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Abstract

Recent advances in single-cell RNA sequencing (scRNA-seq) enable characterization of transcriptomic profiles with
single-cell resolution and circumvent averaging artifacts associated with traditional bulk RNA sequencing (RNA-seq) data.
Here, we propose SCDC, a deconvolution method for bulk RNA-seq that leverages cell-type specific gene expression profiles
from multiple scRNA-seq reference datasets. SCDC adopts an ENSEMBLE method to integrate deconvolution results from
different scRNA-seq datasets that are produced in different laboratories and at different times, implicitly addressing the
problem of batch-effect confounding. SCDC is benchmarked against existing methods using both in silico generated
pseudo-bulk samples and experimentally mixed cell lines, whose known cell-type compositions serve as ground truths. We
show that SCDC outperforms existing methods with improved accuracy of cell-type decomposition under both settings. To
illustrate how the ENSEMBLE framework performs in complex tissues under different scenarios, we further apply our
method to a human pancreatic islet dataset and a mouse mammary gland dataset. SCDC returns results that are more
consistent with experimental designs and that reproduce more significant associations between cell-type proportions and
measured phenotypes.
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Introduction

Bulk RNA sequencing (RNA-seq) has been the method of
choice for profiling transcriptomic variations under different
conditions such as disease states [1–3]. However, in complex
tissues with multiple heterogeneous cell types, bulk RNA-seq
measures the average gene expression levels by summing over
the population of cells in the tissue and variability in cell-

type compositions confounds with analysis such as detecting
differential gene expression [4]. While multiple statistical and
computational methods have been developed for cell-type
decomposition of bulk RNA-seq data [5–7], most of these have
limitations. Many require a priori knowledge, either of gene
expression profiles of purified cell types [6, 7] or of cell-type
compositions [5]. Methods that do not take these information
as input instead require a list of pre-selected marker genes
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[8, 9]. Finally, completely unsupervised approaches based on
non-negative matrix factorization suffer from low deconvolution
accuracy and have identifiability and multicollinearity issues
[10].

Recent advances in single-cell RNA sequencing (scRNA-seq)
circumvent averaging artifacts associated with the traditional
bulk RNA-seq data by enabling characterization of transcrip-
tomic profiles at the single-cell level [11]. While scRNA-seq
data has greatly increased resolution in the characterization of
transcriptomic heterogeneity, its relatively high cost and tech-
nical challenges pose difficulties in generating scRNA-seq data
across a large population of samples [12, 13]. Association testing
performed on single-cell data from a small number of subjects
has only limited statistical power. Large collaborations, on the
other hand, have successfully sequenced an enormous number
of bulk samples [14, 15], making cell-type decomposition on bulk
RNA-seq data aided by scRNA-seq an appealing analysis scheme.

Several methods exploiting single-cell expression reference
datasets have been developed for bulk gene expression
deconvolution [16–20]. Specifically, both Bseq-SC [16] and DWLS
[20] first use scRNA-seq data to build a cell-type specific gene
expression signature matrix with or without requiring a set
of pre-selected marker genes, respectively. They then apply
a support vector regression-based deconvolution framework
adapted from CIBERSORT [7] or a weighted least square approach
to estimate cell compositions. MuSiC [17] proposes a weighted
non-negative least squares (W-NNLS) regression framework
utilizing all genes shared between the bulk and the single-cell
data, while weighting each gene by cross-subject and cross-cell
variations. Empirical evidence suggests that this leads to higher
deconvolution accuracy. Recently developed methods, Bisque
[19] and CIBERSORTx [18], perform additional gene expression
transformations to explicitly account for the technical variation
in either the single-cell signature matrix or the observed
bulk expression. Supplementary Table S1 gives a summary
of the existing deconvolution methods utilizing scRNA-seq
data.

Despite this progress, to the best of our knowledge, all
existing methods reconstruct the gene expression signature
matrix using only one single-cell reference. These methods
therefore cannot use additional scRNA-seq data of the same
tissue from the same model organism that may be available
from other studies and laboratories (Supplementary Table S2
and Supplementary Figure S1). These methods also cannot take
advantage of the extensive transcriptomic reference maps
at the cellular level that have been generated by multiple
large consortia, including the Human Cell Atlas [21] and the
Mouse Cell Atlas [22]. Borrowing information from existing data
could potentially boost the performance of and increase the
robustness of deconvolution. This has been demonstrated by
[23], who showed that leveraging heterogeneity across multiple
reference datasets could increase deconvolution accuracy
and reduce biological and technical biases for microarray
data. For scRNA-seq data, however, significant batch effect
prevails across data collected from different sources and as
we demonstrate later, the naive pooling of multiple scRNA-seq
datasets to build a ‘mega’ reference profile performs poorly.
One potential solution is to correct for the batch effect in the
data. However, existing batch correction methods for scRNA-
seq data either adopt a dimension reduction technique for
visualization and clustering [24, 51] or change the scale of the
original gene expression measurements [25, 52, 53], both of
which make subsequent deconvolution difficult—perhaps even
infeasible.

Here, we introduce a new framework, SCDC, to leverage mul-
tiple scRNA-seq reference sets for bulk gene expression decon-
volution. Specifically, when multiple scRNA-seq reference sets
are available, SCDC adopts an ENSEMBLE method to integrate
deconvolution results across datasets; it implicitly addresses the
problem of batch-effect confounding by giving higher weights
to the scRNA-seq data that are more closely related to the
bulk RNA-seq data. We benchmark our method against existing
methods using pseudo-bulk samples generated in silico, whose
true underlying cell type identities are known. We also evaluate
the performance of SCDC on an RNA-seq dataset of paired single
cells and bulk samples, the latter of which have experimentally
controlled cell-type proportions as ground truths. SCDC is shown
to outperform existing methods by integrating multiple scRNA-
seq datasets; even with only one single-cell dataset, SCDC yields
enhanced deconvolution accuracy. To further demonstrate the
ENSEMBLE method, SCDC is applied to two real datasets, human
pancreatic islets and mouse mammary glands, using multiple
scRNA-seq inputs. We show that, compared to existing methods,
SCDC returns results that are more consistent with experimen-
tal designs and that reproduce more significant associations
between cell-type proportions and measured phenotypes. SCDC
is available as an open-source R package at http://meichendong.
github.io/SCDC.

Results
Overview of SCDC’s deconvolution via ENSEMBLE

Figure 1 gives an overview of SCDC. The same set of bulk RNA-
seq samples can be deconvoluted using different single-cell
reference datasets. Empirically, we show that this may return
distinct cell-type proportion estimations, due to both intrinsic
biological variation and technical noise (Supplementary Table S2
and Supplementary Figure S1) [26]. It is further shown that
naively pooling all available single cells from different sources
suffers from the prevalent batch effects and the biological het-
erogeneity that are present in the data (Supplementary Table S3).
To resolve this discrepancy while making full use of all
available scRNA-seq reference datasets, SCDC adopts an
ENSEMBLE method to combine the deconvolution results from
individual datasets. The weights for each dataset are selected
via optimization, with higher weights assigned to single-cell
reference datasets that better recapitulate the true underlying
gene expression profiles of the bulk samples.

In the following, we begin by giving a review of the exist-
ing regression-based deconvolution framework [16–20]. We then
describe the model for SCDC, leaving algorithmic details to the
Methods section and Supplemental Information. Consider an
observed bulk gene expression matrix Y ∈ R

N×M for N genes
across M samples, each containing K different cell types. The goal
of deconvolution is to find two non-negative matrices B ∈ R

N×K

and P ∈ R
K×M such that

Y ≈ BP,

where each column of P represents the mixing proportions
of the K cell types of one sample and each column of the
‘basis’ matrix B represents the average gene expression levels
in each type of cells. As described earlier, different methods
have been developed to integrate both bulk-tissue and single-
cell gene expression measurements for deconvolution [16–20].
These methods obtain

Ŷ = B̂P̂,

where each matrix is estimated as the final output.

http://meichendong.github.io/SCDC
http://meichendong.github.io/SCDC
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Fig. 1. Overview of deconvolution via ENSEMBLE by SCDC. When multiple single-cell reference datasets are available, batch effect confounding is avoided by performing

deconvolution on each scRNA-seq reference set separately. SCDC then integrates the deconvolution results with dataset-specific optimized weights, which are used to

derive the final cell-type proportions.

In the presence of multiple scRNA-seq datasets, one can
adopt the aforementioned deconvolution strategies to each
single-cell dataset r ∈ {1, . . . , R} separately to obtain the predicted
gene expression level Ŷr, the estimated basis matrix B̂r and the
estimated cell-type proportion matrix P̂r. Empirical evidence
suggests that, depending on the scRNA-seq data adopted,
the estimates of P can differ drastically and that naively
pooling all the single-cell data with or without batch-effect
correction leads to overall bad and unstable performance
(Supplementary Table S2 and Supplementary Table S3). To make
full use of all available single-cell data and to give higher
weights to the reference that more closely recapitulates the true
underlying cell compositions, we propose SCDC, an ENSEMBLE
method to integrate all deconvolution results as P̂ = ŵ1P̂1 + · · · +
ŵRP̂R with different weights ŵr (1 ≤ r ≤ R), which are optimized
via:

(
ŵ1, ŵ2, . . . , ŵR

) = argmin
(w1,w2,...,wR)

∥∥∥P− w1P̂1 − w2P̂2 − ... − wRP̂R

∥∥∥
1

. (1)

However, the above objective function cannot be minimized
given that the actual cell-type proportions P are unknown. To
overcome this problem, SCDC adopts a ‘surrogate’ metric on the
observed Y to substitute on the unknown P. That is, we instead
optimize the weights via

(
ŵ1, ŵ2, . . . , ŵR

) = argmin
(w1,w2,...,wR)

∥∥∥Y − w1Ŷ1 − w2Ŷ2 − ... − wRŶR

∥∥∥
1

. (2)

Intuitively, if a single-cell reference data truly recapitulates the
cellular expression profiles of the bulk samples, it should provide
high-quality estimates of both P and Y. Empirically, we show
that the estimation errors on P are positively correlated with

those on Y (Supplementary Figure S1), confirming that a refer-
ence set that leads to higher deconvolution accuracy also has
lower residuals of Y from the regression. We also show that
the L1 norm of the difference in the above equations can be
replaced by other dissimilarity measurements such as correla-
tion or L2 norm of the difference (Supplementary Figure S1). For
optimization of weights {w1, . . . , wR}, SCDC, by default, adopts
a numerical method based on grid search to maximize the
Spearman correlation between Y and Ŷ. Given P̂, one can subse-
quently adopt a regression-based framework, in a similar fash-
ion to csSAM [5], to derive a more accurate estimate of the basis
matrix B.

Performance on simulated data

To assess the performance of SCDC, we carried out extensive
simulation studies, which also illustrate the ENSEMBLE method
by SCDC in more details. In these simulations, pseudo-bulk sam-
ples were generated in silico by aggregating well-characterized
single cells from existing scRNA-seq studies. The known cell-
type proportions of these samples were used as ground truths;
the deconvolution accuracy was assessed by Pearson correlation
and mean absolute deviation (mAD) between the actual and the
deconvoluted cell-type proportions. Figure 2A gives an outline
of the simulation setup. We started with a scenario where bulk
RNA-seq data was paired with scRNA-seq data generated from
the same study on the same subjects (Figure 2B). We then moved
onto a more difficult case where the bulk RNA-seq data was
generated from a different source than the scRNA-seq data
(Figure 2C).

In Figure 2B, pseudo-bulk samples were constructed by
aggregating well characterized single cells of four cell types
human pancreatic alpha, beta, delta and gamma cells from
[27]. A total of 100 simulations were run. Within each run,
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Fig. 2. Prediction errors of Y serve as a surrogate for the estimation errors of P. (A) Outline of simulation setup, where single cells of human pancreatic islets are

aggregated to generate pseudo-bulk samples, whose cell-type proportions are known. We examine the results of deconvolution via ENSEMBLE, both with and without

paired single-cell reference dataset. (B) mAD (P− P̂) and mAD (Y− Ŷ) with three varying dataset-specific weights for deconvolution of bulk samples with paired scRNA-

seq. The two metrics agreed on the assignment of the optimal weights, which were around (ŵ1, ŵ2, ŵ3) = (0, 0, 1). (C) mAD(P − P̂) and mAD(Y − Ŷ) with two varying

dataset-specific weights for deconvolution of bulk samples without paired scRNA-seq. The two metrics are highly correlated with varying weights for reference dataset

from [16].

100 pseudo-bulk samples were generated by sampling single
cells without replacement from a randomly selected subject. For
deconvolution, we further adopted three scRNA-seq datasets of
human pancreatic islets: [16, 27, 28], the last of which is from
the same source as the pseudo-bulk samples. In Figure 2B, we
demonstrate how different weights for the three scRNA-seq
reference sets (only two weights are shown since the three sum
up to one) lead to different deconvolution results accuracies,
as measured by the mAD of P − P̂ (top panel) and the mAD
of Y − Ŷ (bottom panel), respectively. We show that the two
metrics, given varying weights for the three single-cell reference
datasets, are highly correlated, indicating that the measurement
error of Y serves as a good proxy to that of P. This signifies the
feasibility of the ENSEMBLE framework by SCDC when the true

underlying P remains unknown. Indeed, our findings further
reveal that SCDC was able to derive a set of optimal weights
with the highest one being close to one, which corresponds to
the single-cell data from the same source as the bulk samples.
The same pattern is observed when we switch the source of the
pseudo-bulk samples (Supplementary Figure S2).

Figure 2C shows results from another set of simulations.
These simulations are similar to the previously described set,
but there was no scRNA-seq reference set from the same source
as the pseudo-bulk samples. For pseudo-bulk samples generated
from [16] and [27], the scRNA-seq dataset from [28] is weighted
most heavily by SCDC (Figure 2C, Supplementary Table S2C),
potentially due to the high sequencing depth and full-transcript
coverage by the Smart-seq2 protocol [29] that was adopted.
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Performance on mixtures of three cell lines

While we have successfully demonstrated that SCDC allows
accurate deconvolution of pseudo-bulk samples, the in silico
reconstruction procedure is over simplified and does not
mimic how real bulk RNA-seq samples are collected and
sequenced. Therefore, we carried out a set of well controlled
experiments, where cell lines were mixed at a fixed ratio,
followed by both bulk and single-cell RNA-seq. These known
cell-type proportions served as ground truths to benchmark
SCDC against existing methods without bias. Specifically,
human breast cancer cell lines MDA-MB-468, MCF-7 and human
fibroblast cells were independently cultured and then mixed
at a fixed ratio of 6 : 3 : 1. This was followed by traditional
bulk RNA-seq as well as scRNA-seq by 10X Genomics. More
experimental details are available in the Methods section.
Single-cell clustering was performed using the Seurat pipeline
[24] with t-SNE visualization shown in Figure 3A (see details
in Supplemental Information). The cell-type ratio by scRNA-
seq is 0.661 : 0.225 : 0.114, close to but slightly different
from the experimental setup due to either the inaccuracy of
counting cells when making the mixture or the sampling bias of
scRNA-seq.

To deconvolute the bulk RNA-seq sample, we adopted the
scRNA-seq dataset that was generated from the same mixture,
which was the only available reference set. As such, this reduced
to a one-subject and one-reference deconvolution problem (see
Supplemental Information for details), and the ENSEMBLE step
was therefore not needed. In this case, we carried out direct
comparisons of SCDC without ENSEMBLE against existing meth-
ods. Given one single-cell reference dataset, SCDC largely follows
the W-NNLS framework proposed by MuSiC but also differs
in several ways. First, SCDC starts by scaling the raw single-
cell read-count matrix by a gene- and subject-specific maxi-
mal variance weight (MVW) so that residuals from genes with
larger weights have smaller impact on cell-type composition
estimation. Second, SCDC does not take cell-type memberships
as granted; instead, it removes potentially misclassified cells
and doublets using a first-pass SCDC run to improve robustness.
Third, it allows single-subject scRNA-seq input, in which cross-
subject variance cannot be directly estimated. (Refer to Methods
for more details.) However, since MDA-MB-468 and MCF-7 are
both human breast cancer cell lines with relatively similar tran-
scriptomic profiles, deconvolution of the bulk mixture by SCDC
in a single run fails to estimate the correct relative proportions.
To solve this issue, we applied the tree-guided deconvolution
procedure proposed by MuSiC [17] to separate the closely related
cell types. Refer to Supplemental Information for details.

The estimated cell-type proportions by SCDC with the tree-
guided approach are 0.64 : 0.26 : 0.11, close to the ratio of
6 : 3 : 1 with a Pearson correlation of 0.991 Figure 3B. We
also benchmarked SCDC against Bseq-SC [16], CIBERSORTx
[18], Bisque [19], DWLS [20] and MuSiC [17] and showed that,
even without ENSEMBLE, SCDC achieved the highest correlation
coefficient. This is consistent with the simulations results
shown in Supplementary Table S2: overall, SCDC achieved the
most accurate deconvolution results when only one single-cell
reference set was available.

Performance on human pancreatic islet data

To demonstrate the proposed ENSEMBLE framework when
multiple reference datasets are available, we used SCDC to
deconvolute 77 bulk RNA-seq samples of human pancreatic
islets, of which 51 are from healthy individuals and 26 are from

diabetic individuals [30]. Two scRNA-seq reference datasets
were adopted, each harvesting six cell types of interest:
alpha, beta, delta, gamma, acinar and ductal cells [16, 28]. To
allow the basis matrix B to reflect the potentially different
gene expression patterns between the cases and controls,
we performed the ENSEMBLE weight selection procedures
separately for the samples from the two classes. The final
ENSEMBLE weights for the two reference datasets were derived
using least absolute deviation (LAD) regression and grid search
method. Supplementary Table S4 shows the final weights for
the single-cell reference from [16], which vary from 0.17 to
0.40 for the healthy samples and 0.33 to 0.48 for the diabetic
samples. Figure 4A shows the cell-type proportions estimated
with ENSEMBLE (using weights selected by grid search method
to maximize Spearman correlation) compared to the cell-type
proportions estimated using single reference sets without
ENSEMBLE. SCDC recovered the proportions of beta cells that
were grossly underestimated previously [16] at much higher
levels, in concordance with the previous reports that adult
human islet consists of around 50% beta cells [31–33]. In addition,
our results suggested that the beta cell proportions were slightly
higher in the healthy donors than in the diabetic donors,
although the difference was insignificant (P = 0.1007).

To evaluate the performance of SCDC and to compare against
other existing methods, we sought to replicate previous findings
on the negative correlation between the levels of hemoglobin
A1c (HbA1c, an important biomarker for type 2 diabetes) and
the beta cell functions [34, 35]. We constructed a linear model
using the estimated cell-type proportions as the response vari-
able and the other covariates (age, gender, BMI and HbA1c)
as predictors. With only one single-cell reference, DWLS [20]
returned the smallest P-values, while Bisque [19], CIBERSORTx
[18] and BseqSC [16] failed to detect the association, regardless
which scRNA-seq reference dataset was adopted (Figure 4B).
MuSiC [17] returned insignificant associations for the scRNA-
seq reference dataset from [16] (Figure 4B). Without ENSEMBLE,
SCDC returned significant P-values of 0.031 and 0.038 from each
deconvolution; with ENSEMBLE, SCDC led to more significant
associations between the HbA1c levels and the beta cell propor-
tions, with P-values of 0.001 and 0.0018 with weights estimated
from LAD and grid search, respectively (Supplementary Table S5,
Figure 4B). In sum, the cell-type proportion estimates via ENSEM-
BLE more accurately reproduced the previously reported associ-
ation between the two orthogonal measurements.

Performance on mouse mammary gland data

We further illustrate the performance of SCDC on a dataset
of mouse mammary gland. Figure 5A gives an overview of the
experimental design. For this experiment, mouse mammary
glands were harvested from two 12-week-old FVB/NJ mice,
FVB3 and FVB4. Bulk RNA-seq was performed on the fresh
frozen tissues. Meanwhile, single-cell suspension was prepared
for the two samples; both scRNA-seq by 10X Genomics and
bulk RNA-seq were performed on the pooled cell suspensions.
(Refer to Methods for details on experimental setup including
animal model, cell suspension preparation, library preparation
and sequencing.) To illustrate the ENSEMBLE method for
deconvolution, we adopted another single-cell reference dataset
of mouse mammary glands from Tabula Muris [36], generated
by the microfluidic droplet-based method (see Key Resources
Table). For clarity, the scRNA-seq data generated at the Perou
Lab will be denoted as ‘Perou’ and the scRNA-seq data from
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Fig. 3. Performance assessment on bulk and single-cell RNA-seq of cell line mixtures with experimentally controlled proportions. (A) Visualization by t-SNE after

single-cell clustering. The cells are clustered into three groups, MDA-MB-468, MCF-7 and normal fibroblast cells, in a ratio close to 6:3:1. (B) Benchmark of deconvolution

results for the bulk RNA-seq sample, produced by different methods. Among all benchmarked methods, the proportions estimated by SCDC using the tree-guided

approach has the highest Pearson correlation (0.99) with the ground truth.

Tabula Muris will be denoted as ‘T. Muris’; the bulk RNA-seq data
generated from the fresh frozen tissue will be denoted as ‘fresh
frozen’ and the bulk RNA-seq data from the pooled suspended
cells will be denoted as ‘10X bulk’. We aimed to use SCDC to
deconvolute each of the two bulk RNA-seq samples using the
two scRNA-seq reference sets.

Following bioinformatic pre-processing (refer to Methods
for details), we first adopted Seurat [24] to perform single-
cell clustering for the two scRNA-seq datasets, Perou and
T. Muris, and then applied additional quality control (QC)
procedures (outlined in the Methods section). The final cell
types of interest consisted of immune, endothelial, fibroblast,
luminal cells and basal cells; t-SNE visualization is shown in
Supplementary Figure S3. As with the example of the three-
cell-line mixture, we observed cell types with transcriptomic
profiles that were highly similar (Supplementary Figure S4A);
we therefore adopted a tree-guided approach for deconvolution
[17] in order to distinguish the closely related cell types
(Supplementary Figure S4B,C). This two-step deconvolution
approach was applied using the Perou and T. Muris scRNA-
seq references, respectively. Through ENSEMBLE, SCDC chose
dataset-specific weights, which are shown in Table S6. As
expected, a higher weight was assigned to the Perou refer-
ence dataset, which was from the same source as the bulk
samples.

Figure 5B shows the final deconvolution results, both with
and without ENSEMBLE, of the two bulk samples. The figure also
includes Pearson correlations between the cell-type proportions
estimated by scRNA-seq and those estimated by deconvolution.
We found that the ENSEMBLE method produced higher corre-
lation coefficients than approaches that use only one scRNA-
seq dataset as reference (Figure 5B). This finding demonstrates
the advantage of integrating data through SCDC. We also found
that, compared to the fresh frozen bulk samples, the decon-
voluted cell-type proportions from the 10X bulk samples were
more highly correlated with the scRNA-seq fractions (Figure 5B).
While the decrease of correlation coefficient from around 0.98 to
around 0.92 is reassuring due to the order of the experiments, it
also strikingly indicates a potential cell type-specific bias intro-

duced by the 10X Genomics protocol, for it has been previously
reported that adipocyte cells tend to get lost during the single-
cell library preparation step [37]. As such, cell-type proportions
from the single-cell experiment do not necessarily reflect those
in the bulk tissues due to the sampling bias and the technical
artifacts that are associated with the library preparation and
sequencing step of scRNA-seq [38]. This makes in silico decon-
volution a compelling approach to unbiased recovery of true
underlying cell-type composition.

Discussion
Here, we propose a method for deconvoluting bulk RNA-seq data
accurately by exploiting multiple scRNA-seq reference datasets
through ENSEMBLE. We show that such data integration leads to
higher deconvolution accuracy via both extensive simulations
and experimental validations. Existing batch correction methods
for scRNA-seq data either do not return a batch-corrected
gene expression matrix (but rather components for dimension
reduction) [24] or return one with a drastically different range of
measurements (between zero and one) [25], making subsequent
modeling based on read count/TPM/CPM challenging. In our
benchmark analysis, we systematically investigated how batch-
effect correction affects deconvolution accuracy by including
an optional pre-processing step to correct for batch effect in
scRNA-seq data using MNN [25]. Given our observations of
unstable performances of the existing deconvolution methods
on batch-corrected data (Supplementary Table S3), the utility of
scRNA-seq batch-effect correction on improving deconvolution
accuracy remains unclear. SCDC does not directly address this
nontrivial issue; rather, it opts to integrate deconvolution results
derived separately from each available scRNA-seq dataset with
different weights, so as to reflect the degree of similarity
between the bulk data and the reference data. SCDC let the
data decide whether a reference data is close to the bulk data
or not. Similarly, for bulk RNA-seq data, which are also subject
to batch factors, SCDC can select an optimal combination of
scRNA-seq reference sets for each sample separately to achieve
more accurate cell-type decomposition.
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Fig. 4. Gene expression deconvolution of human pancreatic islet samples. (A) Estimated pancreatic islet cell-type composition in healthy and type 2 diabetic (T2D)

human samples. The boxplot shows discrepancies in the deconvoluted proportions across different reference datasets. The ENSEMBLE method recovered the grossly

underestimated beta cell proportions by deconvolution using only scRNA-seq data from [16]. (B) Association of beta cell proportions and HbA1c levels by a linear

model: beta cell proportion ∼ HbA1c + age + BMI + sex. Each benchmarked method was applied using reference datasets from [16] and [28] separately. The ENSEMBLE

method by SCDC is additionally applied using both reference datasets simultaneously. Bisque, CIBERSORTx and BseqSC fail to recover the previously reported negative

correlations; SCDC with ENSEMBLE returns more significant P-values, compared to single-reference deconvolution.

While in this paper we have focused on integrating results
from multiple scRNA-seq datasets, the same framework can be
applied to integrate results from different deconvolution meth-
ods. In Supplementary Table S2, we showed that no one method
universally performed better than the others across all simula-

tion setups. To address this instability issue, SCDC’s weighting
principle can be applied similarly, where different weights are
assigned to different deconvolution methods.

For weight optimization, we would ideally hope that the sets
of weights selected by different methods offered by SCDC always
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Fig. 5. Gene expression deconvolution of mouse mammary gland samples. (A) Flowchart of experimental design. Mouse mammary glands from two replicates, FVB3

and FVB4, were processed in two ways to generate both fresh-frozen bulk samples and single-cell suspensions. The single-cell suspensions were further divided into

two parts: one for scRNA-seq by 10X Genomics and the other for pooled bulk RNA-seq. To deconvolute the bulk samples through ENSEMBLE, another scRNA-seq dataset

of mouse mammary gland from the Tabula Muris Consortium was adopted. (B) Bulk gene expression deconvolution with and without ENSEMBLE. Pearson correlation

of the cell-type proportions estimated by deconvolution and by scRNA-seq are shown. The ENSEMBLE method using LAD or grid search method results in higher

correlations for both bulk samples of the two replicates.

agree with each other. However, sometimes, the performances
of candidate reference datasets could resemble in one metric
but diverge in another metric (Supplementary Figure S2C, S2F).
When significant discrepancies exist among the sets of weights
selected by different existing metrics, we introduce an optional
metric to aid the users to choose a set of weights in the spirit
of meta analysis [39, 40]. Specifically, we propose to use the pro-
portions of inverse sum of squared errors (SSEs) between Y and Ŷ
from reference datasets to weight them such that higher weights
are assigned to references with higher estimation accuracy of Y.
More details can be found in Supplemental Information.

Identifying cell-type composition of disease-relevant tissues
allows identification of cellular targets for treatment and offers
a better understanding of disease mechanism. For downstream
analysis following deconvolution, hypothesis testing on differ-
ential gene expression in a case-control setting needs to account
for the variability of cell-type composition. As [5] have described,
differential gene expression analysis in the presence of cellular
heterogeneity can be performed through the following testing
schemes: (i) whole tissue differences (i.e. testing on Y); (ii) differ-
ences in cell-type compositions (i.e. testing on P); (iii) differences
in cell type-specific gene expression patterns (i.e. testing on B:k

for each cell type k); (iv) differences in cell type-specific gene
expression patterns while accounting for cell-type proportions
(i.e. testing on B:kPk: for each cell type k); and (v) an omnibus

test across all cell types (i.e. testing on B across all cell types
simultaneously). All of these testing schemes (except for the
testing on Y by traditional methods developed for bulk RNA-
seq data) must be adapted when scRNA-seq data is used to
aid deconvolution: neither B nor P is pre-known, and one must
take into consideration their estimation uncertainties through
deconvolution.The questions of how to jointly perform differen-
tial testing when multiple scRNA-seq datasets are available and
how to jointly model both bulk and single-cell RNA-seq data [41]
with high computational efficiency require further investigation.

Methods
Contact for reagent and resource sharing

Further information and requests for resources and reagents
should be directed to and will be fulfilled by Charles M. Perou
(chuck_perou@med.unc.edu), Fei Zou (feizou@email.unc.edu)
and Yuchao Jiang (yuchaoj@email.unc.edu)

Experimental model and subject details

Cell-line mixture

MCF-7 and MDA-MB-468 cells were purchased from ATCC.
Human dermal fibroblasts were isolated from skin. All cell

chuck_perou@med.unc.edu
feizou@email.unc.edu
yuchaoj@email.unc.edu
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lines were maintained independently in culture medium DMEM
(Gibco) supplemented with 10% FBS (Millipore) and 1% penicillin-
streptomycin (Gibco) and grown in incubators maintained at
37◦C with 5% CO2. Cells were mixed together so that MCF-7 cells
comprised 60% of the mixture, MDA-MB-468 cells comprised
30% of the mixture and dermal fibroblasts comprised 10% of the
mixture.

Animal model

All animal studies were performed with approval and in accor-
dance with the guidelines of the Institutional Animal Care and
Use Committee (IACUC) at the University of North Carolina at
Chapel Hill. Female FVB/NJ mice were obtained in collaboration
with the UNC Lineberger Comprehensive Cancer Center (LCCC)
Mouse Phase I Unit (MP1U). Animals were cared for according
to the recommendations of the Panel on Euthanasia of the
American Veterinary Medical Association. Mice were housed in
a climate controlled Department of Laboratory Animal Medicine
facility with a 12-h light:dark cycle and ad libitum access to food
and water [42]. The mammary glands were harvested at 12 weeks
for FVB/NJ mice.

Method Details

Cell suspension preparation

The FVB/NJ mammary glands were placed in 10 ml of a diges-
tion medium containing EpiCulttrademark-B Mouse Medium
Kit (#05610, StemCell Technologies), Collagenase/Hyaluronidase
(#07912, StemCell Technologies) and 1% penicillin-streptomycin
(Gibco). The mammary gland was digested overnight in a ther-
mocycler maintained at 37◦C with continuous rotation. The cell
pellets retrieved from these suspensions were treated with a
1:4 solution of hanks balanced salt solution and ammonium
chloride to remove the RBCs. After RBC removal, the cell sus-
pensions were trypsinized with 0.05% Trypsin and a mix of
Dispase and DNAse. A portion of this cell suspension was stained
with trypan blue and counted using the Countess Automated
Cell Counter (Invitrogen). Based on the counting, the cells were
diluted to the appropriate cell stock concentration for running
on the 10X Chromium machine. Based on the 10X Genomics
pre-defined cell stock concentrations, each experiment was run
to retrieve ∼5000 cells after the single-cell experiment. The
remaining cell stock solution was used for making bulk mRNA
seq libraries.

Single-cell library construction, sequencing and bioinformatics
pipeline

The cell suspensions were loaded on a 10X Genomics Chromium
instrument to generate single-cell gel beads in emulsion (GEMs)
for targeted retrieval of approximately 5000 cells. scRNA-Seq
libraries were prepared following the Single Cell 3′ Reagent Kits
v2 User Guide (Manual Part # CG00052 Rev A) using the following
Single Cell 3′ Reagent Kits v2: Chromiumtrademark Single Cell 3′

Library & Gel Bead Kit v2 PN-120237, Single Cell 3′ Chip Kit v2 PN-
120236, and i7 Multiplex Kit PN-120262” (10X Genomics). Libraries
were run on an Illumina HiSeq 4000 as 2 × 150 paired-end reads.
The Cell Ranger Single Cell Software Suite (version 1.3) was used
to perform sample de-multiplexing, barcode and unique molec-
ular identifiers processing and single-cell 3′ gene counting. All
scRNAseq data by 10X Genomics are available at GEO database
(GSE136148).

Bulk mRNA-seq pre-processing

RNA was isolated using the RNeasy Mini Kit (#74104, Qiagen)
according to manufacturer protocol. mRNA quality was assessed
using the Agilent Bioanalyzer and libraries for mRNA-seq were
made using total RNA and the Illumina TruSeq mRNA sample
preparation kit. Paired end (2×50bp) sequencing was performed
on the Illumina HiSeq 2000/2500 sequencer at the UNC High
Throughput Sequencing Facility (HTSF). Resulting fastq files
were aligned to the mouse mm10 reference genome using the
STAR aligner algorithm [43]. Resulting BAM files were sorted and
indexed using Samtools [44] and QC was performed using Picard
[45]. Transcript read counts were determined using Salmon [46].
Genes with zero read counts across all samples were removed.
All bulk mRNAseq data is available at GEO database (GSE136148).

Clustering QC of scRNA-seq data

To construct the basis matrix B from the single-cell reference
dataset, SCDC takes as input gene expression measurements
and cluster memberships of all cells that are sequenced by
scRNA-seq. While much efforts have been devoted to cell type
clustering by scRNA-seq, it has been shown that different
approaches can potentially generate varying single-cell cluster
assignments [47]. To make SCDC robust to single-cell clustering,
a QC procedure is performed as a first step to remove cells
with questionable cell-type assignments, as well as cells with
low library preparation and sequencing quality. Specifically,
each single cell is treated as a ‘bulk’ sample and its cell-type
composition can be derived by a first-pass run of SCDC. For
well classified cells with good quality, the estimated proportions
should be sparse and contain a single non-zero estimate close
to one; for questionable cells such as doublets, the estimated
proportions would not result in a unique cluster assignment
(Supplementary Figure S5A). Therefore, we remove cells whose
estimated cell-type proportions have a maximum less than a
user-defined threshold (Supplementary Figure S5B). After this
initial QC step of the single-cell input, the Pearson correlation
of the actual and the deconvoluted cell-type proportions is
improved for simulation runs, especially when pseudo-bulk
samples and reference datasets are from different sources
(Supplementary Table S2).

Construction of basis matrix differs from MuSiC

For deconvolution using each single-cell reference dataset, SCDC
estimates cell-type proportions following the W-NNLS frame-
work proposed by MuSiC [17], but differs in the way of calculating
the basis matrix. The contribution of each subject to the con-
struction of a basis matrix may vary according to the data quality
(Supplementary Figure S6). Hence, MVW per gene is calculated
to reflect the data quality [48]. In detail, using scRNA-seq data,
SCDC first estimates σ̂ 2

gkd, which captures the cross-cell variation
for gene g of cell type k within individual d. Within-subject
variance for subject d is then calculated as σ ∗2

gd = max
k

{σ̂ 2
gkd} and

the MVW �gd is given by:

�gd = σ ∗2
gd

median
g′ {σ ∗2

g′d}
.

SCDC proceeds to scale the raw single-cell read count matrix
by

√
�gd. Under this construction, genes with larger variance

will have larger variance weights. Larger variance weights

GSE136148
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ensure that residuals from such genes will have smaller impact
on estimation of cell-type composition [48]. To control for
excessively large or small variance weights, we set the bottom
15% of variance weights to be the 15th percentile variance
weight, and similarly, the top 15% of variance weights are
replaced by the 85th percentile variance weight. The rest of
the estimation procedure largely follows MuSiC. The perfor-
mances of SCDC and MuSiC were compared via simulations
by Pearson correlation and mAD between P̂ and P shown in
Supplementary Table S2.

ENSEMBLE: a linear combination of deconvolution results

Assume R single-cell reference datasets are available for the
tissue of interest. For each reference dataset r ∈ {1, . . . , R},
SCDC deconvolutes the bulk gene expression data as a matrix
decomposition problem. Let Pr and Br denote the cell-type
proportion matrix and the basis matrix using the rth reference
dataset, respectively. The bulk gene expression Y can be
deconvoluted into the form of Y = BrPr + εr with a reference-
specific error term εr. The predicted gene expression levels from
the rth reference dataset is Ŷr = B̂rP̂r. In the ENSEMBLE step, SCDC
aims to solve for equation (2). As we stated in the Result session,
we make the assumption that the solutions for equations (1)
and (2) are approximately equivalent based on the concordance
between the metrics on the cell-type proportions (Pearson
correlation and mAD between P̂ = ∑R

r=1 wrP̂r and P) and the
metrics on the gene expression levels (Spearman correlation and
mAD between Ŷ = ∑R

r=1 wrŶr and Y) via simulations (Figure 2,
Supplementary Figure S2). See Supplemental Information for
equation details. In practice, SCDC, by default, chooses the L1
norm of (Y − Ŷ) as the criteria for ENSEMBLE weight selection.

For optimization, we can redirect the problem to LADs regres-
sion with constraints on the weights (w1, ..., wR):

Minimize
1
N

∣∣∣∣∣∣
Y −

R∑

r=1

wrB̂rP̂r

∣∣∣∣∣∣ 1, subject to
R∑

r=1

wr = 1, wr ≥ 0, r ∈ {1, ..., R}.

LAD regression does not have an analytical solving method [49],
hence we applied the method adopted by [50]. While solving
for wr’s, an LAD regression with no constraint is first fit. Any
negative ŵr is set to zero, and the estimates are finally scaled
to satisfy the constraint. Since the re-scaling step can be prob-
lematic, SCDC additionally adopts another numerical method
via grid search to determine the optimal ENSEMBLE weights.
Supplementary Figure S7 summarizes the computing time of
SCDC with the number of single-cell reference datasets ranging
from two to five. A total of 100 simulations are performed. For
each simulation, the number of pseudo-bulk samples is set to
50, and the step size in grid search is fixed at 0.05. We show
that with less than four references, both grid search and LAD can
finish within ∼200 seconds. As the number of reference datasets
increases, the grid search can take longer to run while the
computing time for LAD remains nearly constant. Regardless,
the optimal weights selected by LAD and by grid search generally
agree with each other, as demonstrated in real data analysis
(Supplementary Table S4, Supplementary Table S6).

Data and software availability

SCDC is compiled as an open-source R package available at
http://meichendong.github.io/SCDC, together with vignettes
and toy examples for demonstration. Raw and processed
bulk and single-cell RNA-seq data generated in this study are
available at GEO with accession number GSE136148. Other data

that we adopted include the following: (i) scRNA-seq data of
human pancreatic islets from [16] with GEO accession number
GSE84133, from [28] with GEO accession number GSE81608 and
from [27] with EMBL-EBI ArrayExpress accession number E-
MTAB-5061; (ii) bulk RNA-seq of human pancreatic islet from
[30] with GEO accession GSE50244; and (iii) scRNA-seq of mouse
mammary gland from Tabula Muris Consortium [36] with GSE
accession number GSE106273.

Key Points
• Bulk RNA sequencing measures average gene expres-

sion levels across a population of cells and in complex
tissues, the variability in cell-type compositions con-
founds with analysis such as detecting differential gene
expression.

• Single-cell RNA sequencing circumvents the averaging
artifacts by enabling characterization of transcriptomic
profiles at the single-cell level and has been adopted to
aid bulk gene expression deconvolution.

• While multiple methods exploiting scRNA-seq data for
bulk gene expression deconvolution have been devel-
oped, they are restricted to only one single-cell refer-
ence, while borrowing information from other existing
data could potentially boost the performance of and
increase the robustness of deconvolution.

• We propose SCDC, a deconvolution method for bulk
RNA-seq data that leverages cell-type specific gene
expression profiles from multiple scRNA-seq reference
datasets.

• SCDC adopts an ENSEMBLE method to integrate decon-
volution results across datasets and gives higher
weights to single-cell reference data that are more
closely related to the bulk RNA-seq data, implicitly
addressing the problem of batch-effect confounding.

Supplementary Data

Supplementary data are available online at https://academic.
oup.com/bib.
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