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ABSTRACT

Background: Though the artificial neural network (ANN) technique has been used to predict noise-
induced hearing loss (NIHL), the established prediction models have primarily relied on cross-
sectional datasets, and hence, they may not comprehensively capture the chronic nature of NIHL as a
disease linked to long-term noise exposure among workers.
Methods: A comprehensive dataset was utilized, encompassing eight-year longitudinal personal hearing
threshold levels (HTLs) as well as information on seven personal variables and two environmental
variables to establish NIHL predicting models through the ANN technique. Three subdatasets were
extracted from the afirementioned comprehensive dataset to assess the advantages of the present study
in NIHL predictions.
Results: The dataset was gathered from 170 workers employed in a steel-making industry, with a median
cumulative noise exposure and HTL of 88.40 dBA-year and 19.58 dB, respectively. Utilizing the longi-
tudinal dataset demonstrated superior prediction capabilities compared to cross-sectional datasets.
Incorporating the more comprehensive dataset led to improved NIHL predictions, particularly when
considering variables such as noise pattern and use of personal protective equipment. Despite fluctua-
tions observed in the measured HTLs, the ANN predicting models consistently revealed a discernible
trend.
Conclusions: A consistent correlation was observed between the measured HTLs and the results obtained
from the predicting models. However, it is essential to exercise caution when utilizing the model-
predicted NIHLs for individual workers due to inherent personal fluctuations in HTLs. Nonetheless,
these ANN models can serve as a valuable reference for the industry in effectively managing its hearing
conservation program.
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1. Introduction

In 2019, approximately 430 million people experienced
disabling hearing loss, and it is anticipated that this figure will
exceed 700 million by 2050 [1]. Hearing loss can have various
causes, such as genetics, birth complications, infections, medica-
tion, aging, and prolonged exposure to loud noise. About 16% of
adult disabling hearing losses are attributed to prolonged work-
place noise exposure, making noise-induced hearing loss (NIHL) a
prevalent global occupational condition [2]. NIHL is both prevent-
able and irreversible, and it is particularly common in noisy sectors
such as steel-making, mining, and construction [3]. Besides pro-
longed exposure to excessive noise, environmental factors, such as
solvents, asphyxiants, nitriles, and metals can exacerbate the issue
[4,5].

Workers exposed to excessive noise initially experience hearing
losses in the 3,000- to 6,000-Hz range, irrespective of specific noise
patterns [6]. However, fluctuating noise exposure can lead to higher
hearing threshold levels (HTLs) than steady noise at the same level
[7]. Unhealthy behaviors such as smoking, alcohol consumption,
the absence of personal protective equipment (PPE), and obesity
are associated with sensorineural hearing loss [8—10]. Studies
suggest PPE as a preventive measure against occupational hearing
loss [11,12]. Given the multifaceted nature of NIHL, including factors
such as age, employment year, smoking, alcohol consumption,
blood pressure, noise exposure, noise pattern, and PPE, the devel-
opment of NIHL prediction models would be beneficial for in-
dustries in managing hearing conservation programs.

Numerous studies have explored the relationship between NIHL
and noise exposure level, as well as various covariate risk factors
(e.g., predisposing characteristics, employment-related factors, and
personal habits) using multivariate logistic regression and Cox
regression models [8,13—15]. However, existing regression models
may not fully capture the intricate interactions among these factors
and their impact on NIHL outcomes. Recently, artificial neural
networks (ANNs) have gained prominence for predicting complex
phenomena in various fields, utilizing multiple learning algorithms,
and interconnected adaptive processing elements known as artifi-
cial neurons or nodes [16,17].

In audiology, ANNs have been increasingly used for various
applications related to hearing and speech processing [18,19]. ANNs
are computational models inspired by the structure and func-
tioning of the human brain. They have shown promise in
addressing complex tasks in audiology and have been applied in
areas such as speech recognition, hearing-aid optimization, diag-
nosis of hearing disorders, development of noise reduction algo-
rithms, automation of audiometric testing, and personalizing
approaches to tinnitus management. ANNs can be utilized for the
diagnosis and prediction of hearing loss based on various input
data, such as audiometric measurements, exposure history, and
personal factors [20,21]. They can help analyze complex patterns
and relationships within data to predict the likelihood or severity of
NIHL. Using ANNs’ application in predicting NIHL has achieved
promising results in some studies (such as achieving 80% accuracy
in the excess noise exposure group [21], predicting pure-tone
thresholds with approximately 85% accuracy [22], and obtaining
high accuracies for normal hearing across different frequencies
based on distortion product otoacoustic emissions [23]).

ANNs outperformed multivariate logistic regression in a study
conducted in a steel factory [20]. However, it should be noted that
the afirementioned ANN studies typically relied on cross-sectional
datasets, overlooking NIHL'’s association with long-term cumulative
noise exposures. Additionally, crucial personal and environmental
factors such as alcohol consumption, body mass index (BMI), dia-
stolic blood pressure (DBP), systolic blood pressure (SBP), and noise

pattern were often omitted. When utilizing ANN techniques,
therefore, it is imperative to incorporate longitudinal HTLs and
comprehensively consider personal and environmental factors to
enhance prediction accuracy.

In the present study, an eight-year follow-up on personal HTL
measurements was conducted on 170 steel-making industry
workers, together with the collection of the information of nine
variables, including two environmental factors (noise level and
noise pattern) and seven personal factors (age, smoking, alcohol
consumption, BMI, DBP, SBP, and use of PPE) that are recognized for
their significant influence on HTLs [6—12,15]. The ANN technique
was used to predict workers’ NIHLs. The benefits of incorporating
complete personal and environmental variable information in
predicting HTLs were assessed. Finally, implications of the ANN
technique for managing the occupational hearing conservation
program were discussed.

2. Materials and methods
2.1. Study population and data collection

This study included all workers with a minimum of 1 year of
experience in the steel bar manufacture, the electric generators
department, and the air compressors department of a steel-making
industry in southern Taiwan. Exclusions were made for workers
potentially exposed to organic solvents, polycyclic aromatic hy-
drocarbons, a history of head injury, ontological disease, ototoxic
drug use, noise exposure during leisure time, congenital deafness,
or pre-employment hearing impairment. Study participants
(n = 170 male workers) underwent structured questionnaire in-
terviews, otoscopic examinations, impedance tympanometry, pure
tone audiometry (PTA), and personal noise measurements with an
approval from the Institutional Review Board of National Cheng
Kung University Hospital, Tainan, Taiwan (B-ER-108-436).

Demographic characteristics, work history, health habits
(smoking and alcohol consumption), medical conditions, and the
uses of medications, dietary supplements, and hearing protection
were annually collected through a structured questionnaire inter-
view. Moreover, BMI, DBP, and SBP were measured during the
annual medical examination. The face-to-face interviews were
conducted by trained interviewers before the audiological exami-
nation for each worker. The pack-year smoking was computed by
multiplying the number of smoking years by the daily tobacco
consumption [24].

2.2. Noise exposure assessment

The TES-1355 Noise Dose Meter (TES Electrical Electronic Cor-
poration, Taipei, Taiwan), complying with the American National
Standard Institute (ANSI) specifications [25], assessed personal
noise exposure from 7:00 a.m. to 4:00 p.m. during the work shift.
Dosimeters measured sound levels at 10-minute intervals across
various frequencies, converting the data into a continuous equiv-
alent A-weighted sound-pressure level (Leq) based on the equal
energy principle (3-dB rule). The time-weighted average (TWA) Leq
for the 8-hour shift (Leq-8h) was then calculated for each worker.
Additionally, if a worker used PPE during the shift, the corre-
sponding Leq-8h was adjusted according to the noise reduction
rating (NRR) specified for the worn PPE.

In the present study, the exposed noise pattern for each selected
worker was decided using a sound-level meter (TES-52, TES Elec-
trical Electronic Corporation, Taipei, Taiwan) positioned at a height
equivalent to the worker’s hearing zone (155 cm). This instrument
adhered to ANSI specifications for sound-level meters [26]. A-
weighted noise levels were measured in Leq (applying the 3-dB
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rule) throughout the work shift. The exposed noise patterns were
then categorized based on noise-level variation, with variations
exceeding 5 dBA classified as fluctuating noise and variations of 5
dBA or less classified as steady noise [27].

Considering the minimal changes in manufacturing processes
and facilities (e.g., workplace layout, facility types, and work tasks)
over recent decades, we assumed that the daily exposed noise
levels collected in this study would accurately represent past ex-
posures. Thus, we evaluated each worker’s total noise exposure by
examining their work history, which included consecutive job titles
and departments throughout their entire career. The TWA exposure
over the years (Leq-total, dBA-year) was utilized to calculate the
cumulative noise exposure level over their job duration. Leq-total
was computed by logarithmically summing the TWA noise levels
as follows:

Leq — total = 10-log [ETi-lO“eq*S“i/ 10)

where Ti is the ith work period in the entire work history, and
Leq-8hi is the TWA noise exposure during Ti.

2.3. Audiological assessment

Workers were instructed to avoid from workplace noise expo-
sure for at least 48 hours before audiological assessments. These
assessments occurred between 06:30 and 07:30 a.m. An otolaryn-
gologist evaluated the workers’ outer and middle ear status using
an otoscope, whereas middle ear function was assessed by a trained
technician through impedance tympanometry (Grason Stadler GSI-
37 Auto Tymp; Gordon N. Stowe and Associates, Inc., Wheeling, IL,
USA). Pure-tone audiometry was conducted by an audiologist using
a Grason-Stadler GSI 68 audiometer (Gordon N. Stowe and
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Associates, Inc.,, Wheeling, IL, USA) within a sound-attenuating
chamber meeting International Organization for Standardiza-
tion 8253-1 testing conditions [28], with examination frequencies
encompassing 500, 1,000, 2,000, 3,000, 4,000, 6,000, and 8,000 Hz.
Permanent threshold shift (PTS-6) hearing levels, defined as the
average at 500 Hz, 1,000 Hz (twice), 2,000 Hz (twice), and 4,000 Hz,
were used to determine hearing impairment, classified when
hearing levels exceeded 25 dB (>25 dB) [29]. Audiological assess-
ments were conducted annually throughout the study period for
each worker.

2.4. The establishment of experiment datasets

In this study, a comprehensive dataset was established based on
the measures outlined in the previous sections, and three sub-
datasets were further derived from it for comparative purposes.
Each serves distinct objectives:

Complete dataset: containing 8-year longitudinal HTL records
and information on nine variables (age, smoking, alcohol con-
sumption, BMI, DBP, SBP, use of PPE, exposed noise exposure level,
and exposed noise pattern).

Subdataset A: containing 1-year cross-sectional HTL records and
information on four variables (age, smoking, exposed noise expo-
sure level, and use of PPE), aligning with a study by Aliabadi et al.
[20].

Subdataset B: containing 8-year longitudinal HTL records and
information on four variables identical to those in subdataset A. The
purpose is to assess the benefits of using longitudinal data in pre-
dicting NIHL compared to the results from subdataset A.

Subdataset C: containing 8-year longitudinal HTL records and
information on seven variables, mirroring the complete dataset but
excluding noise pattern and use of PPE variables. The aim is to

Table 1
Demographic and personal characteristics of the individuals by factory workplaces
Variable Steel bar manufacture Electric generators Air compressors All
(n=80)* (n = 46)' (n=44)

Quantitative Median IQR’ Median IQR Median IQR Median IQR
Age (years) 52.72 49.10, 54.59 49.85 43.60, 53.90 44.44 37.71, 51.90 51.08 43.89, 53.97
Employment (years) 28.75 25.96, 30.58 26.58 20.75, 30.71 21.08 11.92, 28.25 27.33 20.75, 30.27
Body mass index (kg/m?) 25.50 23.69, 27.24 25.42 25.42, 25.42 25.42 25.42,25.42 25.42 25.13, 25.81
Diastolic blood pressure (mmHg) 85.00 78.00, 87.00 85.00 85.00, 86.25 85.00 85.00, 85.00 85.00 84.75, 86.00
Systolic blood pressure (mmHg) 131.00 124.25, 136.00 134.00 134.00, 134.00 134.00 134.00, 134.00 134.00 131.00, 134.00
Tobacco smoking (pack-year) 0.01 0.00, 21.75 0.00 0.00, 10.38 0.00 0.00,7.13 0.00 0.00, 16.00
Cumulative noise exposure (Leq-total; 88.67 86.16, 106.45 87.98 86.32, 99.36 88.98 86.12, 96.73 88.40 86.21, 103.28

dBA-year)
Hearing threshold levels (dB) 21.25 15.83, 28.96 19.79 14.17, 25.52 18.75 13.75, 23.23 19.58 15.00, 26.25
Categorical No. % No. % No. % No. %
Smoking tobacco

Yes 29 36.25 8 17.39 11 25.00 48 28.24

Used to 12 15.00 9 19.56 7 15.91 28 16.47

No 39 48.75 29 63.00 26 59.09 94 55.29
Alcohol consumption

Yes 14 17.50 8 17.39 7 15.91 29 17.06

No 66 82.50 38 82.61 37 84.09 141 82.94
Use of PPE

Yes 45 56.25 38 82.61 43 97.73 126 74.12

No 35 4375 8 17.39 1 227 44 25.88
Exposed noise patterns

Steady 66 82.50 13 28.26 1 2.27 80 47.06

Fluctuating 14 17.50 33 71.74 43 97.73 90 52.94

Abbreviations: IQR, interquartile range; PPE, personal protective equipment.
* The involved main process was associated with manufacturing steel bars.

 The involved main facilities include electric generators, blowers, condensers, and boiler system (outside).
¥ The involved main facilities include air compressors, oxygen compressors, fractionating towers, storage tanks, and cooling towers.

% IQR: interquartile range (lower quartile, upper quartile).
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investigate the impact of noise pattern and use of PPE on predicting
NIHL, in comparison with the complete dataset.

2.5. Artificial neural network model

Given their capacity to decipher intricate relationships across
diverse scenarios (such as linear and nonlinear regression, classi-
fication, and mapping tasks) [30], ANNs can acquire relevant data
from various distributions, including non-normal distributions
[31]. In this study, ANNs were adopted for predicting NIHLs based
on the collected personal and environmental factors. In ANNSs, each
neuron in the hidden layer of the networks can be viewed as a
simple processing element that receives one or more inputs and
generates one or more outputs. Neurons are interconnected via
numerous weighted connections [32].

To ensure successful training and utilization of ANNs, a suffi-
ciently large dataset is crucial [33]. The widely accepted guideline
recommends a sample size of at least 10 times the number of
variables in the ANN to ensure adequate performance [34]. In our
study, we have nine variables and 170 data points, making it suit-
able for establishing predictive models with ANN. The complete
dataset, along with the three extracted subdatasets (A, B, and C),
were used to construct a three-layer feed-forward ANN for NIHL
prediction. Each experimental dataset was further partitioned into
three subsets: 70% for network training, 20% for testing the neural
networks, and 10% for validation [17,20,35].

2.6. Statistical analysis

Coefficient of determination (R?) and root mean square error
(RMSE) were conducted to evaluate the developed prediction
models by comparing predicted and measured HTLs. Higher R? and
lower RMSE values indicate greater similarity and more accurate
estimation [35]. All statistical analyses were conducted using
MATLAB software (version R2019b, MathWorks, Inc., Natick, MA).
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3. Results
3.1. Study population

Recruited 170 male workers were from three workplaces: 80
from steel bar manufacture, 46 from electric generators, and 44
from air compressors. Information regarding the involved main
processes/facilities of the three selected workplaces is shown in
Table 1.

3.2. Demographics, noise exposure patterns and levels, and
measured HTLs

Table 1 shows participant characteristics, including a median
age of 51.08 years, median work experience of 27.33 years, and
median values of BMI (25.42 kg/m?), DBP (85.00 mmHg), and SBP
(134.00 mmHg). Smoking habits included 28.24% current smokers
and 16.47% ex-smokers, whereas 17.06% consumed alcohol. Noise
exposure patterns revealed 47.06% and 52.94% exposed to steady
and fluctuating noise, respectively. Median cumulative noise
exposure was 88.40 dBA-year, with a median HTL of 19.58 dB for
both ears. Additionally, 74.12% reported wearing PPE.

3.3. Performance of the established predicting models

Results show that if the subdataset A was used, the best NIHL
predictions were achieved using one hidden layer with fifteen
neurons. Conversely, for the other three experiment datasets, the
optimal predictions were obtained using one hidden layer with
thirty-three neurons. Fig. 1 shows scatter plots depicting the
measured versus ANN-model-predicted HTLs (including the
training, testing, validation, and all datasets) for each of the four
experiment datasets. Results show that the complete dataset
(Fig. 1D) yielded the most accurate prediction (R> = 0.87,
RMSE = 3.16) among all experimental datasets. Subdataset B
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Fig. 1. Scatter plots of measured HTLs versus ANN model predicted HTLs for the four experiment datasets. (A) Subdataset A, (B) subdataset B, (C) subdataset C, and (D) complete

dataset. Abbreviations: ANN, artificial neural network; HTL, hearing threshold level.
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( C) Sub-dataset C
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Fig. 1. (continued).

(Fig. 1B) outperformed subdataset A (Fig. 1A), with superior NIHL
prediction performance (R> = 0.72, RMSE = 4.73 vs. R? = 0.58,
RMSE 6.58). Additionally, subdataset C (Fig. 1C) exhibited
enhanced NIHL prediction (R? = 0.86, RMSE = 3.31) compared to
subdataset B (Fig. 1B) (R? = 0.72, RMSE = 4.73).

3.4. The implication of the established predicting models

Table 2 presents demographic, personal characteristics, and
exposure scenarios (i.e., exposed noise patterns and use of PPE) of
the four selected workers for the illustration purpose. Fig. 2 shows

their predicted and measured HTLs at different ages. Though fluc-
tuation can be seen in measured HTLs for each selected worker,
both the predicted and measured HTLs exhibit a similar trend.
For worker A (steady noise (Leq-total = 85.17 dBA)/with PPE),
measured HTLs increased from 17.92 dB (at the 24.77th employ-
ment year) to 21.67 dB (at the 31.74st employment year), which are
quite consistent with the corresponding predicted values (from
16.79 to 18.91 dB). It also can be estimated that on the 39.74th
employment year (or at the age of 63.39 years old), worker A’s HTL
will exceed 25 dBA. This suggests a marginal acceptability for
worker A if he retires at the age of 65 years of age (Fig. 2A).

Table 2
Demographic and personal characteristics of the four selected workers and predicted ages for HTL over the level of 25 dB
Feature Worker A Worker B Worker C Worker D
Age (years)* 48.42 43.90 46.21 41.5
Employment (years)* 24.77 21.22 24.77 20.63
Smoking tobacco (pack-year)* 0 0 0 27.00
Body mass index (kg/m?)* 26.89 23.74 20.71 23.66
Diastolic blood pressure (mmHg)* 75 89 76 85
Systolic blood pressure (mmHg)* 109 132 132 134
Cumulative exposed noise level 85.17 84.80 88.98 105.38
(Leq-total; dBA-year)*
Exposed noise patterns* steady steady fluctuating fluctuating
Use of PPE* yes no yes no
Alcohol consumption* no no no yes
Measured HTL range within 17.92-21.67 14.58—20.00 22.08—25.41 17.92-29.17
recorded years (dBA)
Predicted HTL range within 16.79—-18.91 16.96—20.44 21.77—-24.06 18.66—26.33
recorded years (dBA)
Employment year for HTL to 8.00 3.00 2.00 0
exceed 25 dB after the last record (years)
Age for HTL to exceed 25 dB (years old) 63.39 53.92 55.12 48.56
Acceptability of noise exposure marginal no no no

Abbreviations: HTL, hearing threshold level; PPE, personal protective equipment.
* The values were shown at the 1st data record year.
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Fig. 2. Predicted and measured HTLs at different ages and the ages for HTL reaching 25 dBA for (A) worker A: steady noise and equipped with PPE, (B) worker B: steady noise and
equipped without PPE, (C) worker C: fluctuating noise and equipped with PPE, and (D) worker D: fluctuating noise and equipped without PPE. Abbreviations: HTL, hearing threshold

level; PPE, personal protective equipment.

For worker B (steady noise (Leq-total = 84.80 dBA)/without
PPE), measured HTLs increased from 20.00 dB (at the 21.22st
employment year) to 21.67 dB (at the 27.12th employment year)
before decreasing to 16.25 dB (at the 28.24th employment year),
closely matched predicted HTLs (increased from 17.61 to 20.44 dB).
Worker B’s HTL is projected to exceed 25 dB at the 31.24st
employment year (or age 53.92), and therefore, is considered un-
acceptable if retirement occurs at age 65 (Fig. 2B).

For worker C (fluctuating noise (Leq-total = 88.98 dBA)/with
PPE), measured HTLs increased from 22.08 dB (at the 24.77th
employment year) to 25.41 dB (at the 32.67nd employment year)
also closely matched predicted HTLs (ranging from 21.77 dB to
24.06 dB). Worker C’s noise exposure is deemed unacceptable, with
HTLs projected to exceed 25 dB at the 34.67th employment year (or
age 55.12) if retiring at 65 (Fig. 2C).

Fig. 2D shows results for worker D (fluctuating noise (Leq-
total = 105.38 dBA)/without PPE). Measured HTLs increased from
17.92 dB at the 20.63th employment year to 29.17 dB at the 27.66th

employment year, mirroring predicted HTLs (increasing from
18.66 dB to 26.33 dB). Worker D’s HTL is anticipated to surpass
25 dB at the 27.66th employment year (or age 48.56), rendering
noise exposure unacceptable for retirement at age 65.

4. Discussion

To our knowledge, this is the first study using comprehensive
longitudinal data to establish ANN models for predicting NIHL in
the steel-making industry. Overall, our findings indicate that the
ANN technique can be used for accurately predicting workers’
NIHLs.

Fig. 1 illustrates that subdataset B (Fig. 1B) outperformed sub-
dataset A (Fig. 1A) in NIHL predictions, with R? values of 0.72 and
0.58, and RMSE values of 4.73 and 6.58, respectively. This highlights
the superiority of utilizing long-term longitudinal data over cross-
sectional data when developing prediction models with the same
chosen variables. This might explain some studies using ANN
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techniques for NIHL prediction but using cross-sectional data
resulting in prediction accuracies ranging from 32% to 85% [21—23].
These results underscore the ANN technique’s promise for NIHL
prediction. Given the chronic nature of NIHL, longitudinal data
provide a more representative foundation for prediction models.
Our study demonstrated an improved prediction accuracy of 87%
for the noise-exposed population (Leq-total = 88.40 dB) by utilizing
8-year longitudinal HTL records and a nine-variable dataset
(Fig. 1D). Therefore, collecting longitudinal HTL data alongside
comprehensive personal and environmental factors is a notable
strength of our study.

The ANN technique is recognized for its ability to uncover
complex relationships among variables through various learning
algorithms, and utilizing a more comprehensive set of variables
enhances predictive capabilities [ 17,20]. However, it has limitations,
notably being labeled a black-box approach, which means that the
inner workings of the hidden layers are not easily interpretable
[36]. Nonetheless, this limitation does not hinder the widespread
application of neural networks in scientific contexts, as they excel
at accurately capturing operational characteristics [36]. Conse-
quently, it is unsurprising that the complete dataset (Fig. 1D) yields
the most accurate predictions (R? = 0.87, and RMSE = 3.16) among
all study designs (Fig. 1A—C). However, the selection of these var-
iables should be discussed.

In the present study, the impact of each selected variable on
NIHL has been confirmed through literature reviews [8—10,14]. For
instance, a longitudinal Cox proportional-hazards regression study
identified high blood pressure as a significant hearing-loss risk
factor [15]. Additionally, a 7-year follow-up study established a link
between obesity and an increased risk of hearing loss [10]. Wang
et al. demonstrated that longer noise exposure and greater smok-
ing-pack-years were associated with higher hearing-loss risk [8].
Other studies suggest that smoking and alcohol consumption, in
conjunction with occupational noise exposure, may synergistically
contribute to NIHL [8,9].

In our study, the complete dataset was found to have better
prediction (R?> = 0.87, and RMSE = 3.16) than that of subdataset C
(R? = 0.86, and RMSE = 3.31). These findings support the influence
of noise pattern and use of PPE on workers’ NIHL, as indicated in
prior research. For instance, a study on PPE’s impact on noise
exposure attenuation revealed that PPE with an NRR value of 29 dB
could reduce noise exposure by 11.87 dB [12]. Furthermore, an in-
crease of 10% in PPE usage frequency was associated with a 3- to 5-
dB reduction in HTL [37]. A cross-sectional study also suggested
that fluctuating noise exposure, particularly at higher noise levels,
may lead to more significant NIHL than non-fluctuating noise
exposure [7].

In the present study, pure-tone audiometry was adopted to
assess the hearing thresholds of the workers. However, pure-tone
audiometry has limitations, including sensitivity to factors such
as background noise, cross-hearing with loud sounds, ear canal
issues, discomfort from wearing earphones, and challenges in
hearing measurement [38]. Fig. 2 illustrates noticeable variations in
measured pure-tone thresholds for the four selected workers over
eight years. Nevertheless, these variations for each worker
remained within 10 dB. It is worth noting that this level of variation
differs from a previous study where most test—retest threshold
differences were within 10 dB [39]. Despite these fluctuations, our
predicted and measured HTLs exhibit a consistent trend (Fig. 2).
Nevertheless, it is essential to exercise caution when utilizing the
model-predicted NIHLs for individual workers due to inherent
personal fluctuations in HTLs.

We set the NIHL warning level at 25 dB in this study. Fig. 2A
indicates that the acceptability of noise exposure for worker A is
marginal. Worker A, classified as obese with a BMI of 26.89, should

consider weight management, as obesity is associated with an
increased risk of hearing loss [10]. Similarly, worker B’s noise
exposure scenario is unacceptable (Fig. 2B), possibly due to inad-
equate PPE usage or enforcement. Implementing PPE consistently
can help, as it may reduce HTLs by up to 5 dB [37]. Although worker
C used PPE, their noise exposure remains unacceptable (Fig. 2C) due
to exposure to fluctuating noise, which poses a higher NIHL risk
than nonfluctuating noise exposure [7]. Implementing adminis-
trative controls such as work—rest schedules and job rotation can
limit fluctuating noise exposure. Worker D’s unacceptable hearing
loss (Fig. 2D) is likely due to smoking, alcohol consumption, lack of
PPE use, and exposure to fluctuating noise [7—9,12]. In addition to
PPE, comprehensive training on promoting a healthy lifestyle
should be part of control measures for worker D.

A recent study has unveiled several significant advancements,
notably the ANNS, that can be used to enhance hearing conserva-
tion programs [40]. Here, two potential applications of ANNs are
exemplified: (1) use information such as the age of first employ-
ment year, usage of PPE, and workplace noise levels of workers in
the ANN predictive model for predicting the HTLs of workers in
different years that can serve as a basis for implementing appro-
priate control measures (such as establishing a workplace rotating
plan, reducing workplace noise levels, and selecting suitable PPE
for workers) for preventing NIHLs and (2) applying the personal
and workplace information of workers in the ANN predictive model
to underscore the significance of using PPE in preventing NIHL,
which would enhance the education and training of the workforce.
Finally, it is essential to emphasize that the continuous accumula-
tion of personal and workplace information over the years will
contribute to refining the ANN predictive model. This refinement
will result in improved predictions for future occurrences, rein-
forcing the efficacy of preventive measures against NIHL.

5. Conclusion

The feed-forward multilayer neural network accurately pre-
dicted NIHLs in the steel-making industry using comprehensive
data, with long-term longitudinal data outperforming cross-
sectional data. Adding variables, particularly noise pattern and
use of PPE, enhanced accuracy. While individual trends in predicted
vs. measured HTLs aligned, caution is needed due to measured HTL
fluctuations. Regardless, this study offers valuable insights to
improve the industry’s hearing conservation program and reduce
NIHLs among workers. Therefore, it is concluded that NIHL is a
significant concern, and integrating ANNs into hearing conserva-
tion programs can improve early detection, prevention, and
management.
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