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ABSTRACT

The induction of brown-like adipocyte development in
white adipose tissue (WAT) confers numerous metabolic
benefits by decreasing adiposity and increasing energy
expenditure. Therefore, WAT browning has gained con-
siderable attention for its potential to reverse obesity
and its associated co-morbidities. However, this per-
spective has been tainted by recent studies identifying
the detrimental effects of inducing WAT browning. This
review aims to highlight the adverse outcomes of both
overactive and underactive browning activity, the
harmful side effects of browning agents, as well as the
molecular brake-switch system that has been proposed
to regulate this process. Developing novel strategies
that both sustain the metabolic improvements of WAT
browning and attenuate the related adverse side effects
is therefore essential for unlocking the therapeutic
potential of browning agents in the treatment of meta-
bolic diseases.
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INTRODUCTION

Adipose tissue is sensitive to changes in nutrient supply and
ambient temperature: an evolutionary development that has
allowed animal species to adapt to food shortage and cold
temperatures. In higher vertebrates, white adipose tissue
(WAT) primarily stores energy in the form of triglycerides in
unilocular white adipocytes, which can then be released as
fatty acids when food is scarce (Zechner et al. 2012). In this
way, endothermic animals are able to sustain their energy

homeostasis long enough to survive through nutritional pri-
vation and maintain their core body temperature (Gesta et al.
2007; Zechner et al. 2012). On the other hand, brown adi-
pose tissue (BAT) dissipates energy as heat in a process
called non-shivering thermogenesis (Cannon and Neder-
gaard 2004). Brown adipocytes contain multilocular lipid
droplets, densely packed mitochondria, and have a high
expression of uncoupling protein 1 (UCP1). BAT is therefore
highly metabolically active due to the uncoupling of electron
transport from ATP production in the inner mitochondrial
membrane, allowing for active substrate oxidation and a low
rate of ATP production with heat generation instead.

BAT was previously known to be abundant only in hiber-
nating mammals, interscapular regions of rodents, and
supraclavicular regions of human newborns (SMITH and
Hock 1963; Aherne and Hull 1966; Rothwell and Stock
1979). However, this has been displaced by the discovery of
active BAT in the axillary, cervical, supraclavicular, and par-
avertebral regions of adult humans (Nedergaard et al. 2007;
Cypess et al. 2009; van Marken Lichtenbelt et al. 2009;
Virtanen et al. 2009). Together, brown and white adipose
tissues orchestrate energy balance and thermal regulation in
endothermic animals.

BEIGE ADIPOCYTES AND BROWNING

The accumulation of ‘brown-like’ adipocytes in WAT is
referred to as ‘browning’ or ‘beiging’. These ‘brown-like’
adipocytes are referred to as beige or brite (brown-in-white)
adipocytes, the activation of which upregulates Ucp1 and
other genes involved in energy expenditure in WAT.
Browning of WAT is an adaptive and reversible response to
environmental stimuli, including cold exposure, pharmaco-
logical agents such as β3-adrenergic receptor agonists and
thiazolidinediones (TZDs), as well as various peptides and
hormones (Guerra et al. 1998; Himms-Hagen et al. 2000;
Barbatelli et al. 2010; Fisher et al. 2012; Ohno et al. 2012;
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Rosenwald et al. 2013). Interestingly, characterization of
BAT from adult humans has been shown to have a molecular
profile more similar to beige fat than that of classical BAT
(Wu et al. 2012; Frontini et al. 2013; Sidossis et al. 2015).

Beige adipocytes have multiple origins. They can origi-
nate from progenitors resident within WAT that are differen-
tiated in response to browning stimuli—a process known as
de novo differentiation (Wang et al. 2013). These beige
adipocyte progenitors are smooth muscle-like pericytes that
express platelet-derived growth factor (PDGF) receptor α but
not Myf-5 (PDGFRα+; Myf5−) (Seale et al. 2008; Lee et al.
2012; Sanchez-Gurmaches et al. 2012; Long et al. 2014).
Alternatively, beige adipocytes can arise via transdifferenti-
ation, a process that involves the direct conversion of
existing white adipocytes into brown-like cells, and vice
versa (Barbatelli et al. 2010; Rosenwald et al. 2013). In sum,
beige adipocytes possess distinct phenotypic and functional
characteristics from white and brown adipocytes that are
underlain by their unique gene expression signature in
response to environmental stimuli.

THE REGULATION OF BROWNING

Transcriptional regulation

Cellular energy sensing and sympathetic tone are the driving
forces that regulate the transcriptional networks controlling
browning. Peroxisome proliferator-activated receptor γ
(PPARγ) centers the browning transcriptional network. It has
been proven to be necessary and sufficient for adipocyte
differentiation and function (Farmer 2006). Chronic stimula-
tion of primary adipocyte cultures with thiazolidinediones
(TZD), a class of PPARγ ligands, induces activation of the
PPARγ cofactor, PGC-1α (Wilson-Fritch et al. 2004), and
stabilizes the BAT-specific cofactor, PR domain zinc finger
protein 16 (PRDM16) (Ohno et al. 2012). In mice, Prdm16
stimulates the expression of several genes involved in
thermogenesis in WAT, including Pgc-1α and Ucp1, even
after stimulation by β3-adrenergic agonists (Seale et al.
2007; Seale et al. 2008). Vernochet et al. further demon-
strated a direct role for PPARγ in the phenotypic conversion
of WAT to BAT. Specifically, a mutation of the PPARγ ligand-
binding domain suppressed TZD-mediated inhibition of
white-adipocyte genes, including Resistin, Angiotensinogen
and Chemerin, and induced brown-specific genes, including
Ucp-1, in 3T3-L1 adipocytes (Vernochet et al. 2009). Such
inhibition depends on the expression of C/EBPα and the
corepressors, carboxy-terminal binding proteins 1 and 2
(CtBP1/2). On the molecular level, TZDs induce deacetyla-
tion of PPARγ by the NAD-dependent protein deacetylase
sirtuin-1 (SirT1) to recruit browning cofactors such as
PRDM16. This results in the selective activation of brown
genes and the repression of white genes (Qiang et al. 2012).

Modulations of PPARγ through ligands, posttranslational
modifications, isoform distinction (Li et al. 2016), and
cofactor exchanges are all able to regulate browning. For

example, EBF2 (Rajakumari et al. 2013) and TLE3 (Vil-
lanueva et al. 2011) were recently identified as brown and
white adipocyte-specific regulators, respectively. Both of
them function through PPARγ (Villanueva et al. 2013; Fer-
rannini et al. 2016). Another browning factor, IRF4, induces
thermogenic activity in WAT by activating PRDM16 and
PGC-1α, both of which are closely related to PPARγ (Kong
et al. 2014). Taken together, PPARγ coupled with its
upstream and downstream regulators comprises the
browning regulatory axis.

Hormonal regulation

Cold exposure and other environmental stimuli elicit complex
hormonal responses that facilitate adaptive thermogenesis
and crosstalk between tissues. For example, lipid-derived
hormones—such as prostaglandins, bone morphogenetic
protein 4 (BMP-4), and fibroblast growth factor 21 (FGF21)—
are produced in response to β3-adrenergic receptor activa-
tion to promote browning (Vegiopoulos et al. 2010; Fisher
et al. 2012; Grefhorst et al. 2015). Furthermore, leptin is a
nutrient-responsive adipokine that, together with insulin,
promotes browning through POMC neurons (Dodd et al.
2015). The browning effect of leptin is counteracted by
another representative adipokine: Adiponectin (encoded by
Adipoq). Adipoq knock-out mice show increased thermo-
genic response (Qiao et al. 2014), in line with the decreased
energy expenditure in its transgenic mice on ob/ob back-
ground (Kim et al. 2007). In addition, catecholamines are
required for the immediate activation of brown and existing
beige adipocytes, as well as for the differentiation of beige
adipocytes from their precursors (Cannon and Nedergaard
2004). Adipose-tissue resident M2 macrophages were
identified as a source of catecholamines involved in the
regulation of lipolysis in response to acute cold exposure
(Nguyen et al. 2011). Obesity induces a switch toward
proinflammatory M1 macrophages (Lumeng et al. 2007) that
might counteract the increased catecholamine production
and therefore prevent browning. However, the production of
catecholamines by adipose M2 macrophages was ques-
tioned in a recent study (Fischer et al. 2017), suggesting a
revisit to the immune-regulation of browning. Moreover,
secretory factors are suggested to mediate the crosstalk
between muscle and fat in terms of exercise-induced brown
remodeling in WAT (Moghri et al. 2013). Overall, it is agreed
that energy sensing and metabolic demands are important
regulators of the browning process. Various environmental
stimuli cause the release of hormonal factors from adipose
tissue and/or other metabolically active organs, all of which
contribute to the maintenance of energy homeostasis.

Besides the mainstreams of transcriptional and hormonal
regulations, various mechanisms have been identified to
regulate browning that include cytoskeleton remodeling
(McDonald et al. 2015), circadian rhythm (Gerhart-Hines
et al. 2013), microRNAs (Kim et al. 2014), long non-coding
RNAs (Alvarez-Dominguez et al. 2015), and the central
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nervous system (Liu et al. 2012; Hankir et al. 2016). Despite
the continuously growing list of browning regulators, our
opinion is that the challenge is not in identifying new
browning factors but rather in understanding the precise
mechanisms of browning in order to translate them safely
and efficiently into clinical applications.

THE METABOLIC BENEFITS OF BROWNING

Browning in humans

Obesity confers an increased risk of developing insulin
resistance, type 2 diabetes mellitus, and cardiovascular
disease (Van Gaal et al. 2006; Guilherme et al. 2008).
Browning of WAT has a number of positive implications for
metabolic health by tilting the energy balance toward energy
expenditure. Thus, stimulation of the activity of brown and
beige adipocytes has gained considerable attention for its
therapeutic potential in promoting overall metabolic health as
recorded by reduced body weight, adiposity, insulin resis-
tance, and hyperlipidemia. In humans, BAT mass, or indeed
beige fat mass, and its functional activity are inversely rela-
ted to body mass index, resting plasma glucose, and lipid
levels (Saito et al. 2009). Conversely, increasing BATactivity
by cold exposure, diet, or pharmacological agents is posi-
tively correlated with energy expenditure. For example,
individuals subjected to 10-day cold exposure demonstrated
enhanced glucose uptake in BAT, glucose oxidation, and
insulin sensitivity (Chondronikola et al. 2014). In a study by
Cypess et al., treatment with mirabegron, a β3-adrenergic
receptor agonist, led to higher BAT metabolic activity and
increased basal metabolic rate in healthy male subjects
(Cypess et al. 2015). In addition, a 5–8 h exposure of
overweight/obese men to a non-shivering cold environment
(19.9 ± 0.8°C) activated BATand increased the expression of
lipid handling genes (Chondronikola et al. 2016). These
studies suggest a role of beige fat in lipid metabolism, ther-
mogenesis, and energy dissipation. However, it is too early
to conclude the therapeutic consequences of inducing
browning in humans for the prevention and management of
metabolic diseases that include obesity, diabetes, and car-
diovascular disease.

Genetic models of browning

Studies in genetic mouse models have further corroborated
the metabolic benefits of browning. Adipose-specific over-
expression of Ucp1 in agouti viable yellow (Avy) genetically
obese mice resulted in reductions in total body weight and
subcutaneous fat stores (Kopecky et al. 1995). These results
were supported by another study where mice overexpress-
ing Ucp1 in adipose tissue were resistant to diet-induced
obesity (Stefl et al. 1998). This was attributed to ectopic
expression of Ucp1 in white fat, thus increasing its thermo-
genic capacity. However, brown fat mass and its Ucp1
expression were drastically reduced in these mice, indicating

that the resistance to obesity was largely due to the
increased adaptive thermogenesis in WAT but not in BAT
(Stefl et al. 1998). Mice overexpressing Prdm16 in fat tissue
had marked increases of browning in WAT, specifically
subcutaneous depots, resulting in protection from diet-in-
duced obesity and glucose intolerance (Seale et al. 2011).
Supportively, ablation of Prdm16 in fat impaired browning
and led to obesity and insulin resistance (Cohen et al. 2014).
Furthermore, overexpression of Cyclooxygenase 2 (Cox2),
an enzyme involved in prostaglandin synthesis, also induced
browning of WAT and consequently increased energy
expenditure and reduced adiposity (Vegiopoulos et al. 2010).

Genes that have been highlighted in cancer, such as
Foxc2, Pten, and Folliculin, also have been implicated in
browning pathways. Overexpression of Foxc2 in HFD-fed
mice resulted in reduced fat mass as well as protection from
the associated insulin resistance and intramuscular accu-
mulation of lipids (Cederberg et al. 2001; Kim et al. 2005).
Overexpression of tumor suppressor Pten leads to increased
energy expenditure, hyperactive BAT, and higher levels of
Ucp1 in mice (Ortega-Molina et al. 2012). Folliculin (FLCN) is
known for its role as a tumor suppressor and also has been
implicated in metabolic reprogramming of adipose tissue
(Wada et al. 2016). Ablation of Flcn in adipocytes results in
increased energy expenditure and protection from diet-in-
duced obesity. This is due to activation of Ucp1 and other
BAT genes in both BAT and WAT, conferring an increased
cold tolerance (Yan et al. 2016). Despite these metabolic
benefits exhibited by the aforementioned mouse models with
induced WAT browning, it remains to be determined whether
they confer benefits in terms of eliminating risk to cancer.

THE SIDE EFFECTS OF BROWNING AGENTS

While the metabolic benefits of browning in humans remain
to be fully established, safety is a concern that must first be
addressed regarding any method used to induce browning.
Cold exposure is a classic and efficient way to induce
browning, but its obvious discomfort, together with risks of
hypothermia, makes it impractical for clinical use. Therefore,
browning agents, either endogenous or exogenous, provide
an attractive alternative for improving metabolic diseases.
Here we discuss a few commonly used browning agents to
draw attention to the safety concern of inducing WAT
browning.

Thiazolidinediones (TZDs)

Thiazolidinediones (TZDs) are PPARγ agonists that were
widely used as insulin sensitizers in the treatment of type 2
diabetes. In addition to their insulin sensitizing function,
TZDs are well known to induce thermogenic gene expres-
sion in both white and brown adipocytes (Sell et al. 2004;
Rong et al. 2007; Petrovic et al. 2010; Qiang et al. 2012).
Although TZDs have been proven to be effective in the
treatment of type 2 diabetes, their use has been limited by

REVIEW Kirstin A. Tamucci et al.

154 © The Author(s) 2017. This article is an open access publication

P
ro
te
in

&
C
e
ll



the incidence of adverse side effects, some of which include
heart failure, edema, weight gain, and bone loss (Shah and
Mudaliar 2010; Abbas et al. 2012; Soccio et al. 2014). In
this regard, the first clinically available TZD, troglitazone,
was withdrawn in 2000, three years after its approval by
FDA, due to serious hepatotoxicity (Knowler et al. 2005).
Similarly, rosiglitazone was banned in various countries in
2010 due to the increased incidence of heart attack and
stroke. Nevertheless, the IRIS (Insulin Resistance Inter-
vention after Stroke) clinical study recently reported a pos-
itive outcome in the use of pioglitazone for the treatment of
heart disease associated with insulin resistance (Kernan
et al. 2016). Non-diabetic patients with insulin resistance
along with a recent history of ischemic stroke or transient
ischemic attack (TIA) were treated with either pioglitazone
or placebo. Pioglitazone was effective in reducing the risk of
diabetes by 52% in addition to decreasing the risk of stroke
or myocardial infarction by 24%. Despite these promising
results, the adverse side effects of TZDs, such as bone
loss, weight gain, and edema, were confirmed by this study.
This highlights the need to further investigate the mecha-
nisms of TZD action in order to harness the full therapeutic
potential of these drugs for insulin sensitization and
browning activation.

FGF21

Fibroblast growth factor 21 (FGF21) emerges as an insulin-
mimetic hormone that regulates systemic energy balance
and has beneficial effects on body weight, insulin sensitivity,
dyslipidemia, and pancreatic β-cell growth (Kharitonenkov
et al. 2005; Wente et al. 2006; Kharitonenkov et al. 2007;
Coskun et al. 2008; Gaich et al. 2013). Interestingly, FGF21-
treated mice show a marked increase in the expression of
the key thermogenic genes Ucp1 and Dio2 in inguinal WAT
(iWAT), whereas Fgf21-deficient mice show an impaired
response to cold stress due to diminished thermogenic
activity (Fisher et al. 2012). The browning capacity of FGF21
is mediated through stabilization of Pgc-1α (Chau et al.
2010; Fisher et al. 2012) or a positive-feedback on PPARγ
activation (Dutchak et al. 2012).

One significant limitation to the use of FGF21 as a
browning agent is the occurrence of severe bone loss. Wei
et al. demonstrated that genetic Fgf21 gain-of-function, as
well as pharmacological FGF21 treatment, in diet-induced
obese mice reduced the number and area of osteoblasts and
osteoclasts while increasing that of bone marrow adipocytes
(Wei et al. 2012). In addition, chronic exposure to FGF21 has
been linked to growth retardation in mice based on the
development of growth hormone (GH) resistance in Fgf21-
transgenic mice (Inagaki et al. 2008). Overexpression of
Fgf21 has also been shown to cause infertility in female but
not in male mice (Inagaki et al. 2007). Moreover, FGF21
reduces physical activity and promotes torpor in Fgf21
transgenic mice: a favorable adaptive response to starva-
tion, but an undesirable outcome in the context of obesity

(Inagaki et al. 2007). Hence, despite the beneficial effects of
FGF21 in terms of improving insulin resistance and inducing
browning, its severe side effects will have to be overcome for
long-term clinical administration.

β3-Adrenergic receptor agonists

β3-adrenergic receptors (β3-AR) mediate thermogenesis in
BAT and lipolysis in WAT; thus, activating these receptors
with selective pharmacological agonists is an attractive
strategy for stimulating the browning of WAT. A number of
β3-AR agonists have been developed as anti-obesity
agents. However, their harmful side effects have called into
question whether the long-term stimulation of β3-ARs is
safe and beneficial. Himms-Hagen et al. demonstrated that
chronic treatment with a β3-AR agonist, CL 316,243, led to
the appearance of multilocular brown adipocytes in WAT,
promoted thermogenesis, and delayed the development of
obesity in rats fed a high-fat diet (Himms-Hagen et al.
1994). However, its browning effects in humans are subtle
with chronic administration (Weyer et al. 1998; Arch 2002).
Another agonist, Mirabegron, a prescribed drug for treating
overactive bladder, has been shown to activate BAT in
young, lean, and healthy male humans at a dose of
200 mg/kg/day, but it also causes tachycardia (Cypess
et al. 2015). A lower dose appeared safe, as reported by
the BEAT-HF trial (Beta 3 Agonists Treatment in Heart
Failure), after eliminating the intolerance to adverse events
seen at the higher dose (Bundgaard et al. 2016). There-
fore, more specific β3-AR agonists are desired for the
treatment of obesity and diabetes, but their chronic effects
must be closely monitored.

Thyroid hormone

Thyroid hormones (THs) T4 (thyroxine) and T3 (triiodothy-
ronine) are key regulators of metabolism and energy
homeostasis, and have been shown to induce WAT
browning (Mullur et al. 2014). Low doses of the T3

metabolite, triiodothyracetic acid (TRIAC), induced ectopic
expression of UCP1 in rat abdominal WAT (Medina-Gomez
et al. 2008). Consistently, chronic administration of GC-1, a
thyroid hormone receptor β-specific agonist, to obese mice
markedly increased browning of subcutaneous WAT with a
significant increase in core body temperature and whole
body energy expenditure (Lin et al. 2015). Similar safety
concerns for the use of β3-AR agonists have been raised
for THs in terms of heart risks, hyperthermia, and weight
loss (Moolman 2002; Mullur et al. 2014). THs have also
been linked to an increased risk of fractures in post-
menopausal women with lower serum thyroid-stimulating
hormone (TSH) levels (Bauer et al. 2001), which directly
affects bone turnover (Murphy and Williams 2004). This
further emphasizes the need for browning agents to be
carefully designed and controlled in order to ensure its safe
metabolic benefits.
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BMP7

Bone morphogenetic proteins-7 (BMP-7) is a member of the
superfamily of transforming growth factor-β. It has been
shown to singularly promote the differentiation of mes-
enchymal progenitor C3H10T1/2 cells to a brown adipocyte
lineage (Tseng et al. 2008). Treatment of C57Bl6/J mice with
BMP7 resulted in the extensive browning of WAT, as evi-
denced by increased expression of the BAT marker Ucp1
and the appearance of brown adipocyte clusters (Boon et al.
2013). Most notably, BMP7 treatment of diet-induced obese
mice at subthermoneutrality also led to an improved meta-
bolic profile in these mice as demonstrated by reduced fat
mass, lower plasma glucose, and hepatic triglycerides (Boon
et al. 2013). These results are promising in terms of a
potential therapeutic approach for the treatment of obesity.
However, it should be noted that BMP7 is approved by the
FDA only for clinical practice in long bone trauma, spinal
fusion, and oral and maxillofacial applications due to con-
cerns of cancer and immunosuppression (Buijs et al. 2007;
Boon et al. 2011; Carreira et al. 2014).

VEGF-A

VEGF-A is the master angiogenic factor and has been
demonstrated to regulate the expansion and homeostasis of
fat tissue (Sun et al. 2012; Elias et al. 2012; Lu et al. 2012;
Sung et al. 2013). Using an inducible adipocyte-specific
VEGF-A overexpression model, Sun et al. demonstrated that
the local up-regulation of VEGF-A in adipocytes improved
vascularization and led to the browning of WAT, with massive
up-regulation of UCP1 and PGC-1α (Sun et al. 2012). This
was accompanied by an increase in energy expenditure and
resistance to high fat diet-mediated metabolic dysfunction
(Sun et al. 2012). On the contrary, loss of VEGF-A in adipose
tissue elicits browning of WAT (Lu et al. 2012). However, the
consequences of the proangiogenic activity of VEGF-A may
not always be beneficial. During adipose tissue expansion,
VEGF-A evidently serves a protective role for the metaboli-
cally challenged adipose tissue by facilitating browning. In
contrast, under conditions of preexisting adipose tissue
dysfunction, the stimulation of angiogenesis and fat pad
expansion would likely have the opposite—and therefore
detrimental effect. For instance, anti-VEGF-A therapies have
been applied to treat cancer and eye diseases (Ferrara and
Adamis 2016). Thus, the nature of its proangiogenic prop-
erties and the related tumorigenic potential impedes the
utilization of VEGF-A as a therapeutic browning agent in
obesity and diabetes treatment.

BROWNING AND HYPERMETABOLISM

Cachexia

Cachexia is a metabolic wasting syndrome characterized by
severe weight loss, systemic inflammation, and atrophy of
WAT and skeletal muscle. It is most commonly observed in

cancer patients but has also been associated with burn
injuries, infectious diseases (HIV, Tuberculosis), and chronic
diseases (congestive heart failure, chronic kidney diseases,
chronic obstructive lung disease) (Argilés et al. 2014).
Cachexia contributes to the poor prognostic outcomes for
these patients and specifically contributes to 20% of cancer-
related deaths (Fearon et al. 2013; Argilés et al. 2014).
Worse still is that an increase in calorie intake does not
improve the cachectic state in patients (Pedroso et al. 2012).

Browning of WAT has primarily been discussed in light of
its metabolic benefits: namely, increased energy expendi-
ture, improved insulin sensitivity, and weight loss. However,
recent studies have identified browning of WATas a potential
contributor to the development and progression of hyper-
metabolism in cachexia (Petruzzelli et al. 2014; Kir et al.
2014; Randall et al. 2015; Kir et al. 2016). In the K5-SOS
mouse model of skin tumors that exhibits a rapid develop-
ment of cachexia, energy expenditure was elevated while
the respiratory exchange ratios (RER) were reduced, sug-
gesting that lipids were used as the primary energy source in
these cachectic mice. This explains the observed increase in
catabolism of fatty acids in order to meet the high energy
demand in cachexia (SMITH and Hock 1963). On the other
hand, attenuation of lipolysis via genetic ablation of adipose
triglyceride lipase (ATGL) not only preserves WAT but also
prevents muscle wasting (Das et al. 2011). Therefore,
browning of WAT in pathologic conditions, such as cancer
and burn injury, adds fuel to an already highly catabolic state,
leading to a number of deleterious consequences.

Cachexia factors and browning

Interleukin-6

Cachexia has also been described as a highly inflammatory
state. There is evidence to suggest that cytokines and
potentially other tumor-secreted factors may be responsible
for inducing the hypermetabolic state and the consequent
reduction in body weight and fat mass (Fearon et al. 2012).
Recently, IL-6 has been shown to induce and sustain WAT
browning in cachexia. Mice injected with IL-6 proficient C26
carcinoma cells rapidly lost body weight and became
cachectic (Petruzzelli et al. 2014). Conversely, blocking IL-6
with a neutralizing monoclonal antibody or with sulindac, a
nonsteroidal anti-inflammatory drug (NSAID), reduces the
severity of cachexia and suppresses the browning capacity
of subcutaneous WAT (Petruzzelli et al. 2014).

PTH and PTHrP

Parathyroid-hormone (PTH) and Parathyroid-hormone-re-
lated protein (PTHrP) have been implicated in the browning
of WAT in cachexia. PTHrP was originally recognized for its
beneficial effects on skin, cartilage, placenta, and bone
development (Maioli et al. 2002; Guntur et al. 2015). How-
ever, its function has recently been associated with
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hypermetabolic conditions and subsequent detrimental out-
comes. Using Lewis lung carcinoma (LLC) cells as a model
of cancer cachexia, tumor-derived PTHrP was shown to
contribute to wasting by inducing the expression of thermo-
genic genes, including Ucp1, Dio2, and Pgc-1α (Kir et al.
2014). Treatment of the tumor-bearing mice with a PTHrP-
neutralizing antibody inhibited adipose tissue browning and
prevented loss of muscle mass and strength. In addition,
parathyroid hormone (PTH) was shown to stimulate a ther-
mogenic gene program in 5/6 nephrectomized mice (a model
of chronic kidney disease) that suffer from cachexia (Kir et al.
2016). Consequently, fat-selective knockout of its signaling
receptor, PthR, blocked adipose tissue browning and wast-
ing, preserved muscle mass, and improved strength. In fact,
these PthR knockout mice were resistant to tumor-induced
cachexia (Kir et al. 2016).

Burn injury

Burn trauma causes hypermetabolism due to marked
increases in catecholamines, which have been reported
years after the initial injury (Kulp et al. 2010). This sustained
increase in catecholamines leads to chronic activation of the
β-adrenergic signaling pathway, which in turn initiates
browning of WAT and the cascade of events leading to the

hypermetabolic response (Sidossis et al. 2015; Patsouris
et al. 2015). Most notably, it was recently shown that
palmitate, an abundant free fatty acid found in the sera of
burn patients, could regulate macrophage polarization (Xiu
et al. 2015; Xiu et al. 2016). This interaction may suggest a
detrimental feed-forward loop, where browning-induced
lipolysis causes free fatty acid efflux, which in turn sustains
the browning response during the hypermetabolic state.
Further investigation is needed to clarify the function of
browning in burn injury, whether it is beneficial to the
recovery or contributes to the complications of burn injury.
Additionally, a prolonged hypermetabolic state can result in
hepatic steatosis and immune suppression (Jeschke 2009;
Jeschke et al. 2014). In this regard, the long-term benefits of
browning might be canceled out.

THE ROLE OF BROWNING IN AGING

Aging is arguably a major risk factor for metabolic syndrome
(Tchkonia et al. 2010) and is accompanied by a loss of active
BATand beige adipocytes in WAT (Cypess et al. 2009; Saito
et al. 2009; Rogers et al. 2012). In theory, this loss of
browning capacity leads to the reduction in energy expen-
diture and the expansion of adiposity (Yoneshiro et al. 2011;
Rogers et al. 2012), and thus contributes to the progressive
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Figure 1. A summary of the metabolic benefits and adverse outcomes associated with the induction of browning.
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metabolic decline associated with aging (Barzilai et al.
2012). The decrease of browning is likely caused by chan-
ges in gonadal hormones, desensitization to β-adrenergic
signaling (Nedergaard and Cannon 2010) or other factors.
Recently, Foxa3 has been identified as a novel transcrip-
tional regulator that inhibits browning during aging (Ma et al.
2014). Although the loss of Foxa3 resulted in a lean, energy
inefficient and more insulin sensitive phenotype in mice older
than one year old (Ma et al. 2014), it has been suggested
that Foxa3 is a “hoarder” gene to facilitate lipid storage in
aged animals (Ma et al. 2015). Indeed, energy preservation
is probably more important for survival during food depriva-
tion, which is apparently a challenge for aged animals when
their predatory ability declines. Therefore, the metabolic
benefits of browning may be unveiled predominately under
the conditions of nutrient excess.

THE BRAKE-SWITCH SYSTEM OF BROWNING

In recently years, significant progress has been made in
identifying stimuli and signaling pathways that can induce
browning of WATand trigger adaptive thermogenesis. These
advancements in knowledge have garnered great support in
exploiting adipose tissue plasticity together with browning
agents as therapeutic tools for obesity, albeit with side
effects as discussed above. The revelation of the two sides
of the coin regarding the browning of WAT—namely, that it
mitigates the metabolic consequences of obesity but prop-
agates a hypermetabolic state in other pathologic conditions
—suggests that browning “wastes energy” and thus is not a
favorable physiological state. Therefore, we hypothesized
that the body needs to tightly regulate this browning process
via a “brake-switch” system to prevent the negative out-
comes of both hyper- and hypo-activation of browning
activity (Ferrannini et al. 2016).

This “brake-switch” hypothesis is supported by the recent
identification of HOXC10, a homeobox domain-containing
transcription factor, as a negative regulator of browning of
WAT (Ferrannini et al. 2016; Lim et al. 2016). It is enriched in
subcutaneous fat, and the ectopic overexpression of
HOXC10 suppressed brown fat genes and induced white
adipocyte-specific genes with a minimal effect on the pan-
adipocyte markers (Ferrannini et al. 2016; Ng et al. 2017).
The HOXC10 browning-inhibitory effect is partially mediated
by suppressing Prmd16 gene expression (Ng et al. 2017).
Another molecular brake for browning is ZFP423 (Shao et al.
2016), which is a C2H2 zinc-finger protein that had previ-
ously been identified as a transcriptional regulator of pre-
adipocyte determination (Gupta et al. 2010). Ablation of
Zfp423 in white adipocytes led to the accumulation of beige
adipocytes in WAT in adult mice, while its gain-of-function
converted brown adipocytes into a more white-like pheno-
type (Shao et al. 2016). Taken together, HOXC10 and
ZFP423 represent the native “brake” system in white adi-
pocytes to release the browning activity only under appro-
priate conditions. This switch is likely dysregulated in the

hypermetabolic state, as seen in cachexia, or the hypome-
tabolic state, as seen in aging.

CONCLUSION

The browning of WAT has become an increasingly favorable
strategy for ameliorating the effects of obesity and subsequent
metabolic dysfunction. However, it is energetically inefficient
and thus is physiologically unfavorable. Furthermore, recent
evidence has implicated browning in the development of
cachexia, lipotoxicity, and other detrimental outcomes under
acute and chronic hypermetabolic conditions (as summarized
in Fig. 1). The increasing awareness of the dark side of
browning emphasizes the need to further investigate factors
and mechanisms that regulate the activation and deactivation
of browning. In this regard, the brake-switch system of
browning may be critical for maintaining the proper function of
BAT and WAT. Further investigation should be warranted to
efficiently induce browning in a tissue-specific and tightly con-
trolled manner in order to minimize the occurrence of negative
effects and to maximize the therapeutic potential of browning
agents in the treatment of metabolic disorders.

ACKNOWLEDGEMENTS

We would like to thank members of Qiang laboratory for insightful

discussion. This work was supported by National Institutes of Health

grants R00DK97455 to L. Q., Pilot and Feasibility funding from the

Diabetes Research Center to L.Q. (P30 DK063608), training grant to

K. A. T (T32 DK007647-27).

ABBREVIATIONS

ATGL, adipose triglyceride lipase; ATP, adenosine triphosphate;

BAT, brown adipose tissue; β3-AR, beta 3-adrenergic receptor;

BMP4, bone morphogenetic protein 4; BMP7, bone morphogenetic

protein 7; C/EBPα, CCAAT/enhancer binding protein alpha; CL

316,243, beta 3-adrenergic receptor agonist; COX2, cyclooxyge-

nase 2; CtBP1/2, carboxy-terminal binding proteins 1 and 2; DIO2,

deiodinase, iodothyronine type 2; EBF2, early B-cell factor 2; FDA,

food and drug administration; FGF21, fibroblast growth factor 21;

FLCN, folliculin; FOXA3, forkhead box A3; FOXC2, forkhead box

C2; GC-1, thyroid hormone receptor beta-specific agonist; GH,

growth hormone; HFD, high fat diet; HIV, human immunodeficiency

virus; HOXC10, homeobox C10; IL-6, interleukin-6; IRF4, interferon

regulatory factor 4; MYF-5, myogenic factor 5; NAD, nicotinamide

adenine dinucleotide; NSAID, nonsteroidal anti-inflammatory drug;

PDGFRα, platelet derived growth factor receptor alpha; PGC-1α,

PPAR gamma coactivator 1 alpha; PPARγ, peroxisome proliferator-

activated receptor gamma; PRDM16, PR-domain zinc finger protein

16; PTEN, phosphatase and tensin homolog; PTH, parathyroid-

hormone; PTHrP, parathyroid-hormone-related protein; RER, respi-

ratory exchange ratio; SirT1, sirtuin-1; T3, triiodothyronine; T4,

thyroxyne; TIA, transient ischemic attack; TLE3, transducin like

enhancer of split 3; TRIAC, triiodothyracetic acid; TSH, thyroid-

stimulating hormone; TZD, thiazolidinedione; UCP1, uncoupling

protein 1; VEGF-A, vascular endothelial growth factor A; WAT, white

adipose tissue; ZFP423, zinc finger protein 423.
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