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In a recent article in RPTH, Gangnus and Burckhardt present the 
preanalytic variables that need be considered for the reliable mea-
surement of bradykinin (BK).1 This topic has been the holy grail of 
the kinin field. In 1949, Roche E Silva et al. published a manuscript 
describing a snake venom and trypsin releasable agent that slowed 
gut contractions of smooth muscle that they named bradykinin (BK) 
due to its property to slow activity.2 It was derived from a globulin 
precursor in blood and serum that they called bradykininogen. This 
peptide-like entity degrades quickly and when infused into animals 
produces arterial hypotension.2 BK is a nine amino acid peptide 
(RPPGFSPFR) that is derived from plasma high and low molecu-
lar weight kininogens (HK and LK) respectively (Figure  1A). Once 
formed it binds to one of two G-protein coupled receptors, the bra-
dykinin B2 receptor (B2R) that is constitutively present or the brady-
kinin B1 receptor (B1R) that arises in inflammatory states. Removal 
of the 9th amino acid of BK, which results in Des-Arg-9 BK or BK-
(1–8), is the optimal ligand for the B1R. BK and derivatives stimu-
late endothelial cell NO formation (endothelial cell relaxing factor) 
leading to cyclic guanosine monophosphate production to produce 
smooth muscle relaxation and vasodilation.3-5 In most vascular beds, 
BK induces vasodilation; in coronary and renal arterial circulation, 
BK causes vasoconstriction. BK is also the most potent stimulus for 
tissue plasminogen activator release from endothelial cells and is es-
sential for endothelial cell barrier function.6,7

How is BK released from its plasma precursors HK and LK? BK 
is liberated by plasma kallikrein (PKa) and factor XIIa when HK or 
LK are cleaved between a Lys-Arg at the N-terminus and Arg-Ser 
at the C-terminus. The Km of plasma kallikrein and factor XIIa to lib-
erate BK are similar, but PKa is considered the dominant producer 
in vivo. Bradykinin in plasma is degraded in seconds; therefore, to 

have biologic influence, it must be released in sequestered loca-
tions. HK saturates all vessels to serve as a receptor of prekallikrein. 
Prekallikrein bound to HK on vessels is activated to PKa by 
membrane-expressed proly carboxypeptidase (PRCP). Vessel wall 
bound PKa then hydrolyzes its receptor, HK, to liberate BK.8,9 Also, 
the constitutive plasma concentration of HK alone blocks factor 
XII from binding to vessel wall. Ambient BK formed on the vessel 
wall at a minimum is modulated by the local concentration of bound 
prekallikrein, PRCP, and C1 inhibitor, the major serpin inhibitor of 
PKa and factor XIIa. In addition to PKa, there is a large family of 
tissue kallikreins that are defined by their ability to liberate Lys-BK 
(Kallidin) from LK and HK. In Figure 1B, the listed serine proteases 
liberate BK from kininogens in a catalytic manner. Most are trypsin-
based serine proteases of the blood coagulation and related sys-
tems. The human cysteine proteases, calpains and cathepsins, cleave 
kininogen in stoichiometric concentrations since kininogens are the 
major plasma inhibitor of cysteine proteases. Of note, infectious 
parasites produce cysteine proteases like cruzipain and falcipain 
and bacterial proteases staphopain, streptopain, and gingipain that 
cleave HK liberating BK in disease states.

In plasma, forty percent of formed BK binds to its receptors ini-
tiating metabolism.10 The remaining peptide is metabolized by am-
bient plasma and membrane-associated serine or metalloproteases 
called kininases. Figure 1C lists 13 kininases that cleave BK at almost 
every peptide bond as shown in Figure 1A. Angiotensin converting 
enzyme (ACE, kininase II) is the major plasma and endothelial cell 
bradykininase.11 It is important to realize that almost no breakdown 
product of BK is functionally inactive. We recognized the BK-(1–5) 
(RPPGF) is a direct retro binding inhibitor to the active site of α-
thrombin.12 Souza-Silva et al. recently have recognized that BK-(1–3), 
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BK-(1–5), and BK-(1–7) induce NO formation independent of the B2R 
and B1R.13 The functions of all BK peptidases is not known. It is rec-
ognized that inhibition of angiotensin converting enzyme (kininase 
II), neutral endopeptidase (NEP), and dipeptidyl peptidase IV is as-
sociated with secondary angioedema. This ill effect arises as a con-
sequence of their important roles in management of hypertension, 
heart failure, and diabetes. Aminopeptidase N (CD13) and neutral 
endopeptidase (CD10, CALLA) are markers of acute myelogenous 
and lymphocyte leukemia, respectively. PRCP not only degrades BK-
(1–8) into BK-(1–7), but as mentioned above, is a plasma prekallikrein 
activator.9 Carboxypeptidase B, also called carboxypeptidase U, and 
in the hemostasis/fibrinolysis field as thrombin-activable fibrinolysis 
inhibitor (TAFI), cleaves the C-terminal arginine residue from brady-
kinin. Thus, the influence of BK on vascular biology is much more 
sophisticated than just this single peptide. At any instant, its effect 
is based on its concentration, rate of formation and degradation of it 
and all its biologic breakdown products.

Measurement of bradykinin in plasma and other biologic fluids 
is difficult. The challenges include collection and transport of the 
sample without contact activation and inhibition of BK forming 
and degrading enzymes in vitro. The combined concentration of 
human HK and LK is 1.5 to 2 μM allowing for enormous poten-
tial for BK formation in vivo and ex vivo. The actual peptide of 
bradykinin was not synthesized and characterized until about 
1960.14  With the development of immunologic assays, precise 
measurement of BK was an early goal. In O’Donnell et al. BK levels 
were measured by radioimmunoassay.15 Samples were collected 
using polypropylene tubing into chilled tubes containing EDTA 
and hexadimethrine bromide to inhibit factor XII and contact acti-
vation and metalloproteases. After processing the plasma at 4°C, 
the normal and septic patient BK levels were in ng/ml quantities. 
However, the 4°C processing inactivates C1 inhibitor to promote 
contact activation resulting in increased BK levels.16 Scicli et al. 
by carefully dripping 6 ml of human blood into 100% ethanol into 

F I G U R E  1 Bradykinin formation and degradation. Panel A. Bradykinin (in red lettering) is a 9 amino acid peptide in kininogens. This 
panel shows where plasma kallikrein (PKa) cleaves kininogen (HK) to liberate bradykinin (BK). The peptidases (kininases) that degrade BK 
are shown as abbreviations below the red sequence of BK. The peptide bond that each of these kininases cleave are indicated by the thick 
small arrows. The full name of the abbreviated kininases is shown in Panel C. The BK breakdown products from the various kininases are 
delineated in red above the sequence of bradykinin. Panel B lists the many human serine and cysteine plasma and tissue proteases that 
cleave kininogens to liberation BK. Panel C presents the full name and alias of 13 plasma and membrane kininases. The BK degradation 
peptides produced by these kininases are shown in the table

(A)

(B) (C)
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siliconized hardware followed by several extractions, separations, 
and assaying the same day were able to measure 25.2 ± 2.6 pg/
ml BK in 22 normal subjects by radioimmunoassay (RIA).17 We ob-
served that collection of samples into an ACE inhibitor from cul-
tured cells' supernatant is essential to measure maximal formed 
BK levels from PKa cleavage of HK.8 Iwaki and Castellino also 
observed that the addition of corn trypsin inhibitor that prevents 
contact activation during the preparatory procedures and apro-
tinin that inhibits plasmin and PKa to EDTA was essential to col-
lect and measure ng/ml plasma BK levels by RIA and EIA.18 More 
recently, Marceau et al. showed that the addition of enalaprilat 
to previously frozen plasma samples in sodium citrate or EDTA is 
sufficient to obtain low ng/ml BK levels in normals using BK EIA 
platforms.19  More recently developments in mass spectrometric 
detection have enabled the simultaneous quantification of multi-
ple kinins by overcoming the immunoassay cross-reactivity.20

Nevertheless, the heterogeneity of sample collection, stabiliza-
tion, transport, processing, and assay, makes its measurement less 
reproducible and, perhaps, reliable even at 70  years since its dis-
covery. Into this conundrum of variable sample collection and assay 
performance, Drs. Gangnus and Burckhardt present a critical meth-
odological study of the preanalytical variables for the reliable deter-
mination of BK and related BK kinin peptides.1 These investigators 
combine their knowledge of clinical laboratory testing metrics and 
bradykinin biology. They determined suitable protease inhibitors, 
blood sampling conditions, and specimen handling for optimal BK 
and 6 kinin peptides [Lys-BK, BK-(1–8), Lys-BK-(1–8), BK-(1–7), BK-
(2–9), and BK-(1–5)] measurement using an established LC-MS/MS 
platform.20 These kinin peptides encompass the products of most 
plasma and membrane peptidases such as aminopeptidase B, ami-
nopeptidases N and P, ACE, prolyl endopeptidase, prolyl carboxy-
peptidase, neutral endopeptidase, and carboxypeptidases M, N, and 
B (Figure 1C).

The determination of suitable protease inhibitors was a crucial 
first step in the success of this investigation. Starting with 17 can-
didate inhibitors, the investigators empirically reduced the inhibitor 
pool to a 7-member cocktail, each with a specific target. Preliminary 
studies showed that EDTA plasma alone was associated with high 
pg/ml to low ng/ml BK levels in normal controls. Additionally, the 
values increase over 30  min after sample collection and further 
increase at 4.5 h even in the presence of leupeptin or chicken-egg 
trypsin inhibitor. The final collection cocktail includes EDTA and so-
dium citrate, inhibitors of carboxypeptidase N, proly carboxypepti-
dase, ACE, and aminopeptidase P. It also includes omapatrilat that 
inhibits ACE and neutral endopeptidase. Tube contact activation is 
prevented by hexadimethrine bromide (Polybrene) that blocks factor 
XIIa and nafamostat that inhibits both factor XIIa and PKa. Added 
formic acid contributes to carboxypeptidase N, ACE, neutral endo-
peptidase, aminopeptidase P, and prolyl endopeptidase inhibition. 
Last, chloroquine was needed as an additional inhibitor of prolyl 
carboxypeptidase.

Subsequent studies examined best practice blood collection 
devices.1 A 21 G butterfly needle with minimal tubing was best for 

blood aspiration directly into collection tubes containing protease 
inhibitor was optimal. Further minimal time in the collection device 
and centrifugation within 30 minutes are important for optimal re-
sults since time delays of 60 minutes or more lead to more degrada-
tion products.

These efforts reveal that BK and its related peptides have base-
line values in the single digit pg/ml to undetectable. Using such 
assays on clinical samples should obtain a stable snapshot of BK 
and 6 kinin peptides in normal and disease states with contact and 
kallikrein/kinin systems' activation. In sum, the work of Gangnus and 
Burckhardt has great promise to measure reliable BK results in an-
gioedema and sepsis and may initiate a new era where BK measure-
ment becomes a marker of health and disease.
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