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Obesity is one of the major pandemics of the 21st century. Due to its

multifactorial etiology, its treatment requires several actions, including dietary

intervention and physical exercise. Excessive fat accumulation leads to several

health problems involving alteration in the gut-microbiota-brain axis. This axis

is characterized by multiple biological systems generating a network that

allows bidirectional communication between intestinal bacteria and brain.

This mutual communicat ion maintains the homeostasis of the

gastrointestinal, central nervous and microbial systems of animals. Moreover,

this axis involves inflammatory, neural, and endocrinemechanisms, contributes

to obesity pathogenesis. The axis also acts in appetite and satiety control and

synthesizing hormones that participate in gastrointestinal functions. Exercise is

a nonpharmacologic agent commonly used to prevent and treat obesity and

other chronic degenerative diseases. Besides increasing energy expenditure,

exercise induces the synthesis and liberation of several muscle-derived

myokines and neuroendocrine peptides such as neuropeptide Y, peptide YY,

ghrelin, and leptin, which act directly on the gut-microbiota-brain axis. Thus,

exercise may serve as a rebalancing agent of the gut-microbiota-brain axis

under the stimulus of chronic low-grade inflammation induced by obesity. So

far, there is little evidence of modification of the gut-brain axis as a whole, and

this narrative review aims to address the molecular pathways through which

exercise may act in the context of disorders of the gut-brain axis due to obesity.
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Introduction

The obesity epidemic has reached over 2 billion people

worldwide, with 39% of the world population being

overweight. This number is expected to increase to 50% by

2030 (1). Obesity has multifactorial pathogenesis and is

associated with pathologies characterized by metabolic

disorders, such as type II diabetes (2, 3). In addition, obesity is

associated with increased risk of stress, depression, anxiety,

decreased satiety, and reduction of life expectancy (1). On the

other hand, dietary control and increased energy expenditure

through physical activity have been used as the main weight-

reduction strategies (4, 5).

Obesity has been commonly associated with dysregulation of

intestinal function, altered gut microbiota, and appetite

dysregulation (6, 7). These physiologic responses are closely

related, involving the gut microbiota, the gastrointestinal tract,

and the brain, which compose the microbiota-gut-brain axis

(MGB axis) (8). For example, a report on lean animals that for

two weeks received a transplant of the fecal microbiota from

obese animals led to a significant increase in body weight (9).

More recently, studies have indicated that physical activity could

attenuate the physiologic outcomes of obesity, which may be

associated with a modulation of the MGB-axis (10–12).

According to the literature, sedentary hypertensive animals

(SHR) that received a transplant of fecal microbiota from SHR

animals that performed physical exercise had attenuated systolic

blood pressure and a change in the gut-brain axis through the
Frontiers in Endocrinology 02
modulation of the gut microbiota (13). It is believed that

different exercise training variables (e.g., intensity, volume,

type of exercise) may influence neurotransmitter signaling

involved in appetite control, intestinal integrity, permeability,

and alteration of the gut microbiota (14–16).

Although these responses have never been investigated

collectively in a single study, it is believed that the modulation

of the MGB-axis by physical activity can result in antagonistic

reactions compared to changes due to obesity (7, 10, 17–19).

Moderate exercise has been associated with improved gut health,

intestinal permeability control, increased microbial variation,

and appetite regulation (17, 20, 21). On the other hand, obesity is

often associated with antagonistic characteristics such as

increased intestinal permeability (leaky gut), dysbiosis, and

appetite dysregulation (7, 22, 23). In this context, the present

review will address the molecular mechanisms involved in

modulating the MGB-axis by physical exercise and obesity and

their contrasting points.
Microbiota-gut-brain axis

The foremost communicators between the brain and the gut

(MGB-axis) are the central nervous system (CNS), the enteric

nervous system (ENS), the autonomic nervous system (ANS),

and the hypothalamic-pituitary-adrenal (HPA) axis (24), see

Figure 1. The common feature of the MGB axis is the inclusion

of gut microbes, metabolites, and gut peptides in gut-brain
FIGURE 1

Organization of the microbiota-gut-brain axis. Representation of communication of the microbiota-gut-brain axis under normal conditions.
Release of neurotransmitters and neuroactive metabolites, cytokines, peptides and SCFAs in the systemic circulation and delivery of these
substances to the interacting tissues and hypothalamus. SCFAs, Short-Chain Fatty Acid; PYY, Peptide YY; GLP-1, Glucagon Like Peptide-1; CKK,
Cholecystokinin; IL, interleukin.
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bidirectional communication (24, 25). The vagus nerve (NV)

mediates communication between the gut and the brain (24).

However, this communication can also occur indirectly, though

microbial-derived intermediaries such as short-chain fatty acids

(SCFAs), secondary bile acids (2BAs), tryptophan metabolites,

and cytokines (interleukin-6, IL-6) (24).

Each component of the MGB axis communicates bi-

directionally within the ANS, antagonistical ly and

synergistically (24). Excess adipose tissue is associated with

changes in both sympathetic and parasympathetic activities

(26). However, the decrease in body weight can reverse the

changes in ANS caused by obesity (27). Thus, the ANS seems

crucial for a better understanding of the pathophysiology of

obesity (28).

Another critical factor related to the MGB-axis is the

immune system (29). Low-grade chronic inflammation is a

common feature of metabolic diseases such as obesity and an

increased factor in developing neurological conditions (30). In

addition, low-grade chronic systemic inflammation is associated

with dysbiotic microbiota and malfunctioning immune

responses (31, 32). In this regard, it has been shown that

microbial-derived SCFAs seem to impair the proper

functioning of microglia, brain macrophages responsible for

antigen presentation, phagocytosis, and modulating

inflammation throughout life (33–35).

Since the MGB-axis includes components directly involved

with the nervous system, such as the metabolism and hormonal

and immune systems, dysfunctions between its features may

result in negative impacts on the host’s health (36). Not all the

mechanisms by which training acts on the MGB axis are explicit.

Here, the role of the MGB axis in the pathogenesis of obesity will

be discussed, and whether physical activity (or physical training)

could benefit the axis and treat obesity from a chronic perspective.
The impact of obesity on the
microbiota-gut-brain axis

Deregulation of the MGB axis is associated with several

metabolic and neurologic pathologies, such as Alzheimer’s,

Parkinson’s, and obesity (37–39). After food consumption,

sensory information crosses the NV and is sent to the nucleus

tractus solitarius (NTS). NTS neurons integrate the incoming

vagal information with another neuroendocrine signal into the

hypothalamus (40). Energy balance signaling in the

hypothalamus (via NTS neurons) can recognize changes in

dietary pattern (41). For example, increased chronic intake of

hypercaloric diets can modulate the communication of the NS

pathway, which can cause a hormonal imbalance related to

appetite control, leading the individual to obesity (41, 42).

The hypothalamus is considered the “command center” of

satiety and energy expenditure (42). Changes in the

hypothalamus signaling will reflect on the received stimulus
Frontiers in Endocrinology 03
(43). In this regard, obesity can dysregulate several peptides or

their receptors that are known to decrease food intake, such as

nesfatin-1, oxyntomodulin (OXM), CCK, glucagon-like peptide

1 (GLP-1), pancreatic polypeptide (PP), and PYY (44), as shown

in Table 1. By changing these molecules, obesity leads to

deficient signaling to the hypothalamus, causing hypothalamic

dysfunction and energy imbalance (62, 63).

The high caloric consumption in the Western diet can cause

an inflammatory environment in the digestive tract associated

with microbiome disturbances (64). In this sense, saturated long-

chain fats can activate toll-like receptors 4 (TRL4) and initiate an

inflammatory process in astrocytes, microglia, and neurons (65).

Inflammation of the hypothalamus is characterized by

exacerbated proliferation of glial cells, infiltration of microglia,

and proliferation of astrocytes (65, 66). Hypothalamic

inflammation caused by obesity generates mitochondrial

dysfunction (62). The melanocortin system consists of several

critical neuronal populations that participate in hypothalamic

mitochondrial regulation (67) and are located in the agouti-

related protein (AgRP)/neuropeptide Y (NPY) and

proopiomelanocortin (POMC)/cocaine- and amphetamine-

regulated transcript (CART) neurons (Figure 2). In response

to food consumption, the a-melanocyte-stimulating hormone

(a-MSH) is released from POMC/CART-expressing neurons. It

binds to melanocortin receptors 3 and 4 (MC3/4R), reducing

appetite and increasing energy expenditure (68). The opposite

occurs with AgRP/NPY-expressing neurons, which release

AgRP neuropeptides that bind to MC4R and inhibit POMC

neurons, stimulating hunger and decreasing energy expenditure

(68). Thus, several studies have sought to understand MC4R

signaling pathways due to their importance in regulating

appetite and obesity (69–71).

Nesfatin-1 is an anorectic neuropeptide associated with

appetite regulation, malnutrition, and weight reduction (see

Figure 2). The reduction of nesfatin-1 has been identified in

overweight and obese children, adolescents, and adults (72, 73).

Nesfatin-1 is derived from nucleobindin-2 (Nucb2) mRNA.

Nucb2 reduction is also identified in obese people;

interestingly, this reduction can lead to insulin resistance (74).

Recently, it was identified that Nucb2/Nesfatin-1 is reduced in

the hypothalamus of obese individuals (75). Also, an increase in

nesfatin-1 in the brain leads to activation of the insulin receptor

(InsR)/insulin receptor substrate-1 (IRS-1), increasing insulin

sensitivity (76). Thus, this peptide appears to be a target for

regulating appetite and glycemic control (77, 78).

Several peptides can be altered due to obesity (79).

Enteroendocrine cells (EEC) release the hormone GLP-1,

which acts on gastric reduction, satiety control, and decreased

apoptosis of pancreatic beta cells (80). GLP-1 is reduced in obese

people (81). It was recently identified that applying

subcutaneous injections of GLP-1 receptor agonist exenatide 2

mg (ExQW) once a week and over 36 weeks leads to a reduction

in the total adipose tissue waist circumference of obese
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individuals (82). In this context, the pharmacological

manipulation of GLP-1 receptor agonists as a target in taste

perception and weight loss has recently emerged (47, 83). PYY

and cholecystokinin (CCK) peptides are also related to appetite

control and decreased gastric secretion (84, 85). In obese

individuals, PYY and CCK are usually reduced (45, 46).

Animals with the inhibited CCK receptor (knockout model)

tend to acquire obesity and develop non-insulin-dependent
Frontiers in Endocrinology 04
diabetes mellitus (86). Interestingly, these animals also contain

an elevation of neuropeptide Y (NPY) mRNA expression in the

dorsomedial hypothalamic (DMH) area (86). This peptide

increases appetite and is commonly overexpressed in obese

people (87). PYY and NPY are similar peptides sharing the

same receptors (Y1-Y3 and Y5 receptors) (88), as shown in

Figure 2. Obesity increases peripheral NPY in adipose tissue

macrophages with autocrine and paracrine signals (89). Besides,
TABLE 1 Functions of hormones/peptides and possible changes due to obesity.

Hormone /
peptide

Secreting
body

Function Contributing
factor

Influence of obesity Author

Ghrelin Stomach Meal starter; long-term regulation of body
weight; energy fuel division.

Hypercaloric /
hyperlipidic diet

↑ Levels and acceleration of gastric
emptying

(45)

Peptide YY (PYY) Intestine Meal inhibitor; ↑ satiety; ↑ intestinal
motility

Snack hypercaloric 2000
kcal

↓ Plasma PYY after meal and fasting (46)

Glucagon like
peptide-1 (GLP-1)

Large
intestine

↑ In the release of insulin; inhibition of
gastric emptying and secretion of gastric
acid in the stomach; ↑ satiety in the brain;

Liraglutide Suppression in the concentrations of GLP-1 (47)

Cholecystokinin
(CCK)

Small
intestine

Stimulates the contraction of the
gallbladder; ↑ satiety; ↑ the secretion of
pancreatic enzymes for digestion of
carbohydrates, proteins and fats;

– ↓ CCK release, stimulating ghrelin
secretion.

(48)

Pancreatic
polypeptide (PP)

Pancreas ↑ Energy expenditure; ↑ satiety;
suppression of pancreatic secretion;
stimulation of gastric secretion;

Hypercaloric /
hyperlipidic diet

↓PP (49)

Oxytomodulin
(OXM)

Small
intestine

↑ Energy expenditure; ↑ satiety;
suppression of pancreatic secretion;
stimulation of gastric secretion;

Infusion of PYY and
OXM

↓ OXM. Infusions result in ↓ energy intake. (50)

Gastic inhibitor
polypeptide or
glucose-dependent
insulinotropic (gip)

Large
intestine

Inhibits water absorption; ↑ stimulating
lipase.

High-fat diet ↑ GIP concentration: ↑ visceral and hepatic
fat, ↑ blood flow in adipose tissue;

(51)

Gastrin Small
intestine

↑ Intestinal motility; stimulates the growth
of the intestinal mucosa;

High-fat diet ↓ Gastrin, weight gain. ( (52)

Leptin Stomach Control of energy intake; ↑ satiety; High-fat diet ↑ Circulating levels, resistance to its
capture.

(53)

Adiponectin Blood flow Glycemia regulation; fatty acid catabolism;
↑ insulin sensitization;

Thiazolidinediones or
CB1 antagonists
(rimonabant) increase a
plastic adiponectin

↓ Adiponectinemia, contributing to the
pathogenesis of insulin resistance, type 2
diabetes, cardiovascular disease in obese or
overweight people

(54)

Insulina Adipose
tissue/
pancreas

↓ Blood glucose control; lipid storage High-fat diet Insulin resistance, ↓ the body's glucose
uptake

(55)

Neuro peptide Y
(NPY)

Adipose tissue ↑ In energy storage; ↑ in food intake; Hypercaloric /
hyperlipidic diet

↓ Levels, triggering weight gain (56)

Melanocortin Adipose tissue Energy balance regulation – ↑ Melanocortin and the MC4R gene (57)

Islet amyloid
polypeptide (IAPP) or
amylin

Stomach Gastric acid secretion; inhibition of gastric
emptying; release of glucagon; ↓ of food
intake; ↓ weight gain and adiposity

– Plasma levels are ↑ in obese individuals (58)

Orexin or hypocretin Stomach/
intestine

Regulation of intestinal motility; regulation
in pancreatic secretion; regulation of food
intake;

Hyperlipidemic diet ↓ In plasma levels, which can ↓ energy
expenditure.

(59)

Visfatin (VF) Adipose tissue
visceral

Glucose regulation; insulin-like action; Hyperlipidemic diet ↓ Plasma concentrations, triggering ↓
glucose sensitivity

(60)

Nesfatin-1 Hypothalamus Appetite regulator; energy homeostasis
regulator;

Hyperlipidemic diet In obese people the concentration is ↑, ↑
food intake ↓ satiety;

(61)
fronti
↑ - increase and greater; ↓ - decrease and decline;
(↑) Increase Secretion and Greater; (↓) Decrease Secretion and Decline.
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adipose Y5R mRNA is higher in obese than non-obese

individuals (90). Thus, a drug induction strategy with

antagonistic effects of neuropeptide receptors has emerged as

an anti-obesity treatment (91, 92).

Ghrelin and leptin are other peptides that significantly

impact satiety control (Table 1). These two hormones are

related to food intake and body weight (93). Ghrelin is an

orexigenic hormone that acts on the hypothalamus’s arcuate

nucleus (Arc) in response to fasting. Ghrelin stimulates the GH

secretion of growth hormone (GH) by the GH secretagogue-

receptor (GHS-R). Obese people have low ghrelin levels and

leptin resistance (lower leptin receptor expression, Lep-R) (94,

95). A higher circulating leptin level is considered a marker of

uncontrolled eating in these individuals.

Furthermore, as a result of ghrelin reduction, obese people

also have a GH deficiency (96). Recently, it has been identified

that the synthetic GHSR agonist (hexarelin) reduces fat

accumulation and improves insulin sensitivity in obese mice

(97). Although drug treatments for obesity have shown promise,

they are not yet effective in slowing the disease progression and

require multiple health domains extending beyond weight

reduction (98). Fat accumulation leads to intestinal,

hypothalamic, and systemic inflammation (99, 100). Excessive

triglyceride in fat cells increases the release of tumor necrosis

factor-alpha (TNF-a) and pro-inflammatory interleukins and
Frontiers in Endocrinology 05
decreases the expression of anti-inflammatory molecules such as

adiponectin (101). These pro-inflammatory adipokines

participate in the increase of systemic and intestinal

inflammation (102, 103).

Furthermore, gut-derived peptide disturbances are also

related to increased intestinal inflammation caused by obesity

(104). The derived inflammatory signaling from obesity is

associated with anatomic and physiologic changes in the

intestine. The mucosa layer is composed of epithelial cells

(enterocytes) connected by specialized proteins knowns as

tight junctions (TJ) (105). These proteins are responsible for

“filtering” the components that are absorbed by the intestinal

enterocytes (105). An increase in TNF-a and IL-13 decreases TJ

expression, increasing the chances of intestinal inflammation.

Also, an increase in TJ in blood circulation is associated with the

deleterious effects of obesity on intestinal integrity (106, 107).

Treatments with peptides such as CCK can preserve the

intestinal mucosa’s integrity and decrease TJ dysfunction

(104). Furthermore, the gut microbiota is an essential

component of TJ control, intestinal mucosa, and satiety

regulation (108).

Several studies have shown that obese phenotypes are

associated with the altered composition and low abundance of

the gut microbiota (109–111). Gut microbiota can ferment

indigestible fibers and produce SCFAs (109). In this sense,
FIGURE 2

Alteration of the microbiota-gut-brain axis in obesity. Main hormonal changes derived from obesity. Obesity leads to damage to epithelial cells
and damage to gap junctions of these cells, which allows greater permeability of undesirable substances to the systemic circulation. A decrease
in mucus and decline in the interactions of some peptides/hormones with their respective receptors also occurs. Red cells illustrate inflamed
cells. (↑) Increase Secretion and Greater; (↓) Decrease Secretion and Decline; (⊕) Positive interaction; (⊖) Negative Interaction; (⊘) Non
Interaction; SCFAs, Short-Chain Fatty Acid; PYY, Peptide YY; OXM, Oxytomodulin; PPYR1, Pancreatic Polypeptide Receptor 1; PP, Pancreatic
Polypeptide; GLP-1, Glucagon Like Peptide-1; GLP-1R, Glucagon Like Peptide-1 Receptor; LEPRB, Leptin Receptor Long Isoform; Y1R,
Neuropeptide Y Receptor type 1; Y2R, - Neuropeptide Y Receptor type 2; GHSR, - Growth Hormone Secretagogue receptor; CKK,
Cholecystokinin; MC3R, Melanocortin 3 Receptor; MC4R, Melanocortin 4 Receptor; AgRP, Agouti-Related Protein.
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animals that ate a high-fat diet containing 10% fermentable

flaxseed fiber, which increased total SCFA levels, gained less

weight than those that ate without the fiber (112). These results

agree with the SFCA’s being able to mediate the energy balance

of obesity by increasing energy expenditure and fat oxidation

(113). SCFAs can also protect adipocytes from leukocyte

infiltration by attenuating interleukin-1b (IL-1b) and TNF-a
expression, in addition to restoring the adiponectin production

in high-fat-fed mice (114). Furthermore, SCFAs appear to be the

“bridge” of communication between the gut microbiota and the

brain (115). Due to this communication, the gut microbiota can

regulate inflammation in the hypothalamus and is believed to be

one of the avenues of appetite control and obesity

treatment (116).

More recently, high BMI was associated with lower alpha

diversity; however, the gut microbiota from obesogenic

phenotypes may vary according to race/ethnicity, dietary

components, or socioeconomic status (117). Moreover, some

bacteria such as F. prausnitzii, R. faecis, A. muciniphila,

Prevotelaceae, and Ruminococcus have been associated with

weight reduction (118, 119). More recently, Akkermansia

muciniphila was shown to reduce gut barrier disruption and

insulin resistance (120), where individuals with diabetes and

obesity present a reduced abundance of this species, leading to

some prospects in treating obesity (121). Moreover, obese mice

supplemented with SCO-792, an available enteropeptidase

inhibitor reported to have therapeutic effects on obesity and

diabetes, increased the abundance of A. muciniphila (122).

Besides, an increase in Prevotella in overweight adults has

been related to significant weight reduction (123). Thus, the

gut microbiota seems to participate in the brain-intestine axis

due to the functions in the host’s metabolism and may play a role

in treating obesity by regulating appetite (124, 125).

Obesity is also associated with immunological changes

throughout the MGB axis (126, 127). Adipose tissue is

considered an endocrine organ and secretes some

proinflammatory proteins (adipokines), such as leptin, resistin,

and angiopoietin-like protein 2 (ANGPTL2) (128). Leptin and

ANGPTL2 stimulate the activation and proliferation of

monocytes and macrophages (129, 130). Resistin drives

inflammation by elevating TNF-a and IL-6, activating the

Toll-like receptor (TLR) 4-affiliated pro-inflammatory pathway

and developing insulin resistance (131). Excess adipose tissue

can lead to these immune and metabolic changes (132, 133).

During obesity, the protective interleukins (IL-17-producing

Th17 cells, IL-10-secreting regulatory T (Treg) cells, and IL-22)

are reduced (127, 134), while there is a more significant release of

pro-inflammatory cytokines such as tumor necrosis factor

(TNF-a) and interferon (IFNg). This results in damage to the

gut barrier expressed by reduced expression of epithelial tight

junction proteins and antimicrobial proteins such as

regenerating islet-derived protein 3 gamma (RegIIIg) (135).
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This excessive permeability in the intestine is termed “leaky

gut” and allows for translocation of bacteria products, triggering

“metabolic endotoxemia” and systemic inflammation (136).

Furthermore, some bacterial species of the microbiota, such as

A. muciniphila, Bifidobacterium pseudocatenulatum CECT 7765,

and B. uniformis CECT 7771, can act to elevate Treg cells,

prevent B cell infiltration in fat, and reduce B cells and the

M1/M2 macrophage ratio (137–139). The ingestion of these

species alleviates obesity (139–141).

The studies presented here indicate the MGB axis as a

complementary target for treating obesity due to its direct

participation in controlling food satiety, macronutrient

absorption, and inflammatory processes (39, 142). Despite

preliminary evidence, further studies are needed, especially to

highlight the impact of each element of the axis on the

pathogenesis of obesity and the effect of this multifactorial

disease on these target organs. Moreover, it is still necessary to

investigate how different interventions can influence theMGB axis,

such as dietary interventions, sleep, life stages, and physical activity.
The impact of physical activity on
the microbiota-gut-brain axis

Muscle contraction in response to physical exercise

promotes a series of acute and chronic physiological changes

in the organism, many of which are associated with disease

prevention and health improvement (143). Muscle contraction

through exercise increases energy demand on muscle fibers, and

the supply to vital organs is altered (144). Blood suppression in

the gastrointestinal system depends on the intensity of the

exercise. While mild-to-moderate exercise can preserve

mucosal and improve intestinal motility, high-intensity

exercise is associated with epithelial injury, enhanced

permeability, reduced gastric motility, and other imbalances

(144). These physiological changes in the intestine also

generate several molecular changes in the MGB axis

(Figure 3). Thus, it has been hypothesized that controlled

physical training can improve intestine health, increase

microbial diversity and abundance, and alter neurotransmitters

that regulate appetite (17).

The role of exercise in appetite regulation related to obesity

may be approached by investigating the acute effect of exercise or

its chronic responses (14, 145). Acute exercise suppresses

acylated ghrelin and increases GLP-1 and PYY, which could

be associated with satiety control (145). The temporary

suppression of appetite occurs around 60% of the VO2 peak

(146–150) and has been shown in different types of exercise,

such as running (146, 147, 149), cycling (148, 151, 152),

swimming (153), high-intensity interval exercise (154, 155)

and resistance training (156) (see Table 2). However, peptide

signaling may vary according to the exercise intensity and
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volume, diet, temperature, trainability, and the period of the day

the exercise is performed (18, 154, 174–177).

An experiment with an animal model showed that ghrelin

levels increase after an acute bout of exercise, where this

response was dependent on running distance or time (174). In

addition, animals with low ghrelin receptors (GHSR-nulls)

decreased endurance performance and food intake following

high-intensity interval exercise (174). It was also shown that the

CCK increases after acute exercise, which optimizes the satiety

state (178). Moreover, healthy women submitted to sensitive

high-intensity training presented increased levels of GLP-1 and a

reduction in hunger compared to moderate exercise (155). On

the other hand, the effects of activity on the MGB axis appear to

be even more consistent (14). Physical training plays an

anorectic role that seems to be enhanced with training,

increasing leptin levels, glucose insulinotropic peptide (GIP),

nestin-1, adiponectin, GLP-1, PP, OXM, and PYY (Figure 3 and

Table 2). To date, no research has analyzed the changes of all

these peptides simultaneously in the context of physical exercise.

Despite the replication in several modalities on appetite

control, aerobic training seems more effective than resistance

in increasing the satiety of overweight and obese adults (179).

However, in overweight and sedentary individuals, it has

recently been observed that 12 weeks of resistance training

decreased ghrelin and PYY concentrations more than the
Frontiers in Endocrinology 07
proposed aerobic protocol (180). These data demonstrate no

consensus concerning the training modality to reduce

overweight people’s appetite. Exercise is also able to change

the functional anatomy characteristics of the intestine. Physical

activity alone increased the thickness, height of villi, and the rats’

crypts’ depth submitted to a hypothalamic obesity condition

(181). Exercise is also able to alter intestinal integrity through TJ

(182). Some evidence shows that physical training increases the

expression of zonulin, claudin, and occluding proteins (TJs), in

addition to decreasing the concentration of circulating

lipopolysaccharides (LPS), thus having a protective effect on

the intestinal barrier (183), see Figure 3. However, intensity and

volume determine the beneficial effect of exercise on intestinal

permeability (144). More than 60 min of vigorous endurance

training at 70% of the maximum work capacity led to increased

intestinal permeability (144). Thus, depending on the applied

dose of exercise, exercise can generate an antagonistic effect of

obesity on the brain-intestine axis (11).

It has been known for a few years that exercise can also alter

gut microbiota composition (15, 184). Some of these alterations

include increased bacterial richness (a-diversity), butyrate-
producing bacteria, and the abundance of A. muciniphila and

Faecalibacterium prausnitzii (15, 185, 186). In obese children,

the combination of 12 weeks of strength and endurance training

was shown to neutralize changes in the microbiota caused by
FIGURE 3

Alteration of the microbiota-gut-brain axis in exercise. Main hormonal changes in response to physical exercise. Exercise can maintain the
health of epithelial cells, and cell communications remain healthy, without permeability of substances to systemic circulation. Mucus
preservation and improved interaction of peptides/hormones with their receptors also occur, creating optimal conditions. Blue cells represent
healthy. (↑) Increase Secretion and Greater; (↓) Decrease Secretion and Decline; (⊕) Positive interaction; (⊖) Negative Interaction; (⊘) Non
Interaction; SCFAs, Short-Chain Fatty Acid; PYY, Peptide YY; OXM, Oxytomodulin; PPYR1, Pancreatic Polypeptide Receptor 1; PP, Pancreatic
Polypeptide; GLP-1, Glucagon Like Peptide-1; GLP-1R, Glucagon Like Peptide-1 Receptor; LEPRB, Leptin Receptor Long Isoform; Y1R,
Neuropeptide Y Receptor type 1; Y2R, - Neuropeptide Y Receptor type 2; GHSR, - Growth Hormone Secretagogue receptor; CKK,
Cholecystokinin; MC3R, Melanocortin 3 Receptor; MC4R, Melanocortin 4 Receptor; AgRP, Agouti-Related Protein.
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TABLE 2 Possible changes by acute and chronic exercise in hormones/peptides that participate in MGB axis.

Hormone /
peptide

Subjects Exercise Type Exercise Inten-
sity

Exercise
Volume

Contributing Factor Changes by exercise Author

Ghrelin Healthy - 7 W
and 6 M (n =
13)

Acute cycling 70% VO2 peak 60 min Ketone monoester drink or
dextrose control isocaloric
drink

↓ Ghrelin levels after
exercise

(157)

Peptide YY (PYY) Healthy - 7 W
and 6 M (n =
13)

Acute cycling 70% VO2 peak 60 min Ketone monoester drink or
dextrose control isocaloric
drink

There was no significant
difference in total PPY. ↑
PYY3-36 in high-intensity
exercise

(157,
158)

Glucagon like
peptide-1 (GLP-1)

Healthy – M
(n=10)

Acute cycling high intensity session:
75% VO2 max,
moderate intensity
session: 50% VO2

max

30 min, 3x
week

instant noodles and a piece of
cheese: 532 kcal, 13.9%
protein, 26.6% fat, and 59.5%
carbohydrate

↑ GLP-1 after exercise 30
min exercise

(157)

Cholecystokinin
(CCK)

Sedentary obese
M (n=

Chronic Aerobic 75% FCmax 5x wk/ 12
wks

500-kcal energy deficit per
session

There was no significant
change after chronic
exercise intervention

(159)

Pancreatic
Polypeptide (PP)

Sedentary obese
- M and W
(n=13)

Aerobic 75% VO2 peak

(2weeks)
60 min 1.500 kcal intake for 12 h (6

meals every 2 h)
↑ Fasting PP after 15 days
of exercise

(160)

Oxytomodulin
(OXM)

Healthy W and
M (n=15)

Aerobic (HIE) 70% VO2 max

(MIE) 50%VO2 max

HIE =
20min MIE
= 30min

– ↑ Oxyntomodulin after
chronic aerobic exercise
only in the HIE group

(161)

Gastric Inhibitor
Polypeptide OR
glucose-dependent
insulinotropic
(GIP)

pre-diabetic and
obese W and M
(n=22)

Chronic aerobic 85% FCmax 60 min 5x
wk/
12 wks

High glycemic index diet /
low glycemic index diet.

The group with a low
glycemic index diet
showed ↓ GIP compared
to the group with a high
glycemic index.

(162)

Gastrin Wistar rats M
(n=24)

Swimming – 30 min 50% food restriction ↑ Gastrin and
improvement of intestinal
hormonal dysfunction

(163)

Leptin Adolescent
obese W and M
(n=72)

Combined
training; Aerobic
training and
physical leisure

– 60 min 6 months ↓ Leptin levels and
reduced resistance

(164)

Adiponectin Healthy W and
M (n=29)

Combined
training

60-70% cardiac
reserve and 80% 1RM

20 min – Adiponectin ↑ 55% after
exercise and there was a ↑
in post-exercise compared
to the control group.

(165)

Insulina Healthy W and
M (n=32)

Cycling 60-80% FCmax/ 60-80
RPM

– Isocaloric diet ↑ Sensitivity; ↓ insulin
secretion;

(166)

Neuro peptide Y
(NPY)

Athletes (n=12) Paddle ergometer
and Resistance
training

40-50% RM 15h/20h
for week

High carbohydrate diet The NPY values in the
exercise were significantly
↑ immediately after and
after 30 minutes.

(167)

Melanocortin Overweight to
obese and
postmenopausal
W (n=23)

Resistance
training

8 RM, and resistance
until muscle failure

– "Normal" diet throughout the
intervention period and do
not consume alcohol in the
days before any blood
collection.

Resistance training can
modulate the expression
of the melanocortin 3
receptor

(168)

Islet amyloid
polypeptide
(IAPP) or Amylin

Healthy M
(n=7)

Incremental test
on the treadmill

60, 75, 90, 100% VO2

max

10, 10, 5, 2
min

Without alcohol 24h before
the test

↑ Amylin levels in well-
trained individuals

(169)

Orexin or
Hypocretin

Healthy M
(n=10)

Cycling
ergometric

75w and 60 RPM 15 min Without strenuous physical
activity 7 days and without
medication, alcohol or coffee

Thermoregulator during
exercise; appetite control;

(170)

Visfatin (VF) Sedentary W
(n=48)

Combined
Training

40% increased 60-
75% FC máx

45 min +
20 min

– physical training and
weight loss can ↓ visfatin
levels

(171)

(Continued)
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obes i ty , reduc ing the Proteobac ter ia phy lum and

Gammaproteobacteria class (187). This training protocol also

increased the Blautia, Dialister, and Roseburia genera and the

abundance of SCFA, leading to a similar status observed in

healthy children (187). A recent study in overweight and obese

adults showed that long-term training (6 months) demonstrated

subtle microbiota changes and no relationship between alpha

diversity and cardiorespiratory fitness or fat mass (19). In

overweight older adults, regular exercise reshaped microbial

composition and function alterations induced by aging (16). It

is worth mentioning that the positive action of exercise on the

microbiota and immune system depends on the intensity and

volume of training and the individual’s trainability (188).

Physical exercise may also influence the MGB axis in

pathophysiological contexts through bidirectional communication

between the muscle, the intestine, and the brain (muscle-gut-brain

axis) (188, 189). Skeletal muscle can act as an endocrine organ and

release into the bloodstreammolecules (PYY, irisin, myonectin, and

others) called myokines (190, 191). There is some evidence that

these myokines may act on appetite and changes in the gut

microbiota (190, 192, 193). The skeletal muscle proteomic profile

identified more than 300 myokines and these molecules perform

various functions in the body, such as lipid and glucose metabolism,

browning of white fat, bone formation, endothelial cell function, etc

(191). The myokines IL-6, IL-7, IL-15 and leukemia inhibitory

factor (LIF) also exert immune functions (194). In this sense,

resistance training plus aerobic can increase the obese animals’

IL-7 expression (195). IL-7 is a vital myokine responsible for

lymphocyte homeostasis and body fat reduction (196).

Furthermore, since the IL-15/sIL-15Ra gene transfer induced

weight loss in obese animals (197), IL-15 is estimated to be a

potential regulator of fat mass (198). Interestingly, obese mice

trained for 12 weeks on a treadmill increased IL-15 mRNA

expression and IL-15 immunoreactivity in muscle (199). Thus,

further clinical studies are expected to better explain how muscle

communicates with the immune system, gut, brain and gut

microbiota in the context of obesity.
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Conclusion and prospects

The current scientific literature presents a body of evidence

indicating that obesity contributes to increased inflammatory

signaling in the hypothalamus and increased appetite and

gastric motility, in addition to being associated with enterocyte

lesions and contributing to dysbiosis development (Figure 2 and

Table 1). However, regular physical activity has an anti-

inflammatory effect on the hypothalamus and regulates appetite

by increasing anorexigenic peptides (leptin, GIP, nesfatin-1,

adiponectin, GLP-1, PP, OXM, and PYY). Moreover, the

thickness, height of villi, and depth of crypts improve intestinal

integrity through tight junctions and reduce the impact of obesity

on the gut microbiota (Figure 3 and Table 2).

Current evidence initially points to an antagonistic response

promoted by exercise and obesity in the MGB-axis (157, 181,

187). However, despite initially presenting antagonistic effects,

physical exercise can adversely affect the gastrointestinal system

and its associated microbiota, mainly when performed in larger

training volumes and hot environments with little hydration, as

previously reviewed (144). Nevertheless, the above conclusions

have been drawn from different clinical studies and, in several

cases using animal models, as there is still no study aiming to

combine all the MGB axis elements.

In this context, further studies are needed to identify the

antagonistic elements and mechanisms promoted by physical

exercise and obesity in the MGB axis. Although some “anti-

obese” drugs have emerged, these drugs are ineffective in treating

obesity (200). Thus, future studies that analyze these drugs added

to a physical training program are interesting. Furthermore, the

exercise dose-response must also be further investigated,

considering its different modalities and variations in intensity

and volume in healthy and obese individuals. Perhaps, more

important than identifying the opposite signals promoted by

both stimuli is to understand how exercise can mitigate and

reverse the adverse effects of obesity through the modulation of

the MGB axis.
TABLE 2 Continued

Hormone /
peptide

Subjects Exercise Type Exercise Inten-
sity

Exercise
Volume

Contributing Factor Changes by exercise Author

Visfatin (VF) Healthy M
(n=6)

Aerobic 7 sets of 6 × 35 m
every 10 s, with 1
min rest between
sets)

45 min – ↑ visfatin levels plasma (172)

Nesfatin-1 Overweight W
with metabolic
syndrome
(n=60)

(EA) aerobic
exercises; (ER)
resistance
exercises; (EC)
combined
exercises

(EA): 60-75% FCmax;
(ER): 60 Increased 75
- 80% 1RM; (EC): EA
and ER simultaneous

30 and 60
min

No changes in habits Nesfatin-1 ↑ significantly
after physical training in
the three intervention
groups.

(173)
fronti
↑ - increase or gain; ↓ - reduction or loss; FCmax, Maximum Heart Rate; W, Woman; M, Male; min, minutes; n =, sample; wk/wks, week/week; HIE, High Intensity Exercise;
MIE, Moderate Intensity Exercise.
(↑) Increase Secretion and Greater; (↓) Decrease Secretion and Decline; (wks) Weeks; (min) Minute.
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