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Abstract

Introduction

Plasmodium falciparum induced antibodies are key components of anti-malarial immunity in
malaria endemic areas, but their antigen targets can be polymorphic. Induction of a high pro-
portion of strain-specific antibodies will limit the recognition of a broad diversity of parasite
strains by these responses. There are indications that circulating parasite diversity varies
with malaria transmission intensity, and this may affect the specificity of elicited anti-malarial
antibodies. This study therefore assessed the effect of varying malaria transmission pat-
terns on the specificity of elicited antibody responses and to identify possible antibody corre-
lates of naturally acquired immunity to malaria in children in an area of Ghana with seasonal
malaria transmission.

Methods

This retrospective study utilized plasma samples collected longitudinally at six time points
from children aged one to five years. Multiplex assays were used to measure antibody levels
against four P. falciparum AMA 1 variants (from the 3D7, FVO, HB3 and CAMP parasite
strains) and the 3D7 variant of the EBA 175 region Il antigen and the levels compared
between symptomatic and asymptomatic children. The relative proportions of cross-reactive
and strain-specific antibodies against the four AMA 1 variants per sampling time point were
assessed by Bland-Altman plots. The levels of antibodies against allelic AMA1 variants,
measured by singleplex and multiplex luminex assays, were also compared.
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Results

The data show that increased transmission intensity is associated with higher levels of
cross-reactive antibody responses, most likely a result of a greater proportion of multiple
parasite clone infections during the high transmission period. Anti-AMA1 antibodies were
however associated with a history of infection rather than protection in this age group.

Conclusion

The data contribute to understanding the underlying mechanism of the acquisition of strain-
transcending antibody immunity following repeated exposure to diverse parasite strains.

Introduction

The World Health Organization [1] reports that there has been a steady decline in the global
incidence and deaths due to malaria over the last 15 years. The disease however continues to
be of considerable public health importance due to the detrimental impact and burden it
places on many countries, especially those in sub-Saharan Africa. Children greatly suffer from
malaria since naturally acquired immunity to the clinical forms of the disease develops slowly
and is usually not sterile [2]. Immune responses to a number of parasite antigens have been
shown to be targets of immune responses but the specific antigens that mediate protection
from infection and clinical disease have not as yet been fully described.

Antibodies have been demonstrated to play an important role in the partial protection
against clinical malaria [3-5]. High levels of antibodies against blood stage parasite antigens
such as apical membrane antigen 1 (AMA-1), erythrocyte binding antigen (EBA-175), the
merozoite surface proteins (MSPs), reticulocyte-binding protein homologue (Rh5), Gluta-
mate-rich protein (GLURP) and circumsporozoite protein (CSP) have either singly or collec-
tively been associated with a reduced risk of clinical malaria in various malaria endemic
populations [6-9]. Indeed, data from a number of high throughput antibody analysis studies
indicate that antibody-mediated protective immunity is more likely to be associated with
responses to a wide diversity of antigen targets rather than single antigen targets [7,8,10,11].
Despite the importance of having high levels of these antibodies in order to attain a semi-
immune status, the quality of these antibodies is also very important as that defines the func-
tionality of elicited antibodies. Most of the parasite antigens that have currently been identified
as targets of immune responses do exhibit some level of polymorphism, and this affects the
functional quality of previously elicited antibody responses [2,12,13]. Antibody-mediated
immunity against P. falciparum has been shown in both experimental animal models and
human challenge studies to be parasite strain-specific since functional responses elicited
against a particular parasite strain do not yield comparable levels of inhibition against heterol-
ogous strains [14-17]. This suggests that the observed antibody-mediated immunity at least
has a component that is strain-specific [18,19]. On this basis, the attainment of clinical immu-
nity against malaria will depend on the acquisition of various antibody specificities following
exposure to multiple parasite variants over time [20,21].

Studies in naturally infected humans however show that repeated exposure to malaria infec-
tion could potentially lead to a broadening of antibody specificity [14,22-24]. It has also been
demonstrated that repeated exposure to different parasite strains subsequently leads to the pre-
dominant induction or boosting of antibodies that recognize epitopes that are shared by the
various parasite strains [2,25]. Thus clinical immunity against malaria may also be mediated
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by cross-reactive or strain-transcending antibody responses, and this has clearly been demon-
strated in vitro using antibodies from animals that were immunized with combinations of
known polymorphic antigens [26-28].

An assessment of the relevance of strain-specific and cross-reactive responses to clinical
malaria immunity in naturally exposed individuals is however complex since the parasite
exposure history in such individuals is usually unknown and the cross-reactive or strain-spe-
cific description is dependent on this history. We have however attempted an analysis of the
relative proportions of cross-reactive and strain-specific antibodies to a set of polymorphic
antigens in cross-sectional plasma samples from naturally exposed individuals [23]. In the cur-
rent study, we apply this approach to assess the acquisition of antigen-specific cross-reactive
and strain-specific antibodies against malaria parasites using samples collected in a longitudi-
nal study involving children between the ages of one and five years.

Methods
Ethical statement

This study made use of archived human plasma samples which were obtained from a longitu-
dinal cohort study conducted between 2004 and 2005 in the Kassena-Nankana District of

the Upper East region of Ghana. The original study was approved by the Ghana Ministry of
Health and ethical clearance was sought from the Ethics Committees of the Navrongo Health
Research Centre (FWA00000250) and Noguchi Memorial Institute for Medical Research,
Legon (FWAA00001824). Informed consent was obtained from parents of the participating
children for the original study, and the current analyses of archived samples were done under
renewed approvals from the two ethical bodies mentioned above.

Study site and sample information

The study site (Kassena-Nankana District) is a savanna region with subsistence farming being
the main occupation of the inhabitants. The region has had two main seasons; at the time the
study was conducted, there was a dry season that spanned between November and April the
following year, and a rainy season which was between May and October [29,30]. Malaria trans-
mission is seasonal and overlaps with the rain patterns. The malaria attack rate in the district
during the study period was approximately 3.5 attacks per child per year [31]. Exclusion crite-
ria for the study included, amongst others, children presenting with common chronic diseases,
those with other acute febrile illness and anaemic children with haemoglobin < 6 g/dl of blood
at the time of recruitment. Participants who were diagnosed as having uncomplicated malaria
during the study were treated with either chloroquine or sulphadoxine-pyrimethamine (Fansi-
dar®) as the first-line drugs according to Ghana Ministry of Health policy at the time. Addi-
tional detailed description of the study site and population have been published previously
[30].

For the original study that collected plasma samples, a cohort of 325 children aged 1 to 5
years were enrolled at the end of the low malaria transmission season (May) in 2004 and were
followed up over a one year period (till May 2005) that spans the high and low transmission
seasons. At the beginning of the study, and at two-month intervals, 0.5-1.0 ml of finger-prick
blood samples were collected from the participants whose parents had consented to enroll
their children in the study. A total of seven samples per child were taken over the one year
period and these were processed and stored for laboratory analysis. At each sampling time
point, body temperature measurements were taken and parasite infection status was deter-
mined by microscopic examination of blood smears and by malaria RDTs, while haemoglobin
levels were measured by Hemocue. Demographic information and data relating to the subjects’

PLOS ONE | https://doi.org/10.1371/journal.pone.0185303 September 25, 2017 3/19


https://doi.org/10.1371/journal.pone.0185303

@° PLOS | ONE

Malaria-specific antibody quality varies with transmission intensity

malaria exposure during the transmission season was captured by a study questionnaire. Chil-
dren who were febrile (axillary temperature > 37.5°C) and tested positive for malaria parasites
were referred to the nearest designated health facility for appropriate treatment.

Study subject categorization

For the current study, archived plasma samples from six of the seven contact time points
(excluding the baseline samples) were retrieved from storage for analysis. Samples were
grouped into two categories based on the clinical and parasitological data from the original
study. The first group, described as the symptomatic (Symp) group, included children who
had one or more clinical malaria episodes. Clinical malaria was defined as having blood film
parasitaemia, a fever (temperature > 37.5°C) and at least one other common malaria symptom
at any time during the one year study period and no other obvious cause for the fever. The sec-
ond category was the asymptomatic (Asymp) group, which included children who had blood
film parasitaemia but with no fever and no other clinical symptom of malaria. In total, samples
from 126 children (six samples per child, making a total of 756 plasma samples) were selected
for analysis. Sixty-four (64) of the 126 children were in the symptomatic study group and 62
were in the asymptomatic group.

Antigens

The full length ectodomain (amino acids 25-545) of the FVO (Genbank accession number
AJ2642667) variant of AMA1 was expressed as a recombinant protein in Pichia pastoris under
good manufacturing practice (GMP) conditions and purified by a methodology that has been
previously described [32]. The three other variant AMA1 antigens, HB3 (GenBank: U33277),
3D7 (GenBank: U65407) and CAMP (GenBank: M58545) were produced under similar condi-
tions and purified using a slight modification of the methodology described for three in silico
designed AMA1 Diversity Covering (DiCo) proteins [33]. The hydrophobic interaction purifi-
cation step utilized butylsepharose FF on a BioRad purifier, rather than Butyl 650M Toyopear]
in the reference above. All antigens were devoid of N-glycosylation sites [16] and were recog-
nized by the reduction-sensitive rat monoclonal antibody 4G2, suggesting a correct folding of
proteins. Region II of the EBA-175 antigen from the 3D7 parasite variant (EBA-175 RII, Gen-
Bank accession number AAB51672) was also expressed in P. pastoris as a non-glycosylated
antigen under GMP conditions.

Coupling of antigens to microspheres

The four AMAL1 variant antigens and the EBA-175 RII antigen were coupled to microspheres
or beads (Luminex Inc., Austin., TX, USA) with unique spectral addresses (101, 102, 103, 104
and 105) for the measurement of antigen-specific antibody levels by the Luminex xMAP tech-
nology. Bovine serum albumin (BSA) was coupled to a sixth bead set (106) for the assessment
of non-specific binding in all assays.

The coupling reaction was performed as previously described [30]. Briefly, each of the stock
bead suspensions was repeatedly vortexed and sonicated, and 200 pl aliquots were dispensed
into labelled microcentrifuge tubes (Eppendorf) and centrifuged at 310 x g for 5 minutes. Beads
were afterwards washed twice with 80 pl of 0.1 M sodium dihydrogen phosphate buffer (pH
6.2) and pelleted by centrifugation at 11,300 x g for 2 minutes. Washed beads were re-suspended
in 80 pl of activation buffer and dispersed by repeated gentle sonication and vortexing. Carboxyl
functional groups on the surface of beads were then activated by the addition of 10 pl of a 50
mg/ml solution of 1-ethyl 3-(3-dimethylamino-propyl) carbodiimide hydrochloride (EDC), fol-
lowed immediately by 10 pl of a 50 mg/ml solution of sulfo-N-hyroxysulfosuccinimide (Sulfo
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NHS). The tube contents were gently mixed and incubated at room temperature in the dark
for 20 minutes. Activated beads were washed twice with 250 ul of 0.05M of 2-(N-morpholine)
ethanesulfonic acid (MES, pH 5.0) and subsequently re-suspended in 100 pl of the same buffer.
Antigens that had been diluted to the appropriate predetermined concentrations (10 pg/ml for
the AMA1 variants, 25 pug/ml for EBA-175 RII and 100 pg/ml for BSA) in 400 pl of the MES
buffer were then added to the activated beads, mixed by repeated vortexing and sonication and
incubated at room temperature in the dark for 2 hours with rotational mixing. After this period,
coupled beads were pelleted and washed, once with 1 ml of PBS pH 7.4, containing 0.05%
Tween 20, and twice with 1 ml PBS, 1% BSA, pH 7.4, containing 0.05% sodium azide. Coupled
beads were finally re-suspended in 1 ml PBS, 1% BSA, pH 7.4, containing 0.05% sodium azide.
The bead concentration for coupled antigens was determined by light microscopy using a hae-
mocytometer and the beads stored at 4°C in the dark until use.

Protocol for antigen coupling and for performance of the multiplex assay has been depos-
ited in protocols.io (https://www.protocols.io/private/587a8b11e41ct045b36ffa515bb5a632).

Multiplexed measurement of antigen-specific antibody levels

Plasma antigen-specific antibodies were measured using multiplex assays on the Luminex 200
x-MAP platform (Luminex Inc., Austin, TX USA). Plasma samples from the 126 children as
well as pools of positive and negative control plasma samples were assayed for antibodies spe-
cific to the four AMAL allelic variants and the EBA 175RII antigen. Plasma samples were
diluted 1:400 for test and negative control plasma samples, and 1:10,000 for positive control
pool. Antigen-specific coupled beads were pooled, mixed and 50 pl aliquots added to wells in a
washed Multiscreen filter base plate (Millipore, Billerica, MA). Diluted plasma samples were
subsequently added to duplicate wells and the plate vortexed and incubated at 4°C in the dark
for one hour. After this period, the plate was washed three times and incubated with 25 ul/well
of 5 pg/ml of biotin-labelled goat anti-human detection antibody in the dark at 4°C for 1 hour.
This step was followed by incubation with 1:50 dilution of streptavidin-conjugated phycoery-
thrin (25 pl/well) for 30 minutes at 4°C in the dark. The plate was subsequently developed by
addition of 25 ul/well of 0.5% formaldehyde in PBS and read on a programmed Luminex 200
system that runs on the xPonent 3.1 software (Luminex Corporation). Results were expressed
as mean fluorescent intensity (MFI) and this is directly proportional to the antigen-specific
antibody concentration. Bovine serum antigen (BSA) was included in all assays to account for
nonspecific antibody binding by subtracting the average BSA antibody level for each plate
from the antibody level of test wells before statistical analysis was performed.

Comparison of multiplex and singleplex assays for measuring antibodies
to polymorphic antigens

The feasibility of measuring the levels of antibodies against allelic variants of the same antigen
(AMAL) using a multiplex assay was assessed by comparing AMA1-specific antibodies levels
(expressed as MFI) from such multiplex assays with levels against the same alleles using single-
plex assays. A subset of 42 plasma samples from one of the sampling time points was selected
for this comparative analysis. Fifty microlitres (50 pl) of the antigen-coupled bead mixture
were distributed into microtitre wells and 50 pl of 1:400 diluted plasma samples added to
duplicate wells in the plate. For the multiplexed assay, equal numbers of the four AMA 1 vari-
ant coupled beads were mixed together and used to determine antigen-specific antibody levels
in the selected plasma samples. Each AMA1 variant coupled bead was concurrently run as a
singleplex using the same diluted plasma samples for comparison, and beads coupled with
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BSA were included in both multiplex and singleplex assays as a negative control. The median
MFI of data from singleplex and multiplex assays were subsequently compared.

Statistical analysis

Non-parametric analyses were performed since the antibody data were not normally distrib-
uted. Differences in median antibody MFI between singleplex and multiplex assays for each
AMAL1 allelic variant were assessed by Mann-Whitney U tests. For each antigen, the multiplex
and singleplex MFI data were also subjected to Spearman rank correlation analysis.

At each of the six sampling time points, the median antigen-specific antibody levels were
compared between the two study groups. Antigen-specific antibody levels were also compared
across the six sampling time points by Kruskal-Wallis test followed by the Bonferroni pair-
wise post-hoc test.

For assessment of the proportions of cross-reactive and strain-specific antibodies to the
four allelic variants of AM A1, antibody data was log-transformed to the base 2 and subjected
to Bland-Altman analysis using the R package ggplot2 (R script and data file provided as S1
Appendix and S2 Appendix, respectively). The geometric mean of differences between the
paired antigen-specific antibodies is displayed as a bold horizontal line, known as the line of
equality, and the 95% limits of agreement for the paired data distribution are displayed by dot-
ted horizontal lines. Ideally, if paired AMAT1 allelic variants recognize antibodies in plasma
samples to the same extent, their plotted data points will be on the line of equality. If paired
AMAL1 variants do not recognize antibodies in plasma samples to the same extent, however,
the plotted data points will be further away from the line of equality.

For the assessment of potential antibody correlates of protection against clinical malaria, a
generalized mixed effects regression model for repeated measurements was fitted to antigen-
specific antibody data using the R package Ime4 [34]. Initially, antigen-specific antibody data
were entered into the model as fixed effects with age as an interaction term, while sampling
time point and study subject were entered as random effects. This model was compared to
other models that either dropped the subject age interaction term or one of the random effects,
and the best model, based on the lowest AIC values was selected for further analysis. The best
model had log,-transformed antibody level as the fixed effect and study subject as a random
effect since the interaction term (age) and sampling time point did not significantly contribute
to the models. P-values for the intercept and fixed effect were obtained by likelihood ratio tests
(with Laplace Approximation). All analyses and graphics were done using either the R statisti-
cal software (Version 3.4.0) or the GraphPad Prism software (version 5, San Diego, USA) and
differences were considered to be statistically significant when p values were less than 0.05.

Results
Study participant groups

Plasma samples collected from 126 children at six different time points (total sample size 756)
were analyzed in this study. This number included 64 children who had clinical malaria symp-
toms at least once over the six sampling time points and 62 children who had high asymptomatic
parasitaemia at least once over the six time points. There were 108 clinical malaria episodes over
the entire study period; 25 clinical episodes were recorded in July 2004 and another 25 in Septem-
ber 2004, 18 episodes were recorded in November 2004, 13 episodes in January 2005, 18 episodes
in March 2005 and 9 episodes in May 2005 (Fig 1). Overall, 43 of the 64 symptomatic children
experienced a single clinical episode, eight children had two episodes, seven children had three
episodes while three children had four clinical episodes over the entire study period. Two children
had five episodes and a single child had clinical episodes at all six time points. The proportion of
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Fig 1. Numbers of symptomatic and asymptomatic children at the six sampling time points. At each sampling time point (from July 2004 to May 2005),
the 126 children were grouped into three categories; children with clinical malaria (blood film parasitaemia, fever and at least one other symptom of malaria
and no other obvious cause for the fever, described as Symp), children with blood film parasitaemia but no clinical symptoms (Asymp) and children with no

blood film parasites (Uninfected).

https://doi.org/10.1371/journal.pone.0185303.9001

symptomatic children was generally lower compared to that of asymptomatic children at all time
points, and these two groups differed in study subject composition from one sampling time point
to another. Only a few of the 126 children had no blood film parasites at any sampling time point,
and the proportion of these children showed a trend of increase towards the dry season (Fig 1).
There were no significant differences in parasite density between symptomatic and asymptomatic
children at all time points.

Comparison of multiplex and singleplex assays

An initial assessment of the capacity of multiplex assays to accurately estimate the levels of spe-
cific antibodies to allelic variants of the same antigen was performed by measuring and com-
paring antibody levels in selected samples by singleplex and multiplex assays. Median MFI
levels were not significantly different between singleplex and multiplex assays for any of the
four allelic AMAL1 variants (P > 0.05 in all cases, Mann-Whitney test, Table 1). Spearman cor-
relation analysis of data also showed that MFI data from singleplex and multiplex assays were
significantly correlated for all the antigens (Table 2). Though the correlation between FVO
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Table 1. Comparison of singleplex and multiplex assays for measurement of AMA1 allele-specific antibody levels.

Antigen Number of samples Median level (MFI) P-value (two-tailed)
multiplex singleplex
3D7 42 2254 (14-9366) 2922 (18-8305) 0.60
FVO 41 1211 (18-5818) 1418 (11-4777) 0.59
HB3 42 2263 (24-8097) 1697 (27-5653) 0.07
CAMP 41 2246 (153-7568) 2187 (22-5611) 0.36

Values reported as median fluorescence intensity (MFI) level (min—max)

https://doi.org/10.1371/journal.pone.0185303.t001

AMAL levels measured by singleplex and multiplex assays was comparatively weaker

(r = 0.4634), those for the other three allelic variants were much stronger, with correlation
coefficients being greater than 0.8 (Table 2). Thus measurement of plasma antibody levels
against the four allelic AMA1 antigens using multiplex assays generally yielded similar results
as measurements of the same allele-specific antibody levels in singleplex assays.

Comparison of malaria antigen-specific antibody levels amongst study
groups and across sampling time points

Antibodies in plasma samples from the six sampling time points were measured against
EBA 175RII and the four allelic variants of AMA1 (from the 3D7, FVO, HB3 and CAMP
parasite strains). For all antigens, there were no significant differences in median antigen-
specific antibody levels (MFI) between the two study groups at any of the six time points (S1
Table). Comparison of antigen-specific antibody levels across the six sampling time points
however showed that antibody levels against the four AM A1 variants generally showed a
trend of decline from July 2004 and were lowest in November 2004/January 2005, and this
trend was more pronounced for anti-FVO and anti-CAMP AMA1 antibody levels (Fig 2A-
2D, S2 Table). For two of the antigens (FVO and HB3), anti-AMA1 levels subsequently
showed a steady increase from January 2005 through March 2005 to May 2005 when levels
became comparable to those in July 2004 (Fig 2B and 2C, S2 Table). Anti-EBA 175RII anti-
body levels were however generally maintained across the six time points (Fig 2E, S2 Table).
Similar trends were observed when anti-specific antibody levels of either symptomatic chil-
dren alone or asymptomatic children alone were compared across the six time points. Thus
anti-AMA1 antibody levels showed a trend of increase during the rainy season and a trend
of decrease during the dry season, as is expected. Anti-EBA 175RII levels however were gen-
erally more stable over the study period.

Although parasite density was not significantly different between symptomatic and asymp-
tomatic children at any of the six sampling time points (S1 Table), parasite density varied sig-
nificantly across the time points (Fig 2F, S2 Table). Three clusters of parasite levels could be
clearly identified from the data; the highest were seen in July and September 2004, which also
coincide with the peak transmission period. A statistically significant decline from the

Table 2. Correlation between singleplex and multiplex assays for AMA1 allele-specific antibodies.

Antigen Number of sample pairs Spearman r P value (two-tailed)
3D7 AMA1 42 0.9421 < 0.0001
FVO AMA1 41 0.4634 0.0023
HB3 AMA1 42 0.9056 < 0.0001
CAMP AMA1 41 0.8481 < 0.0001

https://doi.org/10.1371/journal.pone.0185303.t1002
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Fig 2. Antigen-specific antibody level and parasite density variations over the study period. Levels of either the antigen specific antibodies (A-E) or
parasite density (F) at the six sampling time points were compared by the Kruskal-Wallis test, followed by the Bonferroni post-hoc test to assess pair-wise
differences. Results (p values) after post-hoc tests are presented in S2 Table.
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September 2004 levels to intermediate levels was then seen in November 2004 and January
2005 (Fig 2F, S2 Table). Parasite density in March and May 2005 were the lowest, and were sta-
tistically significantly different from parasite densities in November 2004 and January 2005.

Assessment of relative proportions of cross-reactive and strain-specific
anti-AMA1 antibodies

Plasma antibody levels against the four variants of AMA1 were log transformed (base 2) and
the levels compared in a pair-wise manner using Bland-Altman plots (Fig 3). For each pair of
AMAL allelic variants, this was to evaluate the extent of agreement between antibodies levels
against one AMAL variant with those against another variant. Generally, narrow 95% limits of
agreement suggest a high level of agreement between paired allele-specific antibody levels, and
this is indicative of a higher proportion of antibodies recognizing epitopes that are shared by
the two AMAL1 allelic variants (cross-reactive antibodies). Conversely, wider 95% limits of
agreement suggest a lower level of agreement and imply the recognition of a significant pro-
portion of unique epitopes by one antigen variant relative to the other (strain-specific
antibodies).
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Fig 3. Pair-wise comparison of AMA1 allele-specific antibody levels. Points in a panel represent a plot of the fold difference between paired antibody
levels (for example, the 3D7-CAMP panel plots the log-transformed anti-3D7 antibody levels minus anti-CAMP antibody levels) in plasma samples against the
geometric mean (antilog) of the same paired allele-specific antibody levels. The bold horizontal line (line of equality) in each panel represents the average of
all the differences between antibody levels against the specified antigen pair. The dotted horizontal lines represent the 95% limits of agreement for the
distribution. Red open circles represent data from children with symptomatic malaria (Symp) and blue open circles are data from children with asymptomatic
infections (Asymp).

https://doi.org/10.1371/journal.pone.0185303.9g003

Overall, the narrowest 95% limits were observed for plots between the HB3/CAMP paired
variants of AMAL1 in November 2004 and March 2005 (Fig 3), suggesting that a high propor-
tion of anti-AMA1 antibodies in samples taken at these time points recognized epitopes that
are shared by these two AMA1 variants. The widest 95% limits were observed for plots
between the FVO/CAMP and HB3/CAMP paired variants in July 2004 as well as for 3D7/
CAMP paired variants in May 2005 (Fig 3), indicating that a higher proportion of anti-AMA1
antibodies during that period of the year mostly recognized antibody epitopes that are unique
to certain AMAL allele variants.
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For pair-wise comparisons that included antibodies against the 3D7 AMA1 variant, the
95% limits observed in July 2004, March 2005 and May 2005 were at least two-fold wider com-
pared to the corresponding 95% limits in September 2004, November 2004 and January 2005.
These collectively suggest the predominance of a more cross-reactive anti-AMA]1 antibody
profile during periods of moderate to high disease transmission (at peak and end of the rainfall
period) and an increase in the levels of strain-specific anti-AMA1 antibodies during the dry
season and before the next major transmission season begin.

The extent of antibody cross-reactivity between any two AMAL1 variants may be directly
related to the degree of sequence similarity between the antigen vaiants. Alignment of the
amino acid sequences of the four AMA1 variants used in this study (Fig 4) shows that the FVO
and HB3 AMAI1 variants differ by a total of 20 amino acids (2 in the prodomain, 11 in domain
I, 2 in domain IT and 5 in domain III) while the FVO and 3D7 variants differ by 26 amino
acids (2 in the prodomain, 18 in domain I, 3 each in domains II and III). The FVO and CAMP
variants differ by 17 amino acids (3 in the prodomain, 9 in domain I, 2 in domain II and 3 in
domain III), HB3 and 3D?7 variants differ by 24 amino acids (15 in domain I, 3 in domain II
and 6 in domain IIT), HB3 and CAMP variants differ by 29 amino acids (3 in the prodomain,
16 in domain I, 4 in domain IT and 6 in domain IIIT) and the 3D7 and CAMP variants differ by
23 amino acids (3 in the prodomain, 13 in domain I, 5 in domain II and 2 in domain III). Thus
the FVO and CAMP AMAL variants have the greatest sequence similarity while the HB3 and
CAMP variants have the least sequence similarity (Fig 4).

On the whole, there was no clear trend of differences between symptomatic and asymptom-
atic children with respect to the relative proportions of cross-reactive and strain-specific anti-
bodies across all six sampling time points.

Malaria-specific antibodies and the risk of clinical malaria

To identify potential antibody correlates of protection against malaria, a mixed effect lin-
ear regression model was fitted for each antigen with clinical malaria status as the binary
outcome variable, antigen-specific antibody data over the six time points entered as fixed
effects and study subject as a random effect. Data from the asymptomatic study group
were used as the reference for comparison with data from individuals who suffered at least
one clinical malaria episode over the six time points. For all antigens (EBA 175RII and the
four AMAL1 variants), there was no association between measured antibody levels and clin-
ical malaria status (Table 3). However, in some cases, the statistically significant difference
between intercepts indicates that there are additional factors not considered in this analy-
sis that may account for malaria outcome in study subjects.

Discussion

The acquisition of malaria-specific antibodies is very important for the establishment of partial
clinical immunity to malaria since antibodies play a crucial role in parasite clearance and a
reversal of clinical disease symptoms [3,5]. Though the exact targets of protective immune
responses have not been completely defined, a number of parasite antigens from multiple life
cycle stages have been identified as potential targets [7,8,35,36]. Although most of these anti-
gens are polymorphic and would therefore elicit a mix of strains-specific and cross-reactive
responses, the importance of antigen polymorphisms on the functionality and levels of elicited
immune responses has not been given much consideration. The gradual development of clini-
cal immunity to malaria with age after repeated exposure to diverse parasites has either been
associated with the induction of a diverse repertoire of strain-specific immune responses or
with the induction of a predominantly cross-reactive (strain-transcending) immune response
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Fig 4. Comparison of protein sequences (aa25-545) of the for AMA1 antigen variants. All antigens were produced in Pichia pastoris and devoid of N-
glycosylation sites. These have been replaced with amino acid residues (indicated in red) that occur in AMA1 sequences from other Plasmodium parasites
(N162K, T288V, S373D, N422D, S423K, N499Q). Each protein consists of a portion of the prodomain (aa25-96), domain | (aa97-315), domain Il (aa316—
425) and domain |1l (aa426-545). All antigens reacted with the reduction-sensitive rat monoclonal antibody 4G2 on western blots (Faber et al 2008), which
was taken as a surrogate measure of conformational integrity.

https://doi.org/10.1371/journal.pone.0185303.g004

profile [2]. Some studies have shown that children generally elicit antibody responses with a
greater proportion of strain specificity as compared to adults, who develop a more cross-reac-
tive immune response by virtue of their long periods of exposure to diverse parasite strains
[22,23,37]. It has also been demonstrated in animal models that immunization with a mixture
of allelic antigen variants focuses the antibody response on epitopes that are common amongst
the variants [26,27]. Taken together, it can be hypothesized that individuals who experience
simultaneous infection with multiple parasite variants will develop a more cross-reactive anti-
body profile compared to those who mostly experience clonal infections. A number of studies
have demonstrated a greater average number of parasite variants per infected person, expressed
as the multiplicity of infection (MOI), under high malaria transmission settings compared to
corresponding findings in areas of low transmission [38-40]. The current study therefore
assessed the functional quality of antibody responses in symptomatic and asymptomatic chil-
dren between the ages of one and five years from an area in the Upper-East Region of Ghana
with clearly marked seasonal malaria transmission. Antibody levels against four allelic variants
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Table 3. Relation between antibody levels and clinical malaria outcome®.

Antigen Fixed effects

3D7 AMA1 Intercept

Logx(Ab level)
FVO AMA1 Intercept

Log, (Ab level)
HB3 AMA1 Intercept

Log, (Ab level)
CAMP AMA1 Intercept

Log, (Ab level)
EBA 175RlI Intercept

Log, (Ab level)

Estimate Standard error P value (two-tailed)
12.198 6.160 0.051
0.046 0.490 0.927
12.488 6.206 0.044
0.021 0.474 0.964
12.887 0.0009 <0.0001
-0.001 0.0009 0.414
12.822 6.702 0.056
-0.005 0.524 0.993
12.649 5.097 0.013
0.009 0.408 0.981

A mixed effects logistic model was fitted to the repeated antibody data measurements to predict the risk of clinical malaria, with study subject treated as a

random effect variable.

#The model assessed clinical malaria risk with the asymptomatic infection group as reference. Age as an interaction term did not significantly impact the
model, most likely due to the narrow age range, and it was dropped from the model.

https://doi.org/10.1371/journal.pone.0185303.t003

of the blood stage antigen AMAL1 as well as those against a single variant of EBA 175RII were
measured by multiplex assays and compared amongst symptomatic and asymptomatic children
who were sampled every two months over a period of one year. The usefulness and reliability of
multiplex assays for determining the levels of various analytes in complex fluids such as plasma,
serum and culture supernatants has been amply demonstrated [41-45]. To assess the feasibility
of measuring the levels of antibodies to allelic variants of the same antigen in a multiplexed
manner, we initially performed and compared multiplex and singleplex measurements of anti-
body levels against four allelic AMAL1 variants using plasma samples from a subset of the study
population. Data from these initial tests showed that AM A1 allelic-specific antibody levels could
be measured in a multiplexed manner and were similar to the levels obtained in variant-specific
singleplex assays that were run concurrently (Tables 1 and 2). This therefore confirms previous
reports of the feasibility of measuring antibody levels against allelic variants of the same antigen
in multiplex assays [46].

The measured antigen-specific antibody levels for all study subjects were compared across
the six sampling time points. Antibody levels against variant AMA1 allele types were generally
higher during the high transmission season compared to the low transmission season, while
anti-EBA 175RII levels did not change considerably between seasons (Fig 2A-2E, S2 Table).
The measured antigen-specific antibody levels were however not significantly different
between clinically ill and asymptomatically infected children at any of the six sampling time
points (S1 Table). These collectively suggest that anti-AMA1 antibodies may merely be mark-
ers of exposure to parasites in this age group since the antibody levels change with transmis-
sion intensity, which is closely linked with rainfall patterns [31,47,48]. A similar observation of
higher rainy season anti-AMA1 antibody levels has been made previously in this age group (1-
5 years) within the same study district [49]. In this other study, anti-AMA1 antibody levels in
older children (> 5 years) and adults were not significantly different between the rainy and
dry seasons.

Parasite density was high in July 2004 and peaked in September 2004, beyond which there
was a decline to intermediate density in November 2004 and January 2005 (Fig 2F, S2 Table).
Parasite density was at the lowest in March and May 2005, and this pattern of changes in para-
site density over a complete transmission year have been previously described [31,47]. This
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pattern clearly confirms the slight offset of the rainy (May to October) and dry (November to
April) seasons from the high and low malaria transmission periods in the study area.

The lack of statistically significant differences in antibody levels between symptomatic and
asymptomatic children at all time points corroborate the outcome of the mixed effects logistic
models, that none of the measured antibodies showed an association with clinical malaria out-
come (Table 3). Baseline data from the original study has been published previously and show
an association between anti-3D7 AMA1 antibody levels and a reduced risk of clinical malaria
over the study period [30]. While this previous study utilized samples at a single time point
from 325 study subjects [30], the current study analyzed six follow up samples from a subset of
126 subjects. Clinical malaria risk analysis in the previous study included asymptomatic chil-
dren with and without blood film parasitaemia and a clinical malaria definition that had a
parasitaemia cut-off of > 5000 parasites per ul of blood, while the current study excluded sub-
jects with no blood film parasitaemia and used a clinical malaria definition that included any
level of parasitaemia. The observed differences in outcomes between the two studies could
therefore be attributed to these definition and classification differences. It is worth noting,
however, that while some epidemiologic studies have associated levels of specific antibodies to
these two antigens with a reduced risk of clinical malaria [6,50-53], others have failed to con-
firm these associations [48,54,55].

For assessment of the relative proportions of strain-specific and cross reactive antibodies,
Bland-Altman plots revealed a relatively higher preponderance of cross-reactive antibodies
from September 2004 to January 2005, which cover the peak rainfall season and into the early
part of the dry season, while relatively higher levels of strain-specific antibodies were elicited
during the low transmission season and into the early part of the rainy season (Fig 3). This
observation may be closely linked with the diversity of infecting parasite strains over the trans-
mission period; high transmission periods have been associated with multiple parasite strain
infections, reflected by high MOIs in infected individuals while low transmission periods are
predominantly associated with a greater proportion of clonal parasite infections [38-40,56-
58]. These patterns are most likely a direct result of an upsurge in transmission vector popula-
tion during the rainy periods and a decline during the dry periods [31,47]. Concurrent infec-
tion with multiple parasites is likely to focus the antibody response on epitopes that are shared
by the infecting parasite variants, while clonal infections would most likely focus responses on
targets within the single allele variants, which include both cross-reactive and strain specific
epitopes [22,23]. Thus during periods of low malaria transmission, relatively high proportions
of strain-specific antibody responses are likely to be elicited due to the reduced number of cir-
culating parasite strains per infected individual.

Though the parasite exposure history of the study population is not known, the pattern of
antibody responses to the four AMALI variants suggests possible exposure to a diversity of par-
asite variants over the one year follow up period. The observation of narrow limits of agree-
ment during the high transmission period and broad limits of agreement during the low
transmission period is consistent for antigen pairs that include 3D7 AMA1 but not paired
comparisons involving any of the other three variants (FVO/CAMP, FVO/HB3 and HB3/
CAMP, Fig 3). The extent of antibody cross-recognition by the four AMA1 variants is depen-
dent on how similar these antigens are in sequence and structure. The 3D7 AMA1 variant dif-
fers by between 23 to 26 amino acids from the other three AMA1 variants (Fig 4), including
residue 197 which is the most polymorphic position and has been described as part of an
important immunodominant epitope in domain I of AMA1 [26,59].

The HB3 and CAMP AMAL1 antigens show the least sequence identity amongst the four
antigens (Fig 4), and the observation of the narrowest limits of agreement between these two
antigens variants over most of the sampling time points would suggest two things; i) that
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parasites circulating in the study area may have AMAL1 sequences that differ significantly from
these two variants, and ii) that the HB3 and CAMP variants are binding to the fraction of
infection-induced antibodies that recognize common, cross-reactive epitopes.

A limitation of the current study was our inability to directly estimate MOIs based on
AMAL variants at the sampling time points due to the unavailability of the appropriate corre-
sponding samples. This would have provided direct evidence of the association between MOI
and the quality of antibody responses. This notwithstanding, the emerging pattern of associa-
tion between MO, albeit based on mostly MSP2 allele families, and transmission intensity in
malaria endemic areas [38-40,56-58] provides the necessary basis for making the inferences
drawn in this study.

Conclusions

This study confirms a previous report that multiplexed Luminex assays are as effective as sin-
gleplex Luminex assays for the measurement of antibody levels against allelic forms of the
same antigen. Anti-AMAL1 antibodies may be potential markers of exposure and could be
especially useful in showing differences between high and low transmission areas. Despite the
lack of association of any antigen or variant-specific antibody responses with protection from
clinical malaria, the data shows a possible relationship between transmission intensity and the
specificity of antibody responses. Cross-reactive antibodies were predominantly present dur-
ing periods of high transmission, most likely due to higher MOI which is believed to be charac-
teristic of the high malaria transmission. In contrast, an increased proportion of strain-specific
antibodies was present during periods of low malaria transmission, most likely as a result of a
greater preponderance of clonal infections. The data therefore adds to our current understand-
ing of the acquisition of antibody specificities in relation to transmission intensity and infect-
ing parasite diversity.
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S1 Table. Comparison of antigen-specific antibody levels and parasite between the two
study groups for each sampling time point. Comparison of antigen-specific antibody levels
amongst the two study groups for each sampling time point. Antibody level data is presented
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level of parasitaemia, fever and at least one other symptom of malaria. Asymp refers children
with no clinical symptoms but detectable parasites in blood smear. P values obtained after
Mann-Whitney U analysis.
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S2 Table. Results of pair-wise post-hoc tests for anti-AMA1 antibodies and parasite density
across the six sampling time points. Results of pair-wise post-hoc tests for anti-AMA1 anti-
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