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Chronic spontaneous urticaria (CSU) is defined as recurrent episodes of spontaneous
wheal development and/or angioedema for more than six weeks and at least twice a
week. The core link in the pathogenesis of CSU is the activation of mast cells, T cells,
eosinophils, and other immune cells infiltrating around the small venules of the lesion.
Increased vascular permeability, vasodilatation, and recruitment of inflammatory cells
directly depend on mast cell mediators’ release. Complex regulatory systems tightly
influence the critical roles of mast cells in the local microenvironment. The bias toward Th2
inflammation and autoantibodies derived from B cells, histamine expressed by basophils,
and initiation of the extrinsic coagulation pathway by eosinophils or monocytes exerts
powerful modulatory influences on mast cells. Cell-to-cell interactions between mast cells
and eosinophils/T cells also are regulators of their function and may involve CSU’s
pathomechanism. This review summarizes up-to-date knowledge regarding the
crosstalk between mast cells and other immune cells, providing the impetus to develop
new research concepts and treatment strategies for CSU.
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INTRODUCTION

Over time, the prevalence of chronic urticaria has increased globally (1). The updated EAACI/
GA2LEN/EDF/WAO guideline for chronic urticaria is now clearly divided into chronic inducible
urticarias (CIndU) and chronic spontaneous urticaria (CSU), previously known as chronic
idiopathic urticaria (CIU). Urticaria manifests as rapid wheals and/or angioedema, often
accompanied by itching and/or burning (2). In addition, patients generally have milder systemic
symptoms and may also have other autoimmune diseases, including autoimmune thyroid disease,
vitiligo, rheumatoid arthritis, lupus, Type I diabetes, and psoriasis (3–5). The pathogenesis of CSU is
multi-factorial, which is reported to be related to genetic factors, the environmental challenges like
infections, food intolerance, the activation of coagulation cascade, dysregulation of intracellular
signaling pathways within mast cells and basophils [i.e. imbalance of spleen tyrosine kinase (SYK)
and Src homology 2-containing inositol 5’ phosphatase (SHIP)] and autoimmunity (Figure 1) (6–
10). Autoimmunity response is considered an important mechanism in CSU pathogenesis.
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FIGURE 1 | A schematic model of the pathogenesis of CSU. The extrinsic coagulation pathway is activated by tissue factors derived from eosinophils and
monocytes, which contributes to the degranulation of mast cells and basophils. Autoimmunity, infections, stress, intestinal dysbiosis, and Vitamin D deficiency also
lead to mast cell degranulation via different molecular pathways. TSLP combined with IL-25 and IL-33 are suggested to be activating factors of ILC2s, which release
IL-5 and IL-13 to promote mast cell degranulation. T cells and eosinophils perform complex bidirectional crosstalk with mast cells. Besides, macrophages and NK
cells may also play a role in CSU pathogenesis. C5a, complement 5a; FXa, activated factor X; TF, tissue factor; FceRI, high-affinity IgE receptor; Syk, spleen tyrosine
kinase; SHIP, Src homology 2-containing inositol 5’ phosphatase; PGD2, prostaglandin D2; LTC4, Leukotriene C4; MMP-9, matrix metalloproteinase-9; TSLP,
thymic stromal lymphopoietin; MCP-1, monocyte chemoattractant protein 1; ECP, eosinophil cationic protein; EPO, eosinophil peroxidase; MBP, major basic protein;
SCF, stem cell factor.

Zhou et al. Immune Cells in CSU
There have been a couple of studies suggesting that subjects
with CSU have an autoimmune basis; for example, autologous
serum skin test (ASST), basophil activation test (BAT), and
basophil histamine release assay (BHRA), etc. these diagnostic
workups are helpful to diagnose autoimmune CSU (3, 11–13).
IgG autoantibodies against IgE in patients or its high-affinity
receptor (FcϵRI) are detected in nearly 45-50 percent of CSU
patients (14, 15). Schmetzer et al (16) found that there are more
than 200 kinds of IgE autoantigens in CSU patients and
proposed that IL-24 is a common, specific and functional IgE
Frontiers in Immunology | www.frontiersin.org 2
autoantigens. IgE and IgG antibodies against thyroid peroxidase
(TPO) were also found in a subgroup of CSU patients and were
shown to activate mast cells (17–20). Subsequent studies have
shown that IgG autoantibodies binding to FcϵRI/IgE result in
mast cell degranulation and basophil activation to release a series
of inflammatory mediators, finally leading to vasodilation in the
lesional skin of CSU (14, 21) (Figure 2).

In patients with CSU, infiltrating inflammatory cells are
mainly located in the dermis and deep dermis, and there is
almost no difference between patients with and without
FIGURE 2 | The activation of mast cells and basophils in patients with chronic spontaneous urticaria mediated by autoantibodies. Mast cells and basophils are
activated by IgE antibodies against its high-affinity receptor (FcϵRI) or IgG antibodies against IgE/FcϵRI and release several mediators [i. e. histamine, tryptase,
Leukotriene C4 (LTC4), prostaglandin D2 (PGD2), platelet-activating factor (PAF), granulocyte-macrophage colony-stimulating factor (GM-CSF), matrix
metalloproteinase-9 (MMP-9), C-X-C motif chemokine ligand 1/2 (CXCL1/2), tumor necrosis factor a (TNFa), etc.] that concur to produce the marked vasodilation
that stands at the basis of both wheal-and flare reaction and angioedema.
May 2022 | Volume 13 | Article 879754
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autoantibodies against FcϵRI/IgE (22). Evidence shows that
eosinophils, neutrophils, basophils, and macrophages in lesions
are significantly higher than in healthy subjects (23–25). It is
controversial whether the number of mast cells in the lesions of
CSU patients is increased. Some of the studies reported an
increase (23, 26), while others reported that the level of mast
cells in CSU patients decreased slightly compared with that in
controls (27).

It is widely known that mast cells are key contributors to CSU
(8, 26). Mast cells are innate immune component cells
distributed around blood vessels and nerves (28). Activation of
mast cells can be triggered by various extracellular stimuli like
antigen-IgE complex, cytokines expressed by other inflammatory
cells, viruses, bacteria, and microvesicles (29, 30). Many past and
recent studies have emphasized that IgE-dependent mast cell
degranulation plays a crucial role in CSU, which could be
promoted by various outer factors (cold, heat, pressure) or
allergens (31–33). Beyond IgE induced activation of mast cells,
Mas-related G-protein coupled receptor-X2 (MRGPRX2) has
been reported to have a vital role in CSU, and the MRGPRX2
receptor is expressed at high levels in mast cells of the skin. In
contrast, MRGPRX2 activation resulted in a more uniform and
rapid release of individual granules from mast cells (34, 35). In
addition, we learned that mast cells’ local and systemic effects are
due to soluble mediators, partly through cell-to-cell contacts and
microvesicles. Microvesicles are nanoscale vesicular structures
secreted by various cell types and commonly found in most body
fluids. Additional evidence suggests that the physical contact
between mast cells and eosinophils/T cells has been observed in
inflammation, although it has not been widely studied in CSU
(36, 37). Microvesicles serve as vehicles for intercellular
communication, with both resting and degranulating mast cells
capable of secreting microvesicles. Recent reports have also
documented that microvesicles derived from T cells can
activate mast cells (38, 39), which is mentioned below. These
studies highlight new possibilities beyond cell-to-cell contacts or
soluble mediators in functional interrelationships between mast
cells and other cells. Activated mast cells release preformed and
de novo mediators, including histamine, tryptase, chymase,
carboxypeptidase, cathepsin G, platelet-activating factor,
leukotrienes, prostaglandins, cytokines, chemokines, which will
lead to the increase of vascular permeability, chemotaxis of other
inflammatory cells and the formation of a wheal and flare-type
skin reaction (40, 41).

Here, we reviewed and summarized the immunopathogenesis
of CSU, focusing on the crosstalk between immune cells involved
in this disease to complete our understanding of mast cell and
non-mast cell contributors to CSU.
THE CROSSTALK OF IMMUNE
CELLS IN CSU

Innate immunity [such as mast cells, basophils, eosinophils,
neutrophils, monocytes, macrophages, Group 2 innate
lymphocytes (ILC), natural killer (NK) cells, and the
Frontiers in Immunology | www.frontiersin.org 3
complement system] and adaptive immunity (such as Th1,
Th2, Th9, Th17, regulatory T cells, B cells, and antibodies)
play extremely complex interactions in CSU guided through
soluble inflammatory factor, microvesicles or cell-to-cell
contacts. Within the frames of innate arms of immunity, Mast
cells produce tryptase and chymase to activate complement,
which acts on complement receptors expressed on mast cells in
an autocrine manner (42). Eosinophils and monocytes release
tissue factor (TF) to activate the coagulation cascade and
promote complement activation (43, 44). Mast cells and
eosinophils modulate each other also by forming allergic
effector units (36). Besides, mast cells are vital links between
innate and adaptive immunity. Mast cells involve in the initiation
and dynamics of adaptive immunity through (at least) four
modes of action in CSU:(a) Inducing or modulating T-cell
activation and polarization; (b) Promoting the production of
IgE in B cells (through IL-4, IL-13);(c) Producing TNFa and
other mediators that up-regulate the expression of adhesion
molecules on vascular endothelial cells to promote the
recruitment of T cells;(d) Allergen-specific Th2 cells stimulate
B cells to produce IgE antibodies that activate mast cells and
basophils (45–47).

The changes in the release of inflammatory mediators after
activation of each type of immune cell also affect other cells,
including histamine, prostaglandin D2 (PGD2), major basic
protein (MBP), C5a, thrombin, TF, eosinophil cationic protein
(ECP), cytokines (interleukin, chemokine, interferon, and tumor
necrosis factor), etc., resulting in increased vascular permeability
and edema formation. The above immune cells involved in CSU
and the primary activation mechanism are summarized
in Table 1.

Considering the importance of mast cells in the pathogenesis
of urticaria, both the crosstalk among mast cells and other
immune cells (Figure 3) and the interaction between B
lymphocytes and other immune cells are discussed in detail.

Mast Cells and Basophils
Mast cells and basophils play a critical role in allergic
inflammation originating from CD34+hemopoietic stem cells
in the bone marrow, yet they differ in development, distribution,
proliferation, and survival time (98). These two types of cells
rapidly degranulate and release histamine after IgE stimulation.
However, their ability to secrete diverse cytokines and
chemokines in response to non-IgE stimulation is different (99,
100). The activation of basophils and skin mast cells with
consequent release of histamine and other pro-inflammatory
mediators [i.e. leukotriene C4 (LTC4), platelet-activating factor
(PAF), IL-13, IL-25, CXCL8/IL-8] is responsible for vasodilation
in the lesional skin of CSU. Moreover, mast cells selectively
secrete several preformed mediators (I.e. heparin, tryptase,
chymase, cathepsin G, carboxypeptidase A3, and renin) and
PGD2 (26). Recent evidence suggests that baseline basophil
count and basophil functional phenotype are linked to the
efficacy of omalizumab in CSU (61, 101). In CSU, basopenia
was associated with the more severe disease, while the basophil
responder phenotype was associated with the more prolonged
May 2022 | Volume 13 | Article 879754
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disease (102). This gives basophils a different significance in CSU
than mast cells.

Histamine is released by activated mast cells and basophils; and
acts on these two kinds of cells through H4R, one of the histamine
Frontiers in Immunology | www.frontiersin.org 4
receptors (103). The binding of histamine to H4R affects mast cell
function mainly through the following three aspects. At first,
histamine up-regulates the expression of FcϵRI on the surface of
mast cells and induces mast cell activation (104). Secondly,
histamine affects mast cell function by promoting intracellular
calcium mobilization (105). Thirdly, H4R-mediated mast cell
activation triggers the expression of several proinflammatory
mediators, such as tumor necrosis factor a (TNFa), tumor
growth factor-b1 (TGF-b1), macrophage inflammatory protein
1a (MIP-1a), regulated upon activation, normal T-cell expressed
and secreted (RANTES), IL-4, IL-5, IL-6, IL-8, and monocyte
chemoattractant protein 1 (MCP-1) (106). Histamine also induces
the chemotaxis migration of basophils through H4R and regulates
the IgE-dependent activation by participating in a negative
feedback loop (107, 108).

Activated mast cells release PGD2 (109), an endogenous
agonist of receptor chemoattractant receptor homologous
molecule 2 (CRTH2) expressed on various cell types, including
basophils and mast cells (110). PGD2/CRTH2 signaling pathway
is believed to play a vital role in allergies. Interestingly, CRTH2
expression was inhibited in CSU patients (111). Upon binding
with CRTH2, PGD2 induces intracellular calcium mobilization,
up-regulates CD11b, and enhances antigen-mediated histamine
release of basophils (112).

Patients with CSU have elevated levels of IL-3 in lesions; it
may be released by activated mast cells (113). IL-3 is a cytokine
essential for the growth and development of basophils (114).
High IL-3 receptor expression on basophils was detected in
ASST-positive CSU patients. In addition, IL-3 enhances the
responsiveness of basophils to other stimuli and up-regulates
TABLE 1 | Immune cells involved in CSU.

Cell type The tissue level Cell activity Mechanism of activation Main inflammatory
mediators in CSU

References

Mast cells Increased/Decreased Activation
and
degranulation

Autoimmunity (autoantibodies against IgE or FcϵRI-a);
dysregulation of the signaling pathways (increased SYK and
decreased SHIP); Activation of extrinsic coagulation pathway
(increased level of thrombin, D-dimer, FVIIa, F1+2, complement
C5a, and TF); physical contact with activated T cells and
eosinophils, etc.

Histamine, LTC4,
PGD2, tryptase, IL-1b,
IL-4, IL-5, IL-8, IL-9,
IL-13, IL-31, IL-33,
GM-CSF, MMP-9,
CXCL1/2, TNFa

(8, 9, 26,
36–38, 48–

60)

Basophils Increased Activation Autoimmunity (autoantibodies against IgE or FcϵRI-a);
dysregulation of the signaling pathways (increased SYK and
decreased SHIP); MCP-1, MBP, IL-3, IL-33, etc.

Histamine, protease,
IL-4, IL-6, IL-13, IL-31,
IL-33, TNFa, CXCL1

(50, 61–65)

Eosinophils Increased Activation Autoimmunity (autoantibodies against CD23/FCϵRII); physical
contact with mast cells; IL-5, TNFa, etc.

MBP, ECP, EPO, TF,
VEGF, PAF, MMP-9,
IL-6, IL-8, IL-9

(23, 36,
66–69)

T cells Increased; Decreased
frequency of Th17 cells
among CD4+ T cells,
Decreased frequency of
Treg cells among PBMCs
(in peripheral blood)

Imbalance of
Th1/Th2
cytokines

Imbalance of humoral immunity; physical contact with mast cells;
histamine, IL-5, IL-6, IL-18, PGD2, MMP-9, etc.

IL-4, IL-9, IL-10, IL-13,
IL-17, IL-23, IL-25,
IL-33, TSLP, and TNFa,
IFN-l1

(37, 48,
70–83)

B cells / Activation Autoimmunity IgE, IgG, IgM, IgA (14, 19,
84–88)

Macrophages Increased Activation Histamine, IFN-l1 CXCL1/CXCL2, IL-6,
IL-18, IL-33, IFN-l1

(23, 48,
89–94)

Monocytes / Activation IL-4, IL-8, CXCL8 IL-18, CCL2, MCP-1,
CXCL8, TF

(44, 95)

Neutrophils Increased Activation Histamine, IL-1b, IL-8, IL-18, CXCL1/2, CXCL8, GM-CSF MPO (23, 25, 48,
90, 96, 97)
M
ay 2022 | Volume 13 | A
FIGURE 3 | The interactions between main effector cells involved in chronic
spontaneous urticaria. PGD2, prostaglandin D2; MBP, major basic protein;
MCP-1, monocyte chemotactic and stimulating factor; CCL, C-C motif
chemokine ligand; CXCL, C-X-C motif chemokine ligand; SCF, stem cell
factor; ECP, eosinophil cationic protein; EPO, eosinophil peroxidase; GM-
CSF, granulocyte-macrophage colony-stimulating factor; PAF, platelet-
activating factor; MMP-9, matrix metalloproteinase-9; IFN-l1, interferon-l1.
rticle 879754

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhou et al. Immune Cells in CSU
the expression of FcϵRI in basophils of patients with CSU
(115, 116).

Several research reported that the serum levels of IL-4 were
reduced in CSU patients (76, 117, 118). However, other studies
have suggested that the serum IL-4 level was increased (70) and
plasma IL-4 levels in CSU patients are increased and positively
correlated with the total IgE level (119). Since total IgE serum
levels are often elevated (up to 50%) in CSU patients, normal or
deficient total IgE levels were also observed (120). Therefore, the
role of IL-4 in CSU is also worthy of attention. The significant
expression of IL-4 in diseased skin has not been disputed (27, 48,
121). IL-4 is mainly derived from T cells, basophils, and mast
cells. Robust IL-4 production of basophils occurs in response to
IgE-dependent and IgE-independent stimuli (100). Additionally,
IL-4 has been an effective regulator of human mast cell
phenotype, growth, and differentiation (122). Some reports
have shown that IL-4 synergized with IgE to upregulate the
expression of FcϵRI on the mast cell surface (123). Thienemann
et al. (124) elegantly described that in mature cutaneous mast
cells, IL-4 treatment increased the survival rate of cutaneous
mast cells. However, no effect of IL-4 on the expression of c-KIT
or FcϵRI-a was observed, which means the impact of IL-4
depends on the differentiation state of mast cells. Further, IL-4
reduces the ability of mast cells to adhere to the extracellular
matrix (125). Thus, basophils influence mast cells in the
inflammatory site by producing IL-4.

MRGPRX2 is a receptor associated with IgE-independent
activation on mast cells, basophils, and eosinophils. It has been
reported that serum MRGPRX2 levels are higher in patients with
severe CSU than controls (34). Previous studies have shown that
MRGPRX2 and MRGPRX2 containing vesicles are found in the
serum of atopic individuals to release exocytosis and plasma
membrane budding (126). Mast cell-derived extracellular vesicles
interact with other cells located nearby or far away, regulating
inflammation; and allergic reactions (39). Whether mast cells
communicate with other cells in this way remains to be verified
in CSU. In addition, the involvement of MRGPRX2 is supposed
to be associated with proinflammatory basophilic and
eosinophilic effects, such as calcium mobilization, increased
survival, and cytokine release. Mast cells produce IL-3 and IL-
5, which enhance the expression of MRGPRX2, which may lead
to a vicious pro-inflammatory cycle (127, 128).

IL-31 and IL-33 levels in the serum of CSU patients were
higher than those in healthy controls (129). IL-31 is released
from basophils after anti-IgE, IL-3, or N-formylmethionyl-
leucyl-phenylalanine (fMLP) stimulation. IL-31 also induces
the release of IL-4 and IL-13 from basophils (130). IL-33 in
serum mainly originates from activated CD4+ T cells, and IL-33
is also released by skin mast cells, and macrophages in CSU (71).
IL-33 acts through its receptor, tumorigenicity 2 receptor (ST2),
which is highly expressed on the surface of mast cells, basophils,
Th2 cells, eosinophils, and innate lymphocytes (131, 132). IL-33
pretreatment increases the number of activated mast cells and
enhances the activation of individual mast cells (133). Although
IL-33 itself does not induce mast cell degranulation, it enhances
the allergic response in mast cells and basophils, promotes the
maturation of mast cells, and can be released by mast cells after
Frontiers in Immunology | www.frontiersin.org 5
activation. Moreover, IL-33 induces the synthesis and secretion
of IL-31 from LAD2 mast cells. The induction effect is enhanced
in the presence of IgE or IgG antibodies, as is IL-4 (134). A study
demonstrated a cellular crosstalk mechanism through which
activated mast cells communicated with ST2-expressing
basophils; stimulating these basophils produces a unique
response signal including neutrophil-attracting chemokine
CXCL1 (131).

Mast Cells and Eosinophils
Mast cells and eosinophils are key effector cells of CSU. Some
studies suggested that there was physical contact between mast
cells and eosinophils in the late and chronic stages of allergic
inflammation. Curiously, a study found co-localization of mast
cells and eosinophils in the urticarial area of CU patients (135).
Transmission electron microscopy (TEM) showed that mast cells
and eosinophils adhere to each other during co-culture in vitro
(136). In other words, mast cells and eosinophils show signs of
physical contact and mutual activation during co-culture. These
results indicate that mast cells and eosinophils may form an
effector unit in allergic diseases (Figure 4). It has been reported
that this MC-Eos interplay improved the survival rate of
eosinophils in vitro. There is a complex network of paracrine
and membrane interactions between mast cells and eosinophils
(137, 138). It was found that CD48-2B4 mediates the physical
contact between mast cells and eosinophils (36). Eosinophils
enhance the release of basal mast cell mediators with CD48-2B4
and jointly stimulate IgE-activated mast cells. Eosinophils also
lower the IgE response threshold of mast cells by delivering co-
stimulatory signals integrated into IgE-mediated pathways.
However, mast cell-induced eosinophil activation does not
require CD48-2B4 exposure. Mast cells induce eosinophil
migration and activation via paracrine signaling. Eosinophils
show enhanced expression of intercellular adhesion molecule-1
(ICAM-1), dependent on direct contact with mast cells. An
increase in TNFa release has also been observed in long-term
co-culture, which increases ICAM-1 in eosinophils. ICAM-1
signaling is associated with prolonged survival of eosinophils
and enhanced MC-Eos adhesion. The binding of mast cell
DNAX accessory molecule 1 (DNAM-1/CD226) to eosinophil
Nectin-2 (CD112) has also been implicated in eosinophil-
augmented activation of mast cells because CD226 synergized
with FcϵRI on mast cells to promote mast cell degranulation.
This co-stimulatory response might be a critical component in
allergic inflammation, manifesting in ailments such as rhinitis,
asthma, and CSU, which are closely related to autoimmunity
(139, 140). Thus, it is crucial to demonstrate the mast cell-
eosinophil interplay in skin lesions of CSU patients, and blocking
this interface may have critical value in CSU therapy in
the future.

In addition to physical contact, mast cells and eosinophils
interact through inflammatory mediators and related receptors.
Eosinophils express activated receptors of various chemokines
(i.e., CCR3, CXCR3, CXCR4, CCR5, CCR6, etc.), interleukins (i.e.,
IL-3R, IL-4R, IL-5R, IL-13R, ST2, etc.), amines (i.e., histamine
receptors), phosphoryl-associated molecular pattern molecules
(i.e., Toll-like receptors), lipid mediators [CRTh2, cysteinyl
May 2022 | Volume 13 | Article 879754
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leukotrienes receptor 1 (CysLT1R)] and complement systems (i.e.,
C3a, C5a, etc.) on their surface, as well as inhibitory receptors,
such as CD300a and Sialic acid-binding immunoglobulin-type
lectins (Siglecs) (109).

Mast cells recruit eosinophils to the diseased skin by releasing
eotaxin, an effective agonist of CCR3 (141, 142). Mast cells
release a large amount of histamine after activation, and one of
the histamine receptors, H4R, is expressed on eosinophils (103).
Histamine enhances the expression of eosinophil adhesion
molecules through H4R, resulting in increased eosinophil
migration (143). PGD2 released by mast cells also induces
chemotaxis of eosinophils (110), promoting the activation of
eosinophils and the release of ECP (144). Tryptase, produced by
mast cells, stimulates the activation of eosinophils to produce
IL-6 and IL-8 by cleavage of protease-activated receptor 2
(PAR-2) (145).

Mast cells are a significant source of IL-5 and IL-6 (49). Hong
et al. (146) showed that the levels of histamine, LTC4, TNFa,
TGF-b, IL-4, IL-5, and IL-6 in serum samples from patients with
CSU are significantly higher than those in healthy controls. In
humans, the effects of IL-5 are limited to basophils and
eosinophils. The expression of IL-5Ra on basophils is three
times lower than that on mature eosinophils. IL-5 plays an
essential role in the initiation and survival of eosinophils as
well as the proliferation and maturation of their progenitor cells.
It is speculated that IL-5 is involved in the development and
maintenance of the innate inflammatory process in spontaneous
wheals (96, 147).

Selective expression of Siglec-8 in human eosinophils and
mast cells has been demonstrated. Lirentelimab against Siglec-8
is effective in antihistamine refractory CSU (148). In eosinophils,
the involvement of Siglec-8 leads to apoptosis (149), and IL-33
(produced by mast cells) triggers Siglec-8-mediated eosinophil
apoptosis through b2 integrins (150). In mast cells, Siglec-8
Frontiers in Immunology | www.frontiersin.org 6
crosslinking resulted in severe inhibition of IgE receptor-induced
histamine and PGD2 release without apoptosis (151–153).

In the plasma of CSU patients, increased Plasma matrix
metalloproteinase-9 (MMP-9) levels have been detected.
Recent studies suggested that TNFa induced the up-regulation
of these two genes in mast cells, and MMP-9 levels were
correlated with disease severity in children with CSU (154–
156). Mast cells, eosinophils, or activated T cells may be
potential sources of MMP-9 that promotes the migration of
eosinophils and lymphocytes (especially CD4+ T cells) to the
skin (157).

Besides, eosinophils affect mast cells in the following ways.
The extrinsic coagulation cascade in CSU is activated by
eosinophil-derived TF (43, 158), triggering the production of
thrombin and C5a. Thrombin acts on PARs (PAR1 and PAR4)
to mediate mast cell degranulation (159). It also causes increased
endothelial cell permeability, resulting in the formation of
cutaneous wheals and angioedema (160). However, another
study has shown that activated exogenous coagulation factors
do not activate human skin mast cells and basophils by
themselves but by producing C5a that acts on the C5a receptor
(C5aR) (50).

Activated eosinophils release inflammatory mediators
including MBP, ECP, eosinophil peroxidase (EPO) (66), which
induce histamine release from mast cells and basophils through
MRGPRX2 (127, 161, 162). In addition, MBP activates human
mast cells through integrin-b1 (expressed on the surface of mast
cells) (135). Furthermore, Research shows that eosinophil-
derived stem cell factors may recruit and activate mast
cells (163).

Translation control tumor protein (TCTP), also known as a
histamine-releasing factor. The expression of dimer TCTP is
increased in the sera of CSU patients. After stimulation with
dimer TCTP, the activation of basophils and mast cells is
FIGURE 4 | Physical contact between mast cells and T cells/eosinophils. Mast cells and activated T cells in the inflammation site can perform physical contact
(heterotypic adhesion) mediated by adhesion molecules (i. e. ICAM-1 [on mast cells], LFA-1 [on T cells]), thereby being activated to release inflammation-related
mediators (histamine, TNFa, MMP-9, interleukin, metallopeptidase inhibitor 1, etc.). Heterotypic adhesion also shows that mast cells have a broad ability to directly
mediate T cell activation. In addition, mast cells can be activated by microvesicles released by T cells that carry activating factors, responding to the site of
inflammation without contact with T cells. Mast cells and eosinophils have been observed in the late and chronic stages of allergic inflammation to regulate each
other’s functions by forming an effect unit. CD48 (on mast cells) and CD244 (on eosinophils), DNAM-1 (on mast cells), and Nectin-2 (on eosinophils) have been
reported to mediate this effect. ECP, eosinophil cationic protein; PAF, platelet-activating factor; MMP-9, matrix metalloproteinase-9; IFN-l1, interferon-l1; EPO,
eosinophil peroxidase; MBP, major basic protein; VEGF, vascular endothelial growth factor; SCF, stem cell factor; TSLP, thymic stromal lymphopoietin; TNFa, tumor
necrosis factor a; TF, tissue factor; ICAM-1, intercellular adhesion molecule-1; LFA-1, leukocyte function-related antigen-1; DNAM-1, DNAX accessory molecule 1.
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increased dramatically. A study found that the level of TCTP
dimer was positively correlated with the level of ECP, indicating
that eosinophils may indirectly participate in the activation of
basophils and mast cells through this mechanism (164).

Mast Cells and T Cells
Several reports have shown a complex interaction between mast
cells and activated T lymphocytes at the site of inflammation
(Figure 4). Mast cells and activated T lymphocytes make
physical contact (heterotypic adhesion) through adhesion
molecules. Mast cells express the co-stimulatory molecules
CD80, CD86, and the adhesion molecule CD54 (ICAM-1), all
of which are involved in T cell activation (72, 165). The
interaction between mast cells and T cells is at least partially
mediated by the adhesion molecule ICAM-1 and its ligand
leukocyte function-related antigen-1 (LFA-1) because the
addition of antibodies against these two molecules inhibits
adherent-induced degranulation of mast cells (166). Activated-
mast cells release inflammation-related mediators (histamine,
TNFa, MMP-9, IL-4, TNFa, IL-6, etc.), which regulate
extracellular matrix degradation during T cell-mediated
inflammation and are also essential for leukocyte extravasation
and recruitment to affected parts (167–169). This activation
pathway stimulates the expression and release of IL-8, which is
an effective chemokine to induce neutrophil migration (170).
These studies suggest that activated T cells may play a role in the
pathogenic activation of mast cells. Heterotypic adhesion
suggests that mast cells have a general ability to directly
mediate the activation of T cells, suggesting that human mast
cells may be involved in inducing adaptive immune responses by
recruiting and activating T cells in allergic reactions or
autoimmune diseases. However, the limited evidence for this
effect comes from the use of in vitro co-culture systems (166, 168,
171). Because of the heterogeneity of mast cells from different
species and tissues, the development of models to evaluate these
effects in vivowill be a significant advancement in mast cell and T
cell biology. Especially in patients with CSU, mast cells and T
cells are abundant in the lesion area, but whether there is
heterotypic adhesion between mast cells and T cells needs to
be determined by immunofluorescence or electron microscopy.

Microvesicles released by T cells are stimuli for activation of
mast cells, allowing them to respond to the inflammatory site
without contact with T cells (Figure 4). Activated T cells release
microvesicles carrying similar mast cell activators. Thus, by
releasing microvesicles, T cells deliver activated surface
molecules in a way that does not require physical contact
between cells and encourages mast cells to release inflammatory
mediators (172). Further analysis showed that T-cell-derived
microvesicles, rather than FcϵRI crosslinking, induced IL-24
gene transcription and protein production in mast cells (51).
Shefler et al. (38) elegantly described that T-cell-derived
microvesicles, as intercellular vectors of functional miR-4443,
may regulate PTPRJ gene expression heteromorphically in mast
cells, thereby regulating ERK phosphorylation and IL-8 release in
mast cells. Mast cell-microvesicle interactions enable activated T
cells to promote the remote contact-mediated activation of mast
cells. Mast cells are activated at the inflammation sites by these
Frontiers in Immunology | www.frontiersin.org 7
pathways, which provides a new mechanism for chronic
inflammatory skin disease, but their role in CSU needs to
be confirmed.

Beyond physical contact and microvesicles from T cells, mast
cells and T cells may also interact with each other through
inflammatory mediators and related receptors. One of the
histamine receptors, H4R, is also expressed on T cells (173). H4R
is involved in the pathogenesis of allergies and inflammation as it
activates Th2 and Th17 cells (174). Histamine mediates the
enhancement of Th2 cytokine secretion (such as IL-5, IL-4, IL-
10, and IL-13) and the inhibition of Th1 cytokine production (IFN-
g, IL-12, and IL-2). Thus, histamine regulates the efficient balance
between Th1 and Th2 cells by aiding the transfer to Th2 cells (175).
PGD2 and leukotriene E4 (LTE4) derived from mast cells promote
the survival, migration, and activation of Th2 cells (176). In
addition, T cells enhance mast cell proliferation, maturation, and
reactivity by secreting IL-6 after FcϵRI aggregation (89, 177). T-cell-
derived IL-4 also induces mast cell chemotaxis (178).

Mast Cells and Neutrophils
Mast cells influence neutrophils in the following ways. Mast cells
initiate the early stage of neutrophilic recruitment by releasing
the chemical inducer CXCL1/CXCL2. Upon reaching the
stimulated tissue, neutrophils further penetrate the tissue in a
macrophage-dependent manner (macrophages also synthesize
CXCL1/CXCL2 neutrophil chemokines) (90). Serum levels of
granulocyte-macrophage colony-stimulating factor (GM-CSF)
were higher in ASST-positive CSU patients than in ASST-
negative patients (73). GM-CSF derived from mast cells and
activated by IgE cross-linking, appreciably prolongs the survival
of neutrophils (179). IL-1b expression was elevated in both
diseased and non-diseased skin of CSU patients, and mast cells
were shown to secrete IL-1b and induced neutrophil migration
and vascular leakage (177). The heterotypic adhesion of mast
cells to T cells promotes the expression and release of IL-8, which
is an effective chemokine that induces neutrophil migration,
thereby promoting neutrophil aggregation in diseased skin (170).

Mast Cells and Monocytes
The expression of chemokines CCL2 and CXCL8 in monocytes
of CSU patients was upregulated, reflecting the high
responsiveness of monocytes. CXCL8/IL-8 is a chemokine and
activator of various immune cells, which is related to chronic
inflammatory diseases. CCL2 activates mast cells, mainly
basophils (95). After being activated, monocytes release MCP-
1, an influential histamine-releasing factor of mast cells and
basophils, which activates mast cells and basophils, causing them
to release histamine and other inflammatory mediators (180). In
addition to chemokines, monocytes influence mast cells by
releasing TF. Mononuclear TF expression was enhanced in
CSU patients compared with healthy donors. Mononuclear TF
expression may be induced by agonists of toll-like receptors 1, 2,
4, and 5, triggering exogenous coagulation pathways and
increasing vascular permeability in a histamine-independent
manner. This occurrence indirectly triggers the activation of
mast cells and basophils, leading to the formation of wheals and
angioedema (44).
May 2022 | Volume 13 | Article 879754

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhou et al. Immune Cells in CSU
Mast Cells and Macrophages
One of the histamine receptors, H4R, is also expressed in
macrophages (103). In the local microenvironment dominated
by Th2 cells, histamine exists at high concentrations, IL-4, and
histamine-induced down-regulation of C3aR expression in
human M2 macrophages. Reduced C3aR expression may have
an anti-inflammatory effect in which it reduces sensitivity to
C3a-induced downstream signals, thereby helping to regulate
local inflammatory responses in the skin. This mechanism may
be related to the pathogenesis of CSU (181).

After FcϵRI aggregation, macrophages secrete IL-6,
enhancing mast cell proliferation, maturation, and reactivity
(89, 177). The significant increase in IFN-l1 (IL-29) levels in
peripheral blood of CSU patients suggests that IFN-l1 may play
an important role in the pathogenesis of CSU. In the blood of
CSU patients, CD8+ T cells express more IFN-l1, and in the
skin, mast cells, eosinophils, B cells, neutrophils, and
macrophages may be sources of IFN-l1 (91). IFN-l1 has a
paramount role in modulating the development of Th1 and Th2
cells (182). However, it has been reported that IFN-l1 failed to
induce histamine release from human mast cells (183). The role
of IFN-l1 in the pathogenesis of allergic inflammation requires
further study.

Mast Cells and Innate Lymphoid Cells
Innate lymphoid cells (ILCs), as a recently discovered family of
innate immune cells, play an essential role in autoimmune-
related and inflammatory skin diseases (184). NK cells are
members of the ILC family and possess the ability of cell
killing and cytokine production. However, the function of NK
cells in the development and effector phase of allergy is still
controversial (185). The increased percentage of NK cells in
peripheral blood of patients with CU suggests that innate
immune pathways might contribute to wheal formation,
although it has not been verified in CSU (186). Accumulating
evidence indicates that the bias toward Th2 cytokine production
occurs in CSU is conducive to the differentiation of NK cells into
NK2 subsets, which produce Th2 cytokines (52, 187). NK2 cells
are capable of producing many important cytokines, including
IL-4, IL-5, and IL-13, which further aggravates the pathology of
CSU (188). Consistent with this, decreased levels of IFN-g in
serum of patients with CSU suggest that NK1 cells are not
dominant compared with NK2 cells (189).

The function of NK cells is also affected by cytokines
produced by mast cells. IL-4 derived from mast cells drives NK
cells toward a type 2 phenotype (185). Many details about the
interaction between NK cells and mast cells in CSU are still
unclear; however, contributions from NK cells to allergies and
various skin diseases have emerged.

In addition to NK cells, the ILC family also includes Group 2
ILCs (ILC2s), enriched at mucosal barriers in the skin and
associated with allergic diseases. ILC2s are critical drivers of
type 2 inflammation by releasing IL-5 and IL-13 in an antigen-
independent manner (190). ILC2s, located near the mast cells in
the skin, perform complex bidirectional crosstalk with mast cells
in the local tissue environment (191). IL-13 derived from ILC2
Frontiers in Immunology | www.frontiersin.org 8
has been shown to modulate mast cell function and is a key factor
in driving allergic reactions, which may be an interesting target
for future treatment of CSU (192).

Lipid mediators, including PGD2 and LTC4, are effective
modulators of ILC2 function. Mast cells also produce a variety of
cytokines and chemokines, including IL-4, IL-5, IL-13, and IL-
33, as well as thymic stromal lymphopoietin (TSLP). IL-4, IL-9,
and TSLP act as costimulatory cytokines of ILC2s. Besides, TSLP;
and IL- 9 activate STAT5 and induce ILC2 survival. IL-4, IL-9,
and IL-10 also work on ILC2s in an autocrine manner to
maintain cytokine secretion, forming a positive feedback loop
(193–195).

IL-25, TSLP, and IL-33 are potent activators of ILC2s, which
induce intense proliferation and production of cytokines (i.e. IL-
5, IL-6, IL-13, GM-CSF), chemokines (eotaxin), and peptides
(196). Costimulatory cytokines (IL-2, IL-7) and IL-33
synergistically promote the effective activation of ILC2s (184,
194). Recently, IL-25, IL-33, and TSLP have been shown to
increase in lesional skin of CSU patients suggesting that ILC2s
are important contributors to immune dysregulation and
pathology of CSU (71). The frequency of ILC2s in lesional skin
and non-lesional skin of CSU compared to healthy subjects
needed to be confirmed in future studies.

It is essential to mention that Vitamin D deficiency was
reported commonly in CSU patients (197). Vitamin D
suppresses the function of ILC2s (198). The deficiency of
Vitamin D may be an important factor in the functioning of
ILCs in CSU pathogenesis.

In brief, ILC2s interact with mast cells and participate in
driving pathology in CSU through cell interactions.
Understanding the changes in ILC and mast cell-derived
cytokines in local tissues during CSU will help design strategies
to restore skin immune homeostasis.

Crosstalk Between B Lymphocytes and
Other Immune Cells
Autoantigens (such as TPO, IL-4) in patients with CSU induce B
cell production of IgE/IgG antibodies. IgE/IgG binds to FcϵRI-a
of mast cells/basophils and other target cells in the FC segment.
When the same antigen is contacted again, the antigen binds to
two or more IgE molecules that have been bound to the target
cells. FcϵRI is cross-linked, leading to a series of activation
reactions and the release of many inflammatory mediators
(199). Autoantibodies against low-affinity IgE receptors
(FcϵRII/CD23) were found in a subgroup of CSUs, which were
expressed on leukomonocytes and eosinophils. After the anti-
CD23 antibody binds to CD23, eosinophils infiltrating the skin
of patients release MBP, which may be related to the release of
histamine by basophils (67, 200).

In addition, T cells can influence B cells by secreting cytokines.
A low level of IL-21 was observed in CSU patients, which was
negatively correlated with total IgE, suggesting that IL-21 may be
involved in the immunopathogenesis of CSU (119). One of the
functions of IL-21 is to induce apoptosis of antigen-specific B cells
(201). Therefore, the decrease in IL-21 alleviates the inhibition of B
cell proliferation, which may lead to an increase in B cells with the
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TABLE 2 | Possible crosstalk pathways between immune cells involved in CSU.

Cytokine Receptors The
serum
level

Cell sources Cell targets Major functions References

IL-1b IL-1 type 2
receptor

Increased Mast cells Neutrophils Induction of neutrophils migration and vascular leakage (97, 177)

IL-2 IL-2R Decreased CD4+and CD8+
activated T cells

CD4+ and CD8+ T cells,
B cells

Proliferation of effector T and B cells; development of Treg cells;
growth factor for B cells and stimulus for antibody synthesis

(75, 76,
189)

IL-3 IL-3
receptor
a+b c
(CD131)

Increased
(in lesions)

T cells,
macrophages,
Mast cells, NK cells,
eosinophils

Basophils, eosinophils Activation of basophils and
eosinophils; up-regulate the expression of FcϵRI in basophils
and improvement of cell viability

(62, 113,
115, 116)

IL-4 IL-4R type
I,
IL-4R type
II

Increased Th2 cells,
Basophils, Mast cells

T cells, B cells, Mast
cells, monocytes

Activation of basophils and T cells; enhancement of humoral
immunity; recruitment of eosinophils; Induction of monocytes
and Th2 differentiation; survival factor for B and T cells

(70, 117,
119, 124,
125, 178,

204)
IL-5 IL-5R Increased Mast cells, Th2 cells,

activated
eosinophils

Eosinophils, basophils Increment of eosinophils
chemotactic activity
and adhesion capacity

(96, 147,
205)

IL-6 IL-6R (sIL-
6R)
gp130

Increased T cells, basophils,
mast cells,
macrophages

B cells, mast cells B-cell differentiation and
production of IgG, IgM, and IgA; Enhancement of mast cell
proliferation, maturation, and reactivity

(62, 89,
177, 206,

207)
IL-8 CXCR1

and
CXCR2

Increased Mast cells,
eosinophils

Neutrophils, NK cells,
T cells, basophils, and
eosinophils

Chemoattractant for
neutrophils, NK cells,
T cells, basophils, and
eosinophils

(95, 170,
172, 208,

209)

IL-9 IL-9R Increased T cells, mast cells,
eosinophils

B, T, and mast cells T cell and mast cell growth
factor; inhibition of
Th1-cytokines; proliferation of CD8+
T cells and mast cells

(70, 80–82,
210)

IL-10 IL-10R1/IL-
10R2
complex

Increased T cells, B cells T cells, B cells Inhibition of the function of Th1 and Tc1; activation of B cells
and induction of autoantibodies by B cells

(80, 83,
211, 212)

IL-13 IL-13R1a1
and IL-
13R1a2

Increased T, NKT, and mast
cells,
basophils and
eosinophils

B cells, mast cells,
eosinophils

Activation of eosinophils and mast cells; recruitment
and survival of eosinophils

(78, 213,
214)

IL-17 IL-17R Increased Th17 cells Monocytes,
macrophages, B and T
cells

Induction of proinflammatory cytokines,
chemokines, and metalloproteases; recruitment and activation of
neutrophils

(77, 215–
217)

IL-18 IL-18R Increased Macrophages T cells, NK cells,
macrophages

Induction of IFN-g in the
presence of IL-12;
enhancement of NK
cell cytotoxicity,
promoting Th1 or Th2
cell responses
depending on cytokine
milieu

(92–94,
218, 219)

IL-21 IL-21R Decreased T cells CD4+T cells, CD8+T
cells, B cells, DCs,
macrophages

Induction of antigen-specific B-cell apoptosis; inhibition of B-cell
proliferation

(119, 186,
202)

IL-23 IL-23R Increased Macrophages T cells (Th17 cells), NK
cells,
eosinophils,
monocytes,
macrophages

A supporting role in the continued stimulation and survival of
Th17 cells; induction of the secretion of IL-17 by non-T cells

(77, 219)

IL-24 L-20R1/IL-
20R2
and IL-
22R1/
IL-20R2

Increased
(in lesions)

T cells,
monocytes, B cells

Mast cells An autoantigen in chronic spontaneous urticaria; (16, 220)

IL-25 IL-17RA
and
IL-17RB

Increased
(in lesions)

T cells, mast cells,
eosinophils,
basophils

Th2 memory cells,
basophils,
NKT cells,
macrophages

Induction of Th2 responses and inhibition of both Th1 and Th17
responses; induction of IgE, IgG1, IL-4, IL-5, IL-9, IL-13
production

(71)

(Continued)
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progression of CSU. IL-21 seems to be a key cytokine for
maintaining low IgE levels since the lack of IL-21 greatly
enhances the IgE homologous switch and antigen-driven clonal
expansion of IgE+ cells, which triggers an increase in IgE and leads
to the occurrence of diseases (202). IL-21 is considered to be a
critical negative regulator of IgE responses (203).

IL-4 and IL-6 derived from basophils also act on B cells to
enhance their survival, proliferation, and promote humoral
immunity (62).

The above cytokines described in CSU subjects are
summarized in Table 2.
CONCLUSION AND FUTURE DIRECTIONS

Since approximately 45-50% of CSU patients have autoantibodies,
there is no doubt that further research is needed to target the
activation of immune cells by autoantibody pathways. In addition
to the intervention of autoantibodies, the mechanisms of crosstalk
among various immune cells include physical contact activation
and other pathways. These additional pathways include
Frontiers in Immunology | www.frontiersin.org 10
heterotypic adhesion between mast cells and T cells and an
effector unit formed by mast cells and neutrophils. Physical
contact between cells promotes mutual activation and the
release of many inflammatory factors to a certain extent. Beyond
that, activated T cells also stimulate the release of histamine, IL-8,
and other inflammatory mediators by mast cells through the
function of microvesicles, which provides a new mechanism for
the pathogenesis of chronic inflammatory skin diseases; however,
this occurrence remains to be verified in CSU patients.
Inflammatory mediators such as histamine, PGD2, C5a,
thrombin, TF, MBP-1, ECP, and cytokines (i.e., interleukins,
chemokines, interferons, and tumor necrosis factor) play an
important role in regulating the activation or inhibition of
immune cells through the communication network among these
cells and further affect the incidence and mitigation of CSU.

Because mast cells and basophils play a major role in the
pathogenesis of CSU, the current research primarily focuses on
the single functions of these cells, while the implication of T cells,
neutrophils, and eosinophils in this disease are still not unified.
Also, whether the various types of immune cells have physical
interactions remains to be determined. Along with the increase
TABLE 2 | Continued

Cytokine Receptors The
serum
level

Cell sources Cell targets Major functions References

IL-31 IL-31RA/
OSMRb

Increased T cells, mast cells,
basophils

Eosinophils, mast cells,
basophils

Induction of IL-6, IL-8,
CXCL1, CXCL8, CCL2, and CCL8 production in
eosinophils

(129, 130,
134, 221)

IL-33 ST2 Increased Th2 cells,
macrophages, mast
cells, eosinophils,
basophils

Basophils, mast cells,
eosinophils, DCs,
macrophages, NK
cells, NKT cells, T
lymphocytes, B
lymphocytes

Enhanced integrin expression in basophils and
eosinophils; induction of the synthesis and secretion of IL-31 by
mast cells; enhancement of allergic stimulation of mast cells and
basophils; promotion of mast cells maturation

(93, 129,
131, 133,

134)

IL-35 IL-12Rb2/
gp130;
IL-12Rb2/
IL-12Rb2;
gp130/
gp130

Decreased Treg cells,
monocytes

NK cells and activated
T cells

Reduction of effector T-cell proliferation; Increase of IL-10
production and Treg proliferation

(222–224)

TNFa TNFR1
(p55/60,
CD120a)
and
TNFR2
(p75/80,
CD120b)

Increased T cells, mast cells,
basophils

Eosinophils Activation of eosinophils; Increase the expression of eosinophils
ICAM-1

(75–77,
225, 226)

IFN-g IFNGR1/
IFNGR2

Decreased T cells, mast cells,
macrophages

Eosinophils,
lymphocytes, mast cells,
macrophages, and
neutrophils

Aggregation of eosinophils, lymphocytes, mast cells,
macrophages, and neutrophils

(71, 75, 76,
117, 206,

227)

IFN-l1 IFNLR1
and
IL-10R2

Increased
(in plasma)

T cells,
macrophages, mast
cells

Eosinophils,
lymphocytes, mast cells,
macrophages, and
neutrophils

regulation of Th1/Th2 responses (91, 182)

TGF-b TbR-I and
TbR-II

Increased Eosinophils,
macrophages, Treg
cells

T cells, NK cells,
monocytes,
macrophages,
neutrophils, and
eosinophils

Reduction of mast cells expression of FcϵRI; regulation of the
differentiation of
several Th cell subsets
and induction of Treg
cells; immune tolerance

(146)
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in disease rates over the years, some patients may suffer more
than one episode of CSU during their lifetime. Considering the
possibility of recurrence, disabling symptoms, and significant
impact on quality of life, further studies are imperative to
advance the understanding of pathogenic factors that trigger
skin symptoms and even systemic symptoms in CSU patients,
especially the specific role played by immune cells, and to assist
in the selection of proper and effective therapeutics.
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31. Panaszek B, Pawłowicz R, Grzegrzółka J, Obojski A. Autoreactive IgE in
Chronic Spontaneous/Idiopathic Urticaria and Basophil/Mastocyte Priming
Phenomenon, as a Feature of Autoimmune Nature of the Syndrome. Arch
Immunol Ther Exp (Warsz) (2017) 65(2):137–43. doi: 10.1007/s00005-016-
0417-7

32. Ertas R, Ozyurt K, Atasoy M, Hawro T, Maurer M. The Clinical Response to
Omalizumab in Chronic Spontaneous Urticaria Patients is Linked to and
Predicted by IgE Levels and Their Change. Allergy (2018) 73(3):705–12.
doi: 10.1111/all.13345

33. Sánchez J, Amaya E, Acevedo A, Celis A, Caraballo D, Cardona R.
Prevalence of Inducible Urticaria in Patients With Chronic Spontaneous
Urticaria: Associated Risk Factors. J Allergy Clin Immunol Pract (2017) 5
(2):464–70. doi: 10.1016/j.jaip.2016.09.029

34. Cao TBT, Cha HY, Yang EM, Ye YM. Elevated MRGPRX2 Levels Related to
Disease Severity in Patients With Chronic Spontaneous Urticaria. Allergy
Asthma Immunol Res (2021) 13(3):498–506. doi: 10.4168/aair.2021.13.3.498

35. Roy S, Chompunud Na Ayudhya C, Thapaliya M, Deepak V, Ali H.
Multifaceted MRGPRX2: New Insight Into the Role of Mast Cells in
Health and Disease. J Allergy Clin Immunol (2021) 148(2):293–308.
doi: 10.1016/j.jaci.2021.03.049

36. Gangwar RS, Pahima H, Puzzovio PG, Levi-Schaffer F. Update on
Eosinophil Interaction With Mast Cells: The Allergic Effector Unit.
Methods Mol Biol (2021) 2241:221–42. doi: 10.1007/978-1-0716-1095-4_18

37. Mekori YA. Hershko AyT Cell-Mediated Modulation of Mast Cell Function:
Heterotypic Adhesion-Induced Stimulatory or Inhibitory Effects. Front
Immunol (2012) 3:6. doi: 10.3389/fimmu.2012.00006

38. Shefler I, Salamon P, Levi-Schaffer F, Mor A, Hershko AY, Mekori YA.
MicroRNA-4443 Regulates Mast Cell Activation by T Cell-Derived
Microvesicles. J Allergy Clin Immunol (2018) 141(6):2132–41.e4.
doi: 10.1016/j.jaci.2017.06.045

39. Shefler I, Salamon P, Mekori YA. Extracellular Vesicles as Emerging
Players in Intercellular Communication: Relevance in Mast Cell-Mediated
Pathophysiology. Int J Mol Sci (2021) 22(17):9176. doi: 10.3390/
ijms22179176

40. Wilcock A, Bahri R, Bulfone-Paus S, Arkwright PD. Mast Cell Disorders:
From Infancy to Maturity. Allergy (2019) 74(1):53–63. doi: 10.1111/all.13657

41. Theoharides TC, Tsilioni I, Ren H. Recent Advances in Our Understanding
of Mast Cell Activation - or Should it be Mast Cell Mediator Disorders?
Expert Rev Clin Immunol (2019) 15(6):639–56. doi: 10.1080/1744666x.
2019.1596800

42. Elieh Ali Komi D, Shafaghat F, Kovanen PT, Meri S. Mast Cells and
Complement System: Ancient Interactions Between Components of Innate
Immunity. Allergy (2020) 75(11):2818–28. doi: 10.1111/all.14413

43. Cugno M, Marzano AV, Tedeschi A, Fanoni D, Venegoni L, Asero R.
Expression of Tissue Factor by Eosinophils in Patients With Chronic
Frontiers in Immunology | www.frontiersin.org 12
Urticaria. Int Arch Allergy Immunol (2009) 148(2):170–4. doi: 10.1159/
000155748

44. Saito R, Yanase Y, Kamegashira A, Takahagi S, Tanaka A, Uchida K, et al.
Increase of Tissue Factor Expression on the Surface of Peripheral Monocytes
of Patients With Chronic Spontaneous Urticaria. Allergy (2020) 75(4):971–4.
doi: 10.1111/all.14110

45. Katsoulis-Dimitriou K, Kotrba J, Voss M, Dudeck J, Dudeck A. Mast Cell
Functions Linking Innate Sensing to Adaptive Immunity. Cells (2020) 9
(12):2538. doi: 10.3390/cells9122538

46. Voss M, Kotrba J, Gaffal E, Katsoulis-Dimitriou K, Dudeck A. Mast Cells in
the Skin: Defenders of Integrity or Offenders in Inflammation? Int J Mol Sci
(2021) 22(9):4589. doi: 10.3390/ijms22094589

47. Cardamone C, Parente R, Feo GD, Triggiani M. Mast Cells as Effector Cells
of Innate Immunity and Regulators of Adaptive Immunity. Immunol Lett
(2016) 178:10–4. doi: 10.1016/j.imlet.2016.07.003

48. Caproni M, Volpi W, Macchia D, Giomi B, Manfredi M, Campi P, et al.
Infiltrating Cells and Related Cytokines in Lesional Skin of Patients With
Chronic Idiopathic Urticaria and Positive Autologous Serum Skin Test. Exp
Dermatol (2003) 12(5):621–8. doi: 10.1034/j.1600-0625.2003.00010.x

49. Mukai K, Tsai M, Saito H, Galli SJ. Mast Cells as Sources of Cytokines,
Chemokines, and Growth Factors. Immunol Rev (2018) 282(1):121–50.
doi: 10.1111/imr.12634

50. Yanase Y, Matsuo Y, Takahagi S, Kawaguchi T, Uchida K, Ishii K, et al.
Coagulation Factors Induce Human Skin Mast Cell and Basophil
Degranulation via Activation of Complement 5 and the C5a Receptor.
J Allergy Clin Immunol (2021) 147(3):1101–4.e7. doi: 10.1016/j.jaci.2020.
08.018

51. Shefler I, Pasmanik-Chor M, Kidron D, Mekori YA, Hershko AY. T Cell-
Derived Microvesicles Induce Mast Cell Production of IL-24: Relevance to
Inflammatory Skin Diseases. J Allergy Clin Immunol (2014) 133(1):217–
24.e1-3. doi: 10.1016/j.jaci.2013.04.035
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