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Abstract: The effect of γ-ray irradiation on the surface plasmon resonance (SPR) sensing capability
of refractive index (n = 1.418–1.448) of the silica glass optical fiber comprised of germano-silicate
glass cladding embedded with Au nano-particles (NPs) was investigated. As the γ-ray irradiation
increased from 1 h to 3 h with the dose rate of 1190 Gy/h, the morphology of the Au NPs and the
SPR spectrum were found to change. The average diameter of Au NPs increased with the aspect ratio
from 1 to 2, and the nano-particles became grown to the clusters. The SPR band wavelength shifted
towards a longer wavelength with the increase of total dose of γ-ray irradiation regardless of the
corresponding refractive indices. The SPR sensitivities (wavelength/refractive index unit, nm/RIU)
also increased from 407 nm/RIU to 3553 nm/RIU, 1483 nm/RIU, and 2335 nm/RIU after the γ-ray
irradiation at a total dose of 1190 Gy, 2380 Gy, and 3570 Gy, respectively.

Keywords: γ-ray irradiation; surface plasmon resonance; fiber sensor; nano-particles; cladding
embedded optical fiber

1. Introduction

Transparent host materials embedded with noble metal nano-particles (NPs) such as Au and Ag
are of great interest due to their unique characteristics of surface plasmon resonance (SPR) arising
from the excitation of electron density oscillations around metal NPs [1–9]. The localized SPR usually
observed by confined colloidal, periodic, nano-systems gets resonantly excited when the wavelength of
incident light is equal to the characteristic wavelength of metal NPs [10–13]. This comes from confined
conduction electrons oscillating in resonance with the electromagnetic field. The localized SPR of metal
nanostructures seems much more suitable for spectral tunability and strong enhancement of the local
electric field [14]. Thus, the localized SPR has been widely used in the sensing of chemical, physical,
and biological quantities based on the change of the refractive index [15–23].

The position and intensity of the SPR band depend on the size, shape, and inter-particle separation
of the NPs and the dielectric property of the matrix surrounding the NPs [3,4,7,24–33]. The position of
SPR peak is known to shift towards long or short wavelengths upon the change in NPs size. Therefore,
various fabrication methods of metal NPs with different geometries such as nano-spheres, nano-rod,
nano-shells, nano-tubes, nano-cubes, nano-wires, etc. have been proposed to increase the sensitivity
and usability of the SPR sensors [7,24,26–30,32–38]. Among these NPs, for the strong absorption of
incident light followed by field enhancement of the surface of Au NPs, spherical Au NPs are more
favorable because of their isotropic structures which allow coupling to occur in every direction, rather
than only in one direction of Au NPs [39,40]. However, even though spherical NPs have strong SPR
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absorption, there is a limit in terms of amplitude increase and spectral tunability in the visible–NIR
region. Also, a single strong SPR spectral feature usually deviates when the eccentricity of the particles
increases [41]. Because of these reasons, longitudinal SPR absorption by controlling the aspect ratio of
Au NPs has attracted much attention for its large sensitivity and spectral tunability [42].

Various post-processing techniques of the irradiation by the pulsed laser, the charged ion, and
the γ-ray have been investigated to control NPs with desired size and shape [13,43–50]. Our group
has reported a heat treatment method to control the size of NPs in glass fiber [51,52]. Among such
post-irradiation processing techniques, the high energy irradiation was proven to control effectively
the size, shape, and spacing of the NPs by creating ion tracks resulting from Coulomb explosion
and/or thermal spikes accompanying the excitations [53–56]. Due to the passage of a swift heavy ion,
the particles grow and combine into clusters leading to chemical, physical, and optical changes [57].

Recent advances in the SPR application have led to the realization of the optical fibers incorporated
with metal NPs and the fibers coated with metal thin layers [58–66]. In the SPR sensor based on the
optical fiber, an evanescent wave is formed by the interface between the surface of the optical fiber
and the metal NPs embedded or coated on the surface. The fiber-optic SPR sensor is an alternative
to overcome the disadvantages of previous conventional prism-based SPR sensors because of its
attractive advantages of simple and flexible design, compactness, and remote sensing capability for
all-optical applications. Especially, the development of a fiber-optic localized SPR sensor based on
noble metal NPs has attracted increasing attention, because it provides several advantages over the use
of continuous metal thin films, such as the ease of fabrication, modification and control and the high
sensitivity due to the increased surface area of metal/glass interface [67,68]. The fiber-optic localized
SPR sensor for label-free biochemical sensors simply measures the change in absorption spectra by
sweeping broadband light through NPs in the fiber [68,69]. Recently, we have reported the fiber-optic
refractive index sensor using the novel optical fiber incorporated with Au NPs in the cladding [52,70].
In this paper, we report new results of the effect of γ-ray irradiation on the SPR sensing capability by
inducing the morphological change in Au NPs embedded in the fiber.

2. Experiments

2.1. Optical Fiber for Surface Plasmon Resonance Sensor

The fabrication process of the germano-silicate optical fiber embedded with Au NPs in the
cladding and the measurement of its SPR sensing property was described in detail in our previous
work [52,70,71]. The Au NPs(cladding)-doped glass fiber coated with low refractive index polymer
(SSCP Co., Ltd., Ansan-si, Kyunggi-do, South Korea, FIRON UVF PC-375, n = 1.3820 @ 852 nm) was
designed to enable a light to propagate into the cladding, not into the core. Note that the refractive
index of the cladding was larger than that of the core and the polymer coating. The refractive index
difference between the cladding and the core (∆ncladding–core) and that between the cladding and the
coating ((∆ncladding–coating) were 0.0015 and 0.0764, respectively. The cladding width and total diameter
of the optical fiber were 2.6 µm and 124.3 µm, respectively. Thus, surface plasmon waves are induced
around Au NPs in the cladding of the fiber by a light wave traveling through the cladding.

The cladding width was designed and optimized by considering the launching efficiency of
light and the subsequent SPR sensing efficiency. If the cladding containing Au NPs is large over the
optimized width under the assumption that the concentration of Au NPs as well as size, shape, and
inter-particle separation of the NPs is constant, the launching efficiency of light into the cladding of the
fiber definitely increases, but the SPR sensing efficiency will not be affected much due to the increase
of the distance from the fiber surface to the sensing objects. On the other hand, if the cladding is thin,
the concentration of Au NPs per unit area increases, but less light goes through the cladding of the
fiber and thus the SPR sensing efficiency will not be affected either.
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2.2. Verification of Existence and Morphology of Au Nano-Particles

To investigate the effect of γ-ray irradiation on change in morphology of Au NPs and the SPR
sensing capability, the fabricated fiber was irradiated by γ-ray from a 60Co radiation source (Nordion
Inc., Ottawa, ON, Canada, MSD Nordion, pencil type/C-188 sealed) with the dose rate of 1190 Gy/h
for 1 h to 3 h at room temperature in air. The γ-ray doses were measured using the alanine pellet
dosimeter and estimated by electron paramagnetic resonance analysis with BRUKER’s e-scan alanine
dosimetry system (Bruker Inc., Billerica, MA, USA). Then to confirm the formation and the change
in size and distribution of Au NPs, the samples of the fibers with and without the γ-ray irradiation
were examined by transmission electron microscopy (TEM; FEI Co., Hillsboro, OR, USA, TechnaiTM

G2 F30 S-Twin 300 KeV), which were prepared after flaking the surface of the fiber in the longitudinal
direction by the dual beam focused ion beam (FIB; FEI Co., Hillsboro, OR, USA, Helios NanoLabTM

FIB 600). Optical absorption of the fibers was measured to verify again the existence of Au NPs by
the cut-back method using the optical spectrum analyzer (OSA; Ando Electric Co., Ltd., Kanagawa
Kawasaki-shi, Kanagawa-ken, Japan, AQ 6315B) and white light source (WLS; Ando Electric Co., Ltd.,
Kawasaki-shi, Kanagawa-ken, Japan AQ 4305). Note that the variation of the input light signal is
eliminated because only the change in the length of the fiber is measured by the cut-back method.

2.3. Surface Palsmon Resonance Measurement

To characterize SPR sensing property, the change in optical absorption by the γ-ray irradiation was
measured by putting small drops of the refractive index matching oil with various refractive indices
(n = 1.418–1.448, Cargille Labs, Cedar Grove, NJ, USA) on the surface of the stripped portion (3 cm) of
the 10 cm fiber (Figure 1). The coated polymer of the irradiated fiber was stripped off using acetone
and the fiber was spliced with a commercial multi-mode fiber (diameters of core, cladding, coating
were 105, 125, and 250 µm, respectively). The light was launched into the commercial multi-mode fiber
with FC/PC-type connector for stable light supply and the resonance wavelength was measured by
directly coupled to the OSA using a bare-fiber adapter without splicing with another fiber in order
to minimize the signal distortion or intensity degradation at the other end of the fiber. Note that the
change in optical absorption of the fiber without γ-ray irradiation was measured by using the fiber
of 20 cm total length with the surface of the stripped portion (3 cm) according to the optimized fiber
length for SPR sensor implementation derived from previous experimental results [70].
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Figure 1. Schematic diagram of the SPR measurement set-up using the optical fiber incorporated with
Au NPs in the cladding.

3. Results

TEM images and size distributions of Au NPs in the cladding of the fiber before and after the
γ-ray irradiation are shown in Figure 2. The morphology of the Au NPs was dramatically changed
with the increase of the γ-ray irradiation dose level from 0 Gy to 1190 Gy, 2380 Gy, and 3570 Gy. Before



Sensors 2019, 19, 1666 4 of 15

the γ-ray irradiation, the crystalline Au NPs were spherical and uniformly distributed with average
diameter of 3.8 nm (2.5 nm~5.2 nm) with the aspect ratio of 1.00. After irradiation, most of the Au
NPs seemed to aggregate and became clusters. Under the total dose of γ-ray irradiation with 1190 Gy,
2380 Gy, and 3570 Gy, the short axis lengths was 4.0 nm (size distribution: 2.3 nm~5.8 nm), 4.2 nm (size
distribution: 2.0 nm~6.8 nm), and 4.5 nm (size distribution: 1.8 nm~6.9 nm), respectively, and the long
axes lengths were 4.2 nm (size distribution: 2.3 nm~9.6 nm), 5.4 nm (size distribution: 2.0 nm~12.7 nm),
and 9.0 nm (size distribution: 1.8 nm~20.7 nm), respectively.
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Figure 2. TEM images and size distribution of the major and minor axis lengths of the Au NPs
incorporated in the cladding of the fiber (a) before and after the γ-ray irradiation at the total dose of
(b) 1190 Gy, (c) 2380 Gy, and (d) 3570 Gy.

To verify the existence of Au NPs in the fiber cladding again, optical absorption was measured by
the cut-back method. Figure 3a compares the optical absorption spectra of the fibers before and after the
γ-ray irradiation at the total dose of 1190 Gy, 2380 Gy, and 3570 Gy. Before irradiation, the absorption
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bands due to SPR were found to appear peaking at 392 nm (absorption coefficient α = 0.088 cm−1)
and 509 nm (α = 0.066 cm−1), which depended on the particle size of Au NPs in the cladding of the
fiber [5,8,52,72]. After the γ-ray irradiation, the intensity and the peak wavelength of the two SPR
bands were found to change. While the second SPR band at a longer wavelength of 509 nm has clearly
shown the increase of its intensity and wavelength shift, the first SPR band at 392 nm has not shown
any significant increase of its intensity and wavelength shift. With the increase of γ-ray irradiation dose,
the splitting of the SPR bands became more distinct [2,59–61]. The intensity of the second absorption
band at 509 nm corresponding to the interparticle plasmon coupling of the aggregated Au NPs at the
total dose of 1190 Gy increased from α = 0.160 cm−1 to α = 0.212 cm−1, and α = 0.249 cm−1 at the
total dose of 2380 Gy and 3570 Gy, respectively. Note that the absorption band around 392 nm, which
cannot be distinguished whether it is corresponding to spherical Au NPs or the radiation-induced
defects by the γ-ray irradiation, at the total dose of 1190 Gy also increased from α = 0.178 cm−1 to
α = 0.204 cm−1 and α = 0.226 cm−1 with total doses of 2380 Gy and 3570 Gy, respectively.Sensors 2019, 19, x FOR PEER REVIEW  5 of 14 
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Figure 3. (a) Absorption spectra and (b) peak wavelength and intensity of the SPR band of the optical
fiber incorporated with Au NPs before and after the γ-ray irradiation at the total dose of 1190 Gy,
2380 Gy, and 3570 Gy.

Considering that the change of the refractive index and the residual stress of the fiber induced
by the γ-ray irradiation may affect the transmission characteristics of the optical signal, the refractive
index and the residual stress of the fiber before and after the γ-ray irradiation of the total dose of
3570 Gy were measured by the fiber index profiler (Interfiber Analysis, Sharon, MA, USA, IFA-100) as
shown in Figure 4. Before the γ-ray irradiation, the refractive index (∆ncladding–core = 0.0015, with the
standard deviation of 1.05 × 10−4) of the cladding larger than that of the core was due to the presence
of GeO2 [73,74]. The residual stress of the core was found to be under a tension of 7.7 MPa, with the
standard deviation of 1.5 MPa except the center of the core 17.5 MPa, but that of the cladding was
a compression of −26 MPa. The stress in the core is normally positive (tensile) due to the external
pulling force during the drawing process. However, the compressive stress in the cladding is developed
for the balance of the forces after removing the drawing tension [75,76]. On the other hand, after
the γ-ray irradiation at the total dose of 3570 Gy, no influence on the refractive index was observed.
However, a change in the residual stress of the center of the core and the cladding was found. The
tensile stress around the center of the core was relaxed from 17.5 MPa to 7.0 MPa with the slight
change in tensile stress of 7.8 MPa in the outer core region (the standard deviation of 1.3 MPa). Further,
the compressive stress in the cladding slightly increased from −26 MPa to −27 MPa.
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Figure 4. (a) Refractive index difference and (b) stress profile of the fiber before and after the γ-ray
irradiation with the dose rate of 3570 Gy.

To investigate the effect of the γ-ray irradiation on the SPR sensitivity, the SPR absorption of the
Au NPs (cladding)-doped fiber was measured by dropping the index matching oils onto the stripped
portions of 3 cm. The total fiber length was 10 cm and the refractive index (n = 1.418–1.448) of the
matching oils was varied. Figure 5 shows the SPR spectra of the fiber before and after the irradiations
of 1190 Gy, 2380 Gy, and 3570 Gy. Before the γ-ray irradiation, two SPR bands were found to appear,
the first band around 380 nm and the second band around 580 nm [77]. The first SPR band shifted
towards longer wavelength from 381.95 nm to 394.15 nm with the increase of the refractive index from
1.418 to 1.448. The intensity of the SPR band also increased. The baseline corrected absorption intensity
of the SPR spectrum from 0.80 dB to 4.34 dB increased with the increase of the refractive index due to
the difference in diffraction orders [62,78]. The full width at half maximum (FWHM) of the SPR band
was broadened from 49.06 nm to 71.29 nm with the increase of the refractive index due to the spatial
spreading and scattering of the conduction electrons [25,52,62,79]. The average SPR intensity and the
average FWHM were 2.09 dB and 60.55 nm, respectively. However, the second SPR band wavelength
~580 nm, shown as the red dashed square in Figure 5a, was hard to define, and its appearance and the
shift of the SPR band with the increase of the refractive index may be due to the low plasmon coupling
of the aggregated Au NPs.
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After the γ-ray irradiation, interestingly, another SPR band was found to appear around 750 nm.
The intensity of this band increased with the increase of the index. However, after the γ-ray irradiation
of 1190 Gy, the SPR band wavelength at 380 nm shifted towards shorter wavelength of 360 nm.
Furthermore, at the higher radiation doses, it was hard to analyze the SPR bands at short wavelengths
because the SPR band intensity decreased with the increase of the optical loss and noise. The SPR band
wavelength at 360 nm slightly shifted towards longer wavelength with the increase of the refractive
index. The amount of red shift of the SPR band around 750 nm with the increase of the refractive
index was much larger than that of the SPR band at 360 nm and it was due to the interparticle plasmon
coupling of the aggregated Au NPs compared to the single Au NPs of the 360 nm band. A more
detailed description is given in the discussion section.

4. Discussion

From the results of TEM images and size distributions of Au NPs in the cladding of the fiber before
the γ-ray irradiation as shown in Figure 2a, the surface density and volume density of the Au NPs
in the cladding of the fiber were estimated to be about 23 × 103 NPs/µm2 and 2,406 × 103 NPs/µm3,
respectively, with the aspect ratio of 1.00. As the total dose of the irradiation increased to 1190 Gy,
2380 Gy, and 3570 Gy, the average aspect ratio of the Au NPs increased to 1.05, 1.29, and 2.00,
respectively. The size distribution of the short axis of the Au NPs also slightly increased with the
increase of the γ-ray irradiation level. It is clear that the γ-ray irradiation induced the growth of Au
NPs by the direct coalescence and consequent transformation from spherical to prolate in shape. The
similar growth of crystalline Au NPs in silica glass due to Ostwald ripening by the ion irradiation was
also reported [53].

Due to the morphological change of Au NPs in the fiber cladding after γ-ray irradiation,
the intensity and the peak wavelength of the two SPR bands were found to change as shown in
Figure 3. Before the irradiation, the separated SPR bands at 392 nm and 509 nm are due to the split
of the plasmon resonance into a longitudinal SPR mode and a transverse SPR mode, parallel and
perpendicular to the long axis of the Au NPs, respectively [80,81]. The short wavelength band at
392 nm is attributed to the transverse mode of SPR, which is assigned to the dipole resonance of the Au
NPs. And it is much stronger than that at 509 nm, which is attributed to the longitudinal mode of SPR,
due to the spherical Au NPs. The weaker absorption at 509 nm from the longitudinal mode of SPR
may have some contribution from the interparticle plasmon coupling of the aggregated Au NPs. After
the γ-ray irradiation, the clear appearance of the SPR bands indicates the significant morphological
change of the Au NPs as shown in Figure 2. With the increase of the total dose of γ-ray irradiation,
the longitudinal resonance at longer wavelength of 509 nm seems to be dominant. It shifted from
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509 nm to 553 nm, 584 nm, and 597 nm with the increase of the total dose to 1190 Gy, 2380 Gy, and
3570 Gy, respectively. In addition, the absorption intensity increase with the increase of the total dose
of γ-ray irradiation is thought to be due to the increase of the aggregated Au NPs.

The unclear peak position of the first SPR band at 392 nm after the γ-ray irradiation may be due
to the wavelength overlap from the absorptions of the radiation-induced defects. The absorption
increase may be due to the radiation-induced defects. The possible defects are oxygen deficient centers
(Si-ODC, ≡Si-Si≡ at 394 nm), per-oxy radicals (Si-POR, ≡Si-O-O at 630 nm), self-trapped hole defects
(Si-STHs at 477 nm, 574 nm, 663 nm, 765 nm), non-bridging oxygen hole centers (Si-NBOHC, ≡Si-O·at
620 nm) due to strained Si-O bonds, GeX (at 475 nm), and Ge-NBOHC (≡Ge-O at 630 nm) due to
strained Ge-O bonds [73,82–87].

Furthermore, the splitting of the SPR bands became more distinct with the increase of γ-ray
irradiation dose. It is known that the anisotropically shaped metal particles show a split SPR
band due to the transverse and longitudinal modes of charge density oscillations in the presence
of electromagnetic radiation [10,11,53]. Thus, the splitting of the SPR bands may be due to the
morphological change, especially the increase of the aspect ratio, of the Au NPs. As the total dose
of γ-ray irradiation increased, the longitudinal SPR band at longer wavelength of 509 nm showed
a tendency to shift towards longer wavelength due to the growth of Au NPs from spherical to prolate
in shape as shown in Figure 3b [12,81].

In the case of the refractive index and the residual stress of the fiber, after the γ-ray irradiation
at the total dose of 3570 Gy, the negligible change in the refractive index and the residual stress of
the cladding by the γ-ray irradiation of the total dose of 3570 Gy does not contribute to the SPR
sensing property.

From the results of the SPR sensing test by dropping the index matching oils onto the stripped
portions of 3 cm as shown in Figure 5, the measured two SPR bands are related to the spherical Au
NPs (transverse SPR mode) and the aggregated Au NPs (longitudinal SPR mode), respectively as
known from the results shown in Figures 2 and 3. Before the γ-ray irradiation, the SPR sensitivity
(wavelength/refractive index unit, nm/RIU) of the first SPR band around 380 nm was estimated to
be 406.7 nm/RIU. It is well known that the SPR band wavelength increase with the increase of the
refractive index is related to the resonance wavelength of the incident light due to the increase of
the wave vector of the surface plasmon mode [52,60–62,64,70]. After the γ-ray irradiation, the new
SPR band around 750 nm may be due to the interparticle plasmon coupling of the aggregated Au
NP, in good agreement with the TEM results as shown in Figure 2. The Au NPs was grown in size
and morphologically changed to aggregates due to the bridge-like connection and crosslinking of the
Au NPs by the γ-ray irradiation. However, the SPR band wavelength due to the spherical Au NPs
blue-shifted form 380 nm to 360 nm because the shifts of the transverse and longitudinal SPR band are
contra-directed [12,81].

Finally, the results of the SPR spectra shown in Figure 5 were replotted in Figure 6 for a better look
and summary. The variation of the SPR band wavelength, the SPR sensitivity, the SPR intensity, and the
FWHM of the SPR spectrum were shown as a function of refractive index of the matching oils under the
γ-ray irradiation. The SPR band wavelength showed a tendency to shift towards longer wavelength
with the increase of the total dose of γ-ray irradiation regardless of the corresponding refractive indices
due to the growth and assembly of Au NPs into the Au NP clusters by the γ-ray irradiation (Figure 6a).
From the results of the SPR spectra as shown in Figure 6a, the center wavelengths of the SPR band
were found at 720.67 nm, 731.33 nm, 752.29 nm, and 827.27 nm with the increase of the refractive
index 1.418, 1.428, 1.438, and 1.448 under at dose of 1190 Gy, respectively. And under the total dose
of 2380 Gy and 3570 Gy, the SPR band wavelengths were found to appear at 760.75 nm, 781.71 nm,
794.77 nm, and 805.25 nm and at 771.53 nm, 786.70 nm, 808.65 nm, and 841.57 nm with the increase
of the refractive index, respectively. The estimated sensitivities (wavelength/RIU) of the SPR sensor
based on the γ-ray irradiated fibers on the sensing capability of refractive index (n = 1.418–1.448)
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increased to be 407 nm/RIU, 3553 nm/RIU, 1483 nm/RIU, and 2335 nm/RIU before and after the
γ-ray irradiation at the total dose of 1190 Gy, 2380 Gy, and 3570 Gy, respectively, as shown in Figure 6b.
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After the γ-ray irradiation, the SPR sensitivity increased rapidly but saturated with the increase
of the total dose of γ-ray irradiation. The baseline corrected SPR band intensity slightly increased from
0.17 dB to 0.24 dB, from 0.17 dB to 0.18 dB, and from 0.07 dB to 0.11 dB with the increase of the refractive
index from 1.418 to 1.448 at the total dose of 1190 Gy, 2380 Gy, and 3570 Gy, respectively. The increase
of the SPR intensity with the increase of the refractive indices, regardless of the γ-ray irradiation, is
due to a leak of more divergent light beams from the cladding of the fiber [5,9,88]. However, as the
total dose of γ-ray irradiation increased from 1190 Gy to 3570 Gy, the SPR band intensity decreased
regardless of the corresponding refractive indices due to the increase of the radiation-induced loss as
shown in Figure 6c. And the FWHM of the SPR band became broadened from 230.93 nm to 313.49 nm,
from 277.47 nm to 278.52 nm, and from 240.48 nm to 260.96 nm with the increase of the refractive index
from 1.418 to 1.448 at the total dose of 1190 Gy, 2380 Gy, and 3570 Gy, respectively. The broadened
SPR band with the increase of the refractive indices regardless of the γ-ray irradiation is due to the
spatial spreading and scattering of the conduction electrons and the FWHM of the SPR band was
saturated with the increase of the total dose of γ-ray irradiation as shown in Figure 6d [25,62,79]. Note
that the center wavelength, intensity, and the FWHM of the SPR band were rapidly changed after the
γ-ray irradiation at the total dose of 1190 Gy as compared with the fiber before the γ-ray irradiation.
However, the change in center wavelength, intensity, and the FWHM of the SPR band was saturated
as the total dose of γ-ray irradiation of 2380 Gy and 3570 Gy increased regardless of the corresponding
refractive indices.

The SPR sensitivity, the average intensity, and the average FWHM of the fiber before and after the
γ-ray irradiation at the total dose of 1190 Gy, 2380 Gy, and 3570 Gy are listed in Table 1. The average
intensity and the FWHM were changed from 0.20 dB to 0.17 dB and 0.08 dB and from 284.21 nm to
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274.59 nm and 272.03 nm at the total dose of 1190 Gy, 2380 Gy, and 3570 Gy, respectively. The average
intensity and the FWHM of the SPR band around 750 nm in the range of the refractive index from
1.418 to 1.448 decreased with the increase of the total dose of γ-ray irradiation at 1190 Gy, 2380 Gy,
and 3570 Gy.

Table 1. The SPR sensitivity, the average intensity, and the average FWHM of the optical fiber embedded
with Au NPs in cladding after the γ-ray irradiation.

γ-ray Irradiation
Total γ-ray

Irradiation Dose
[Gy]

Sensitivity
[nm/RIU]

Average Intensity
[dB]

Average FWHM
[nm]

Before
(SPR at 380 nm) 0 407 2.087 60.554

After
(SPR at 750 nm)

1190 3553 0.204 284.207
2380 1483 0.170 274.592
3570 2335 0.084 272.026

From the SPR results of the fibers after the γ-ray irradiation, the growth of the Au NPs to
anisotropically shaped Au clusters must have played an important role because it showed the splitting
of the SPR band into the transverse and longitudinal modes [10,11,53]. The increase in the aspect ratio
of the Au cluster led to red shifts of the longitudinal SPR band (longer wavelength) and it showed
better sensitivity in response to changes in refractive index of the surrounding medium because the
refractive index sensitivity of the SPR sensor was enhanced with increasing SPR band wavelength [89].
However, an excessive γ-ray irradiation is detrimental due to the decrease of the SPR sensitivity and
the increase of the radiation-induced optical loss by excessively changing the size and shape of Au
NPs. Nevertheless, the γ-ray irradiation of the SPR sensor fiber with an appropriate irradiation dose is
an effective method to increase the SPR sensitivity and to control a desired detection wavelength for
utilizing a commercially available light source and power detector.

5. Conclusions

The silica glass optical fiber incorporated with Au NPs in the germano-silicate glass cladding has
been irradiated by 60Co γ-rays with the dose rate of 1190 Gy/h for 1 h to 3 h at room temperature to
investigate the enhancement of the SPR sensitivity and the enabling tunability of the operation range
of sensing wavelength of the SPR for the refractive index sensing by controlling the size and shape of
the incorporated crystalline Au NPs in the fiber cladding. As the total dose of the γ-ray irradiation
increased to 1190 Gy, 2380 Gy and 3570 Gy, the average aspect ratio of the Au NPs increased from 1.0
to 1.05, 1.29, and 2.00, respectively. The spherical Au NPs of ~3.8 nm diameter grew into the large
clusters by the direct coalescence of NPs and then transformed to prolate shaped particles with a large
aspect ratio.

The anisotropically grown Au NPs with a large aspect ratio were the main cause of the splitting
of the SPR bands into transverse and longitudinal modes, and this splitting became more distinct
with the increase of γ-ray irradiation dose. Due to the effective shift and the intensity increase of
the longitudinal SPR band at the longer wavelength of 509 nm after the γ-ray irradiation, the SPR
sensitivity for the corresponding refractive indices (n = 1.418–1.448) increased rapidly but saturated
from 406.7 nm/RIU to 3553 nm/RIU, 1483 nm/RIU, and 2335 nm/RIU with the increase of the
total dose of γ-ray irradiation from 0 Gy to 1190 Gy, 2380 Gy, and 3570 Gy, respectively. However,
the average SPR intensity decreased from 0.20 dB to 0.17 dB and 0.08 dB and the average FWHM
of the SPR band around 750 nm also decreased from 284.21 nm to 274.59 nm and 272.03 nm with
the increase of the total dose from 1190 Gy to 2380 Gy, and 3570 Gy, respectively. On the other
hand, the transverse SPR band at 392 nm has not shown any significant increase in its intensity and
wavelength shift. However, from the SPR sensing experiment using refractive index-matching oils
after the γ-ray irradiation of 1190 Gy, the transverse SPR band at 380 nm was found to shift to 360 nm.



Sensors 2019, 19, 1666 11 of 15

No significant change in the refractive index and the residual stress after the γ-ray irradiation at
the total dose of 3570 Gy indicates no contribution of them to the SPR sensing capability.
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58. Slavík, R.; Homola, J.; Čtyroký, J.; Brynda, E. Novel spectral fiber optic sensor based on surface plasmon
resonance. Sens. Actuators B Chem. 2001, 74, 106–111. [CrossRef]

59. Sharma, A.K.; Jha, R.; Gupta, B.D. Fiber-optic sensors based on surface plasmon resonance: A comprehensive
review. IEEE Sens. J. 2007, 7, 1118–1129. [CrossRef]

60. Gupta, B.D.; Verma, R.K. Surface plasmon resonance-based fiber optic sensors: Principle, probe designs, and
some applications. J. Sens. 2009, 2009, 1–12. [CrossRef]

61. Mitsushio, M.; Higashi, S.; Higo, M. Construction and evaluation of a gold-deposited optical fiber sensor
system for measurements of refractive indices of alcohols. Sens. Actuators A Phys. 2004, 111, 252–259.
[CrossRef]

62. Ju, S.; Jeong, S.; Kim, Y.; Jeon, P.; Park, M.-S.; Jeong, H.; Boo, S.; Jang, J.-H.; Han, W.-T. Experimental
demonstration of surface plasmon resonance enhancement of the tapered optical fiber coated with Au/Ti
thin film. J. Non-Cryst. Solids 2013, 383, 146–152. [CrossRef]

63. Singh, S.; Verma, R.K.; Gupta, B.D. Surface plasmon resonance based fiber optic sensor with symmetric and
asymmetric metallic coatings: A comparative study. Sens. Transducers J. 2009, 100, 116–124.

http://dx.doi.org/10.1021/jp8012865
http://dx.doi.org/10.1016/S1010-6030(01)00389-6
http://dx.doi.org/10.1021/ja910010b
http://dx.doi.org/10.1002/1521-4095(20020205)14:3&lt;194::AID-ADMA194&gt;3.0.CO;2-W
http://dx.doi.org/10.1039/b200272h
http://dx.doi.org/10.1063/1.2642824
http://dx.doi.org/10.1103/PhysRevLett.86.99
http://dx.doi.org/10.1016/j.radphyschem.2006.11.012
http://dx.doi.org/10.1016/j.matchemphys.2008.12.001
http://dx.doi.org/10.1016/j.jnoncrysol.2010.07.042
http://dx.doi.org/10.1364/OME.5.001440
http://dx.doi.org/10.1063/1.2764556
http://dx.doi.org/10.1103/PhysRevB.67.220101
http://dx.doi.org/10.1021/cr030698+
http://dx.doi.org/10.1103/PhysRevLett.88.165501
http://dx.doi.org/10.1016/j.nimb.2006.12.183
http://dx.doi.org/10.1016/S0925-4005(00)00718-8
http://dx.doi.org/10.1109/JSEN.2007.897946
http://dx.doi.org/10.1155/2009/979761
http://dx.doi.org/10.1016/j.sna.2003.11.029
http://dx.doi.org/10.1016/j.jnoncrysol.2013.05.005


Sensors 2019, 19, 1666 14 of 15

64. Jeong, H.-H.; Erdene, N.; Park, J.-H.; Jeong, D.-H.; Lee, S.-K. Analysis of fiber-optic localized surface
plasmon resonance sensor by controlling formation of gold nanoparticles and its bio-application.
J. Nanosci. Nanotechnol. 2012, 12, 7815–7821. [CrossRef]

65. Lee, B.; Roh, S.; Park, J. Current status of micro- and nano-structured optical fiber sensors. Opt. Fiber Technol.
2009, 15, 209–221. [CrossRef]

66. Shevchenko, Y.Y.; Albert, J. Plasmon resonances in gold-coated tilted fiber Bragg grating. Opt. Lett. 2007, 32,
211–213. [CrossRef]

67. Sanders, M.; Lin, Y.; Wei, J.; Bono, T.; Lindquist, R.G. An enhanced LSPR fiber-optic nanoprobe for
ultrasensitive detection of protein biomarkers. Biosens. Bioelectron. 2014, 61, 95–101. [CrossRef]

68. Caucheteur, C.; Guo, T.; Albert, J. Review of plasmonic fiber optic biochemical sensors: Improving the limit
of detection. Anal. Bioanal. Chem. 2015, 407, 3883–3897. [CrossRef]

69. Cao, J.; Tu, M.H.; Sun, T.; Grattan, K.T.V. Wavelength-based localized surface plasmon resonance optical
fiber biosensor. Sensor. Actuat. B Chem. 2013, 181, 611–619. [CrossRef]

70. Ju, S.; Jeong, S.; Kim, Y.; Lee, S.-H.; Han, W.-T. Surface plasmon resonance characteristics of optical fiber
incorporated with Au nano-particles in cladding region. J. Nanosci. Nanotechnol. 2016, 16, 6308–6312.
[CrossRef]

71. Ju, S.; Jeong, S.; Kim, Y.; Jeon, P.; Boo, S.; Han, W.-T. Development of specialty optical fiber incorporated with
Au nano-particles in cladding for surface plasmon resonance sensors. Sens. Transducers J. 2013, 18, 76–83.

72. Roman, J.E.; Wincik, K.A. Photowritten gratings in ion-exchanged glass waveguides. Opt. Lett. 1993, 18,
808–810. [CrossRef]

73. Girard, S.; Kuhnhenn, J.; Gusarov, A.; Brichard, B.; Van Uffelen, M.; Ouerdane, Y.; Boukenter, A.;
Marcandella, C. Radiation effects on silica-based optical fibers: Recent advances and future challenges.
IEEE Trans. Nucl. Sci. 2013, 60, 2015–2036. [CrossRef]

74. Chu, P.L.; Whitbread, T. Measurement of stresses in optical fiber and preform. Appl. Opt. 1982, 21, 4241–4245.
[CrossRef]

75. Kim, B.H.; Park, Y.; Ahn, T.-J.; Kim, D.Y.; Lee, B.H.; Chung, Y.; Paek, U.-C.; Han, W.-T. Residual stress
relaxation in the core of optical fiber by CO2 laser irradiation. Opt. Lett. 2001, 26, 1657–1659. [CrossRef]

76. Kim, B.H.; Ahn, T.-J.; Kim, D.Y.; Lee, B.H.; Chung, Y.; Paek, U.-C.; Han, W.-T. Effect of CO2 laser irradiation
on the refractive-index change in optical fibers. Appl. Opt. 2002, 41, 3809–3815. [CrossRef]

77. Chen, H.; Kou, X.; Yang, Z.; Ni, W.; Wang, J. Shape- and size-dependent refractive index sensitivity of gold
nanoparticles. Langmuir 2008, 24, 5233–5237. [CrossRef]

78. Dou, X.; Phillips, B.M.; Chung, P.-Y.; Jiang, P. High surface plasmon resonance sensitivity enabled by optical
disks. Opt. Lett. 2012, 37, 3681–3683. [CrossRef]

79. Lee, M.; Chae, L.; Lee, K.C. Microstructure and surface plasmon absorption of sol-gel-prepared Au
nanoclusters in TiO2 thin films. NanoStruct. Mater. 1999, 11, 195–201. [CrossRef]

80. Ghosh, S.K.; Pal, T. Interparticle coupling effect on the surface plasmon resonance of Gold nanoparticles:
From theory to applications. Chem. Rev. 2007, 107, 4794–4862. [CrossRef]

81. El-Brolossy, T.A.; Abdallah, T.; Mohamed, M.B.; Abdallah, S.; Easawi, K.; Negm, S.; Talaat, H. Shape and size
dependence of the surface plasmon resonance of gold nanoparticles studied by photoacoustic technique.
Eur. Phys. J. Spec. Top. 2008, 153, 361–364. [CrossRef]

82. Kim, Y.; Ju, S.; Jeong, S.; Lee, S.H.; Han, W.-T. Gamma-ray radiation response at 1550 nm of fluorine-doped
radiation hard single-mode optical fiber. Opt. Express 2016, 24, 3910–3920. [CrossRef]

83. Regnier, E.; Flammer, I.; Girard, S.; Gooijer, F.; Achten, F.; Kuyt, G. Low-dose radiation-induced attenuation
at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres. IEEE Trans. Nucl. Sci.
2007, 54, 1115–1119. [CrossRef]

84. Origlio, G.; Boukenter, A.; Girard, S.; Richard, N.; Cannas, M.; Boscaino, R.; Ouerdane, Y. Irradiation induced
defects in fluorine doped silica. Nucl. Instrum. Methods Phys. Res. Sect. B 2008, 266, 2918–2922. [CrossRef]

85. Kajihara, K.; Hirano, M.; Skuja, L.; Hosono, H. 60Co γ-ray-induced intrinsic defect processes in
fluorine-doped synthetic SiO2 glasses of different fluorine concentrations. Mater. Sci. Eng. B 2009, 161, 96–99.
[CrossRef]

86. Giacomazzi, L.; Martin-Samos, L.; Boukenter, A.; Ouerdane, Y.; Girard, S.; Richard, N. Ge(2), Ge(1) and Ge-E′

centers in irradiated Ge-doped silica: A first-principles EPR study. Opt. Mater. Express 2015, 5, 1054–1064.
[CrossRef]

http://dx.doi.org/10.1166/jnn.2012.6218
http://dx.doi.org/10.1016/j.yofte.2009.02.006
http://dx.doi.org/10.1364/OL.32.000211
http://dx.doi.org/10.1016/j.bios.2014.05.009
http://dx.doi.org/10.1007/s00216-014-8411-6
http://dx.doi.org/10.1016/j.snb.2013.02.052
http://dx.doi.org/10.1166/jnn.2016.12134
http://dx.doi.org/10.1364/OL.18.000808
http://dx.doi.org/10.1109/TNS.2012.2235464
http://dx.doi.org/10.1364/AO.21.004241
http://dx.doi.org/10.1364/OL.26.001657
http://dx.doi.org/10.1364/AO.41.003809
http://dx.doi.org/10.1021/la800305j
http://dx.doi.org/10.1364/OL.37.003681
http://dx.doi.org/10.1016/S0965-9773(99)00032-X
http://dx.doi.org/10.1021/cr0680282
http://dx.doi.org/10.1140/epjst/e2008-00462-0
http://dx.doi.org/10.1364/OE.24.003910
http://dx.doi.org/10.1109/TNS.2007.894180
http://dx.doi.org/10.1016/j.nimb.2008.03.181
http://dx.doi.org/10.1016/j.mseb.2008.11.002
http://dx.doi.org/10.1364/OME.5.001054


Sensors 2019, 19, 1666 15 of 15

87. Kyoto, M.; Chigusa, Y.; OOE, M.; Watanabe, M.; Matubara, T.; Yamamoto, T.; Okamoto, S. Gamma-ray
irradiation effect on loss increase of single mode optical fibers, (I). J. Nucl. Sci. Technol. 1989, 26, 507–515.
[CrossRef]

88. Yeri, A.S.; Gao, L.; Gao, D. Mutation screening based on the mechanical properties of DNA molecules
tethered to a solid surface. J. Phys. Chem. B 2010, 114, 1064–1068. [CrossRef]

89. Kazuma, E.; Tatsuma, T. Localized surface plasmon resonance sensors based on wavelength-tunable spectral
dips. Nanoscale 2014, 6, 2397–2405. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/18811248.1989.9734340
http://dx.doi.org/10.1021/jp909501h
http://dx.doi.org/10.1039/C3NR05846H
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Experiments 
	Optical Fiber for Surface Plasmon Resonance Sensor 
	Verification of Existence and Morphology of Au Nano-Particles 
	Surface Palsmon Resonance Measurement 

	Results 
	Discussion 
	Conclusions 
	References

