null hypothesis, quantile–quantile (QQ) plots of the four vQTL tests are 
presented in Fig. 1. The observed P values from testing the 10,000 SNPs are shown as the vertical coordinates 
on a negative log10 scale, and the horizontal coordinates are their expected values from a uniform distribution 
between 0 and 1. As can be seen, the empirical distributions and their expected distributions align well for the 
four tests. The QQ plots for the linear mixed model (1) and variance component model (2) are almost identical. I 
compared the likelihood ratio statistics of the two tests, the test statistics based on the linear mixed model (1) and 
the variance component model (2) are almost identical as well. This is probably because the maximum likelihood 
estimates of fixed effects in linear mixed models are robust to the misspecification of their covariance structure24. 
Even though the estimates of the fixed effects are updated in each iteration when solving the linear mixed model 
(1), the changes are minuscule. Without the loss of much precision, the fixed effects can be estimated and kept 

Figure 1.   Quantile–quantile plots for the four test statistics under the null hypothesis. (A) Linear mixed model, 
(B) variance component model, (C) linear regression, (D) Chi-square regression.
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unchanged, and the parameters of the random effects are estimated iteratively, which is equivalent to solving the 
variance component model (2). Similarly, the QQ plots for linear regression (3) and Chi-square regression (4) 
are very close, which is possibly due to the robustness of the linear regression.

The statistical power of the four tests is displayed in Fig. 2. Apparently, the power of the four tests becomes 
large with the increase in the heteroscedasticity effect. The power based on the linear mixed model (1) and the 
variance component model (2) are the same, and the test statistics based on the linear mixed model (1) and the 
variance component model (2) are almost identical. The powers of the tests based on linear regression and Chi-
square regression are also the same. Nevertheless, test statistics based on Chi-square regression (4) are slightly 
larger than those based on linear regression (3) for some replicates when the heteroscedasticity effect is large. 
Compared with the linear mixed model (1) and variance component model (2), linear regression (3) and Chi-
square regression (4) are statistically less powerful. This is because the test statistics based on regressions have 
larger dfs. Since the variance component method has the same power as the linear mixed model and is compu-
tationally much less expensive, I used it as the primary analysis in the analysis of BP data in the UK Biobank.

Genome‑wide vQTL analysis of blood pressures.  I conducted genome-wide vQTL analysis of BP data 
in the UK Biobank, and the results of the variance component model are displayed as Manhattan plots in Figs. 3, 
4 and 5. I detected 20, 6 and 1 vQTLs that are associated with SBP, DBP and PP, respectively, at the genome-wide 

Figure 2.   Statistical power of the four tests with different heteroscedasticity effects.

Figure 3.   Manhattan plot visualizing genome-wide results from the vQTL analysis of SBP. Dots denote the 
SNPs in the genome-wide vQTL analysis, whose P values on a negative log10 scale are plotted against their 
physical positions. The dashed line represents the genome-wide significance level (P = 5 × 10−8).
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significance level (P < 5 × 10−8). The top SNPs that have the lowest P values at the loci are shown in Table 1. The 
results of the main effects of the SNPs were obtained from linear regression, as in standard GWAS. The R2 values 
of the heteroscedasticity effects were computed as the likelihood-ratio based pseudo-R-squared25.

The 27 significant vQTLs included the 23 top SNPs from 22 genomic loci, of which 10 SNPs from 9 loci 
showed significant SNP main effects (P < 5 × 10−8). rs1275984, rs11977526 and rs569550 are known BP-associated 
SNPs that are included in the GWAS catalog26. rs2029827 and rs12368847 are in linkage disequilibrium (LD 
R2 ≥ 0.8) with rs820430 and rs11609905, respectively, which are associated with BPs. rs7607074, rs115525024, 
rs10262140, rs376861852 and rs8032315 are in intermediate LD (0.1 ≤ LD R2 < 0.8) with the BP-associated SNPs 
rs16849211, rs7812039, rs7812039, rs3934939, and rs17514846, respectively, and their LD R2 ranges from 0.19 
to 0.45.

The SNP main effects of the 27 vQTLs explain 0.50% of the BP variances collectively, and their heterosce-
dasticity accounts for an additional 0.28%, which is approximately half the variance attributed to the main 
effects. Because the vQTLs were discovered by the heteroscedasticity test, the relative contribution of the vari-
ance heteroscedasticity would be larger than that of all BP QTLs. I queried the GWAS catalog26 for SNPs with 
genome-wide significance that were discovered among samples of European ancestry and were replicated. There 
were 440, 395 and 305 SNPs reported to be associated with SBP (EFO_0006335), DBP (EFO_0006336) and PP 
(EFO_0005763), respectively, of which 411, 384 and 285 SNPs were present in the analysis. The sums of the SNP 
main effects were 5.13%, 5.61%, and 3.75%, and the heteroscedasticity effects were 0.52%, 0.43%, and 0.16% for 
SBP, DBP and PP, respectively. The contributions of the heteroscedasticity relative to the genetic main effects are 

Figure 4.   Manhattan plot visualizing genome-wide results from the vQTL analysis of DBP. Dots denote the 
SNPs in the genome-wide vQTL analysis, whose P values on a negative log10 scale are plotted against their 
physical positions. The dashed line represents the genome-wide significance level (P = 5 × 10−8).

Figure 5.   Manhattan plot visualizing genome-wide results from the vQTL analysis of PP. Dots denote the SNPs 
in the genome-wide vQTL analysis, whose P values on a negative log10 scale are plotted against their physical 
positions. The dashed line represents the genome-wide significance level (P = 5 × 10−8).
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approximately 0.1 for SBP and DBP and 0.04 for PP. Similarly, the relative contributions of the heteroscedastic-
ity would be underestimated compared with that of all BP SNPs since the GWAS SNPs were largely detected by 
their genetic main effects. PP has the smallest relative contribution from the heteroscedasticity effects, possibly 
because PP is a derived trait and its random variation is larger than that in SBP and DBP.

Out of the 27 significant vQTLs, 13 are novel and are highlighted in Table 1. The P values of their genetic 
main effects ranged from 3.0 × 10−7 to 0.91 in this study and were not previously reported to be associated with 
BPs. The sizes of their SNP main effects, in terms of explained BP variance, are smaller than those of their het-
eroscedasticity effects. The total R2 values of the SNP main effects and heteroscedasticity effects are 0.017% and 
0.11%, respectively. Clearly, it would be difficult to identify this type of locus in standard GWASs that focus on 
testing SNP main effects only.

The 27 vQTLs are enriched for genetic loci that affect the expression (eQTL) or splicing (sQTL) of protein-
coding genes. Querying the GTEx data version 827, 12 of the 23 top SNPs are eQTLs, and 8 top SNPs are both 
eQTLs and sQTLs. All of the eQTLs and sQTLs had target genes in cis. As many GWAS loci are associated with 
complex traits, the vQTLs likely play regulatory roles that mediate the BP associations as well. Interestingly, 8 of 
the 12 eQTLs were annotated as being both eQTLs and sQTLs, while cis-eQTLs have only a 12% overlap with 
cis-sQTLs in GTEx27. This agreed with the finding that sQTLs in GWAS results display stronger associations 
with complex traits than variants that exclusively affect gene expression28,29.

Nonparametric methods are widely available for heteroscedasticity testing and have been used in vQTL 
analysis. They are not based on particular assumptions about trait distributions and are applicable for analyzing 
a wide range of quantitative traits. Of the BPs in this work, SBP and DBP approximately follow normal distribu-
tions. PP is highly skewed with a long and fat right tail; hence, I used logarithmic transformation. After adjusting 
for the covariate effects, residuals of SBP, DBP and the transformed PP have skewness values of 0.55, 0.36, 0.03 
and kurtosis values of 0.61, 0.25, 0.23, respectively, although their normality tests were rejected given the large 
sample size of this study. I further conducted Levene’s (Brown-Forsythe) test30,31 on the 27 vQTLs identified 
by the variance component test. SNP genotypes were called those with the largest probabilities and residuals 

Table 1.   Genome-wide significant vQTLs associated with SBP, DBP, or PP. Novel loci are highlighted in bold. 
Positions are given in GRCh37 coordinates. SNP effects are in mm Hg per copy of the coded allele. *The SNP 
is, or in linkage disequilibrium (LD R2 ≥ 0.8) with, a BP-associated SNP in the GWAS catalog. †The SNP is an 
eQTL SNP in GTEx. ‡The SNP is an sQTL SNP in GTEx. §The SNP is in intermediate LD (0.1 ≤ LD R2 < 0.8) 
with a BP-associated SNP in the GWAS catalog. Chr, chromosome; NCA, noncoded allele; CA, coded allele; 
CAF, coded allele frequency, SE, standard error.

Locus Top SNP Chr Position NCA/CA CAF Trait

Main effect Heteroscedasticity

Effect SE P Value R2 P Value R2

PADI2 rs116515879 1 17,422,797 G/T 0.02 SBP  − 0.2868 0.1483 5.01 × 10−2 9.45 × 10−6 7.32 × 10−9 9.17 × 10−5

CIB4-KCNK3 rs1275984*† 2 26,911,509 A/C 0.62 SBP  − 0.6121 0.0427 1.33 × 10−46 5.19 × 10−4 1.15 × 10−15 1.71 × 10−4

DBP  − 0.3205 0.024 1.03 × 10−40 4.51 × 10−4 1.80 × 10−10 1.10 × 10−4

HNMT rs3100721†‡ 2 138,755,054 T/C 0.35 SBP 0.0566 0.0433 1.91 × 10−1 4.31 × 10−6 1.47 × 10−8 8.82 × 10−5

FIGN-GRB14 rs7607074§† 2 164,898,256 T/A 0.51 SBP  − 0.4084 0.0417 1.10 × 10−22 2.43 × 10−4 2.75 × 10−8 8.50 × 10−5

SLC4A7-EOMES rs2029827*†‡ 3 27,551,275 A/G 0.4 SBP  − 0.4596 0.0424 2.40 × 10−27 2.96 × 10−4 1.06 × 10−10 1.13 × 10−4

SPON2 rs111822223†‡ 4 1,179,966 A/G 0.07 SBP 0.217 0.0808 7.12 × 10−3 1.82 × 10−5 4.90 × 10−9 9.37 × 10−5

MINAR2-CHSY3 rs11955088† 5 129,206,827 A/G 0.57 SBP 0.0476 0.0419 2.56 × 10−1 3.26 × 10−6 2.36 × 10−8 8.58 × 10−5

GRIK2 rs144326314 6 101,863,870 G/GTCAA​ 0.11 SBP  − 0.1517 0.0701 2.92 × 10−2 1.18 × 10−5 1.36 × 10−8 8.86 × 10−5

HOXA13-EVX1 rs115525024§ 7 27,236,559 T/G 0.93 DBP 0.5121 0.0447 2.46 × 10−30 3.31 × 10−4 2.14 × 10−11 1.21 × 10−4

rs10262140§†‡ 7 27,256,464 T/C 0.94 SBP 0.977 0.0862 9.34 × 10−30 3.24 × 10−4 1.45 × 10−10 1.11 × 10−4

CRHR2 rs41413147† 7 30,723,336 C/T 0.01 SBP  − 0.6249 0.19 9.93 × 10−4 2.73 × 10−5 3.75 × 10−8 8.35 × 10−5

IGFBP3-TNS3 rs11977526*†‡ 7 46,008,110 G/A 0.4 SBP  − 0.3802 0.0423 2.54 × 10−19 2.04 × 10−4 4.64 × 10−8 8.24 × 10−5

PP  − 0.0085 0.0005 6.33 × 10−66 7.42 × 10−4 4.86 × 10−12 1.29 × 10−4

TPK1-CNTNAP2 rs574733666 7 145,677,500 AT/A 0.09 SBP 0.1299 0.0742 7.42 × 10−2 7.74 × 10−6 4.37 × 10−8 8.27 × 10−5

LSP1 rs569550*†‡ 11 1,887,068 T/G 0.39 SBP 0.6291 0.0427 3.49 × 10−49 5.48 × 10−4 4.29 × 10−17 1.87 × 10−4

DBP 0.276 0.024 1.16 × 10−30 3.34 × 10−4 1.83 × 10−12 1.33 × 10−4

PPP6R3 rs547525853 11 68,243,714 C/T 0.01 SBP 0.3915 0.2036 5.14 × 10−2 9.33 × 10−6 2.17 × 10−8 8.62 × 10−5

DUSP16 rs12368847*†‡ 12 12,682,123 G/A 0.27 SBP  − 0.2912 0.0469 5.25 × 10−10 9.74 × 10−5 1.16 × 10−9 1.01 × 10−4

DLEU1-DLEU7 rs77827164 13 51,174,271 G/A 0.02 DBP  − 0.0409 0.0869 6.38 × 10−1 5.60 × 10−7 4.73 × 10−8 8.23 × 10−5

LINC00564-SLITRK1 rs141943794 13 83,713,849 A/T 0.02 SBP 0.0189 0.1596 9.06 × 10−1 3.56 × 10−8 4.69 × 10−8 8.24 × 10−5

LINC00552-TMEM255B rs376861852§ 13 114,454,081 G/T 0.36 SBP 0.0799 0.0432 6.03 × 10−2 8.64 × 10−6 7.79 × 10−9 9.14 × 10−5

DBP 0.1385 0.0243 1.13 × 10−8 8.23 × 10−5 6.63 × 10−9 9.22 × 10−5

TYRO3-MGA rs182202119 15 41,918,628 A/T 0.01 SBP 0.3606 0.1964 6.22 × 10−2 8.51 × 10−6 3.29 × 10−8 8.41 × 10−5

FURIN rs8032315§†‡ 15 91,418,297 T/A 0.32 SBP 0.7136 0.0444 4.58 × 10−58 6.51 × 10−4 4.35 × 10−8 8.27 × 10−5

SPIRE2 rs34169212 16 89,912,736 C/CT 0.55 DBP 0.1212 0.0237 3.00 × 10−7 6.63 × 10−5 5.31 × 10−9 9.33 × 10−5

WIZ rs113267381 19 15,550,532 G/A 0.02 SBP  − 0.1549 0.175 3.76 × 10−1 1.98 × 10−6 2.18 × 10−9 9.78 × 10−5
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after adjusting for covariate effects, and the SNP main effect was used to test the equality of variance in the 
three genotype groups. The P values of Levene’s tests and the variance component test are compared in Fig. 6. 
It can be seen that Levene’s tests provide varying levels of support for the 27 vQTLs. Unsurprisingly, the results 
of the variance component model were more significant than those of Levene’s test, except for one vQTL. This 
agrees with the general case that parametric methods are more powerful when their underlying assumptions 
are approximately satisfied.

Discussion
I carried out genome-wide vQTL analysis by testing the allelic substitution effects on trait variance and identified 
27 vQTLs associated with BPs. Such heteroscedasticity effects explained additional BP variance that was missed 
by GWASs. The heteroscedasticity effects of the 13 novel vQTLs were larger than their genetic main effects and 
were not detected by existing GWASs. In addition, 9 novel vQTLs demonstrated almost no genetic main effects, 
and their P values for testing SNP main effects were larger than 0.05 in this biobank-scale analysis. Complemen-
tary to GWAS, vQTL analysis has the potential to discover more variants associated with other complex traits.

On the other hand, if the heteroscedasticity effects harbor some gene–environment or gene–gene interactions, 
the overall interaction effects appear to be small compared with the additive main effects of GWAS SNPs. The 
heteroscedasticity effects of the 411 SBP-associated SNPs that were discovered by GWASs added up to 0.52%, 
compared with the 5.13% attributable to the SNP main effects. For the 20 vQTLs that were associated with SBP 
in the analysis, the total heteroscedasticity effects and genetic main effects were 0.20% and 0.30%, respectively. 
This is consistent with that additive main effects are the major sources of genetic variance32,33, and detecting 
gene–environment interactions usually requires much larger sample sizes34. Considering the large sample size 
used in this study, the number and effect sizes of the vQTLs are small. Hence, the gene–environment and 
gene–gene interactions are unlikely to explain a major part of the “missing heritability”35 of BPs.

While I provide statistical evidence supporting the vQTLs of BP traits, the results should be considered pre-
liminary. In particular, I lack independent replication. Because of the so-called “winner’s curse”36, the reported 
effect sizes of the vQTLs in the discovery samples tend to be overestimated. Replication in external datasets would 
require much larger sample sizes, which implies that meta-analysis is necessary. To the best of my knowledge, 
methods and software that facilitate meta-analysis of results from variance component analysis are presently 
lacking. Alternatively, regression analysis of the vQTLs can be performed in the replication samples. Estimated τ2 
and τ3 , together with their variance and covariance, can be synthesized by the generalized least squares method37. 
In this way, the meta-analysis of vQTL is methodologically equivalent to the meta-analysis that jointly tests SNP 
main effects and interaction effects38,39.

My discovery of the vQTLs is limited by the diversity of population. Samples in the vQTL analysis were 
restricted to individuals of European ancestry. Since the causal alleles that by chance have reached higher frequen-
cies are more likely to be identified40, analyzing samples of a single ancestry not only limits the transferability 
of results across populations, but results in ascertainment bias and missing the vQTLs that differ among diverse 
populations. My study is also limited by the geographical and environmental diversity. Complex traits are known 
to have a strong geographical component involving genetic predisposition and environmental exposure41. Effect 
sizes of the gene-environment interactions may be smaller in the study samples than in geographically and envi-
ronmentally more diversified samples. Hence, many potential vQTLs could be missed in this study.

In this work, I focused on genome-wide vQTL analysis of BP data in the UK Biobank. The reported vQTLs 
may include some interaction effects that were not previously identified. As suggested in the literature2,5,6,8, 

Figure 6.   P values of the 27 vQTLs by Levene’s test. The dashed line represents the genome-wide significance 
level (P = 5 × 10−8).
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vQTL analysis can be used as a screening tool for prioritizing variants that may harbor interaction effects. Fac-
tors modulating the genetic effects can be hypothesized and tested thereafter, which is beyond the scope of this 
paper. Any interactions that can be detected and confirmed will positively contribute to the understanding of 
complex traits or diseases.

Data availability
This research has been conducted using the UK Biobank resource under application number 44080. The genetic 
and phenotype datasets are not publicly available but can be accessed via the UK Biobank data access process. 
More details are available at http://​www.​ukbio​bank.​ac.​uk/​regis​ter-​apply/.
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