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The human “marionette” is extremely complex andmulti-articulated: anatomical redundancy
(in terms of Degrees of Freedom: DoFs), kinematic redundancy (movements can have
different trajectories, velocities, and accelerations and yet achieve the same goal, according
to the principle of Motor Equivalence), and neurophysiological redundancy (many more
muscles than DoFs and multiple motor units for each muscle). Although it is quite obvious
that such abundance is not noxious at all because, in contrast, it is instrumental for motor
learning, allowing the nervous system to “explore” the space of feasible actions before
settling on an elegant and possibly optimal solution, the crucial question then boils down to
figure out how the nervous system “chooses/selects/recruits/modulates” task-dependent
subsets of countless assemblies of DoFs as functional motor synergies. Despite this
daunting conceptual riddle, human purposive behavior in daily life activities is a proof of
concept that solutions can be found easily and quickly by the embodied brain of the human
cognitive agent. The point of view suggested in this essay is to frame the question above in
the old-fashioned but still seminal observation by Marr and Poggio that cognitive agents
should be regarded as Generalized Information Processing Systems (GIPS) and should be
investigated according to three nearly independent but complementary levels of analysis: 1)
the computational level, 2) the algorithmic level, and 3) the implementation level. In this
framework, we attempt to discriminate as well as aggregate the different hypotheses and
solutions proposed so far: the optimal control hypothesis, the muscle synergy hypothesis,
the equilibrium point hypothesis, or the uncontrolled manifold hypothesis, to mention the
most popular ones. The proposed GIPS follows the strategy of factoring out shaping and
timing by adopting a force-field based approach (the Passive Motion Paradigm) that is
inspired by the Equilibrium Point Hypothesis, extended in such a way to represent covert as
well overt actions. In particular, it is shown how this approach can explain spatio-temporal
invariances and, at the same time, solve the Degrees of Freedom Problem.

Keywords: redundancy, motor equivalence, embodied cognition, central pattern generators, passive motion
paradigm, two/thirds power law, unconstrained manifold concept, equilibrium point hypothesis

INTRODUCTION

The degrees of freedom problem in motor control states that there are multiple ways for humans or
animals to perform a movement to achieve the same goal, leaving the question of how the brain chooses a
course of action among infinite ones. The questionwas explicitly formulatedmany years ago by (Bernstein,
1967): “It is clear that the basic difficulties for co-ordination consist precisely in the extreme abundance of
degrees of freedom (DoFs), with which the [nervous] centre is not at first in a position to deal.” Specifically,
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the human body is characterized by redundancy in many forms:
anatomical redundancy (in terms of DoFs, muscles and joints),
kinematic redundancy (movements can have different trajectories,
velocities, and accelerations), and neurophysiological redundancy
(multiple motor units recruited for each muscle); yet such
redundancy is not an obstacle to achieve a common goal,
according to the principle of Motor Equivalence (Lashley, 1933).
In other words, despite such complexity it is quite obvious that the
abundance is not noxious at all: in contrast, it is instrumental for
motor adaptation and learning, allowing the nervous system the
possibility to “explore” the space of feasible actions before settling on
an elegant and possibly optimal solution. Ultimately, the crucial
question boils down to figure out how the nervous system “chooses/
selects/recruits/modulates/stores/recollects” task-dependent subsets
of the countless motor variables as functional motor synergies. In
any case, human purposive behavior in daily life activities is a proof of
concept that solutions can be found easily and quickly by the
embodied brain of the “human cognitive agent”, despite this
daunting conceptual riddle, A reference point suggested in this
essay is to take advantage of the old-fashioned but still seminal
observation by (Marr and Poggio, 1976) that cognitive agents should
be regarded as Generalized Information Processing Systems (GIPS)
and should be investigated according to three nearly independent but
complementary levels of analysis: 1) the computational level that is
supposed to clarify what needs to be computed and why; 2) the
algorithmic level, focused on how the computation is organized, in
terms of the used representations and the processes employed to
build and manipulate the representations; 3) the implementational/
physical level, related to the selection and activation of the specific
neural hardware used to carry out the computation. On the other
hand, the view that cognitive agents should be considered as GIPS is
in contrast with radically different formulations like the “Smart
Vehicles” of (Braitenberg, 1984), the claim of “Intelligence without
Representation” by (Brooks, 1991) or the “Radical Embodied
Cognitive Science” by (Chemero, 2009). Although intriguing, such
a radical approach cannot account, in our opinion, for the large body
of knowledge, derived from the field of motor imagery and embodied
cognition, supporting the fact that motor cognition cannot be
reduced to reactive mechanisms but is a fluid field that holds
together real and mental actions in such a way to enable goal-
directed actions guided by prospection. In other words, we support
the concept that (motor) intelligence is fundamentally dependent on
representation.

Thus, we suggest that the age-old degrees of freedom problem
should be addressed as a GIPS, employing the three levels mentioned
above to discriminate as well as aggregate a number of different
hypotheses and solutions investigated in the literature, such as the
optimal control hypothesis, the muscle synergy hypothesis, the
equilibrium point hypothesis, and the uncontrolled manifold
hypothesis, to mention the most popular ones. The analysis also
focuses as well on the companion vexing question about the inner
structure of biological motion revealed by Fitt’s law (Fitt, 1954), the
preference of straight trajectories in reachingmovements, and the so-
called two-thirds power law revealed by general gestures.

This essay focuses initially on the spatio-temporal invariances
of multi-joint motor control that stand as a kind of background of
the DoF problem and analyzes in some details the main

alternative explanations of such invariances developed over the
years. Then it focuses on a specific computational model, namely
the Passive Motion Paradigm (PMP: Mussa-Ivaldi et al., 1988;
Mussa-Ivaldi et al., 1989) that is inspired by the Equilibrium
Point Hypothesis (EPH: Feldman, 1966; Feldman, 1986; Bizzi
et al., 1992): more specifically, PMP is an extension of the EPH
from the “real” elastic force fields, determined by the mechanical
properties of skeletal muscles and applied to the “real human
body,” to the “virtual” force fields, that express motor intentions/
goals/constraints and are applied to an internal model or “body
schema.” More generally, this extension implies a view of motor
control fully integrated with embodied motor cognition (Mohan
and Morasso, 2011; Mohan et al., 2019). The plausibility of this
extension is supported by the rather recent consolidation of
experimental evidence from motor imagery and the associated
revitalization of the ideomotor theory of action, dating back to
James’ Principles of Psychology (1890). In particular, it is
elucidated how and why the PMP model explains the spatio-
temporal invariances and the alternative computational models
mentioned above, thus providing a biologically plausible
roadmap to solve the DoF Problem. Finally, it is shown how
and in which sense the computational framework provided by the
PMP model is consistent with the GIPS approach.

SPATIO-TEMPORAL INVARIANCES OF
MULTI-JOINT MOTOR CONTROL

Until the 70s motor control studies were mostly focused on single-
joint control paradigms, within a “reductionist” framework that
ignored the “holistic view” implied by the Degrees of Freedom
Problem or the Motor Equivalence Principle. The first step
towards a more general multi-joint paradigm was the discovery of
spatio-temporal invariants, that characterize 2D gestures, such as the
following ones (see also Figure 1):

• The bell-shaped speed profile and isochrony of planar
reaching movements (Morasso, 1981; Abend et al., 1982).
It was found indeed that these movements are
approximately straight, with an invariant bell-shape of
the hand speed. In contrast, the timing and sync of joint
rotation patterns are strongly dependent on the starting
position and movement direction. Moreover, for self-paced
movements, without specific accuracy requirements, the
duration is approximately constant and, thus, peak speed
is linearly correlated with target distance.

• The anti-correlation of speed and curvature profiles of
movements with multiple via points, such as cursive
handwriting or drawing gestures (Morasso and Mussa
Ivaldi, 1982). When subjects produce continuous hand
scribbles, the dynamics and the shape of the movements
are not independent, in the sense that the time course of the
hand speed and of the scribble curvature are strictly linked:
both are characterized by a sequence of peaks and dips that
are systematically anticorrelated, in the sense that speed
peaks are synchronized with curvature dips and curvature
peaks sync with speed dips.
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Similar invariants were also found in 3D gestures (Morasso, 1983).
In particular, also for 3D hand scribbles the dynamics and the shape
of the movements are not independent. The shape of the 3D scribble
is characterized by the time course of two parameters: the curvature
and the torsion (in 2D scribbles the torsion is null). The peaks of
torsion detect when the performing subject changes the virtual plane
upon which he/she is producing a given fragment of scribble. The
analysis of the movements (Morasso, 1983) showed in particular that
the speed/curvature link is preserved and the generated gestures are
approximately piecewise planar.

Alternative Explanations of the
Spatio-Temporal Invariances
Discovering that planar hand gestures are characterized by
spatio-temporal invariances that mutually constrain shape and
kinematics prompted a whole research line, aimed at answering
the following questions: Where do such spatio-temporal
invariants come from? How can we explain them? How can
we simulate their action in a biologically plausible framework?
Among the number of different explanations that were proposed
we may consider the following ones, listed in chronological order:

• The 2/3 power law (Lacquaniti et al., 1983). It addresses the
previously mentioned anticorrelation of curvature and
speed. In particular, it is shown that in repetitive
elliptical scribbles the linkage between the velocity profile
v � v(t) and the curvature profile c � c(t) can be captured
by following function1: v ∝ c−1/3. The underlying
hypothesis is that such dynamic constraint may be
embodied in some specific neural structure that can be
recruited, modulating the gain parameter, in order to

control the degree of curvedness of the sequence of
movements.

• The minimum jerk model (Flash and Hogan, 1985). The
main point of this theory is that the spatio-temporal
invariants of reaching movements can be fully explained
by an optimization process that, given the initial and final
points of the trajectory and the desired duration, computes
the time course of the movement coordinates with the
constraint that the hand jerk (the time derivative of the
acceleration profile) must achieve a minimum value. The
implicit assumption is that the internal neural mechanism
that implements this model is a minimization process,
operating on the internal representation of the trajectory
of the end-effector. Themodel is limited to 2Dmotion of the
end-effector and does not address the crucial element of the
degrees of freedom problem, namely how to distribute the
action to the redundant DoFs.

• The VITE model (Vector-Integration-To-Endpoint: Bullock
and Grossberg, 1988). According to this model, the synergy
formation process integrates over time a difference vector
(DV), computed from the Target Position and the Present
Position of the end-effector, multiplied by a GO-signal that
determines the speed profile of the movement aimed to the
target. The GO-signal corresponds to a non-linear gating
action of the internal representation of the positional error.
Also in this case the model is limited to 2D motion.

• The PMP Model (Passive Motion Paradigm: Mussa Ivaldi
et al., 1988; Mussa Ivaldi et al., 1989). The model provides a
force-field-based simulation approach, capable to
coordinate implicitly the motion of the end-effector and
the corresponding, redundant DoFs. The basic rationale of
the model of trajectory formation is the same as the models
of motor control based on a force-field approach, namely
the idea that multi-joint motor coordination is the
consequence of force fields applied to an internal
representation of the body, force fields that express goals,
intentions, environmental constraints, etc. This idea can be

FIGURE 1 | Spatio-temporal invariants in trajectory formation. Panel (A): Planar reaching movements between six target points; A, B, and C correspond to three
movement examples, characterized by the joint rotation patterns and the corresponding speed profiles of the joints and the hand; note the invariant bell-shaped speed
profiles. Panel (B): Three examples of continuous hand scribbles displayed as digitized trajectories, including the profiles of the velocity (V) and curvature (C); note the
anti-correlation of the two profiles.

1An equivalent formulation of this function is as follows: ω ∝ c2/3, where ω is the
instantaneous angular velocity of the hand. This clarifies where the “2/3” element
comes from.
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traced back, on one hand, to the EPH (Equilibrium Point
Hypothesis: Feldman, 1986; Bizzi et al., 1984; Bizzi et al.,
1992) and, on another hand, to the impedance-control
schemes proposed in robotics (Hogan, 1985). The whole
body is viewed as a network of spring-like elements that
individually store elastic potential energy, contributing to a
global net potential energy. Considering that energy
functions are additive, the global field recapitulates, in a
smooth, analogic manner, the complex set of bodily
interactions: the result is a “landscape,” with hills and
valleys, and thus the overall model will “passively”
navigate in the landscape, attracted by the nearest
equilibrium configuration, namely a point of minimum
potential energy. The minimization of potential energy is
a “global” property arising from local interactions, a general
concept that has been employed for the design and analysis
of large networks (Hopfield, 1982). The PMP applies the
concept of “passive motion” to active synergy formation by
updating the control input of each element so as to cancel
the “stress” induced by a simulated external perturbation,
e.g., the attractive force field to a designated target. A recent
extension of the PMP model (Mohan and Morasso, 2011)
incorporates a gating mechanism, derived from the concept
of terminal attractor dynamics (Zak, 1988; Barhen et al.,
1989) and analogous to the GO-signal of the VITE model.

• The Uncontrolled Manifold concept (Scholz and Schöner,
1999). This approach to solve the degrees of freedom
problem generalizes the idea that, for each task, the CNS
may select a minimal subset of DoFs that need to be
accurately “controlled,” for achieving a given goal,
without any specific active control of the remaining
DoFs. The idea is that for any task it is possible to
subdivide the global configuration space, spanned by the
whole set of DoFs, into two orthogonal subspaces: one
subspace includes all the joint configurations that lead to
the set of values consistent with the successful evolution of
the task. This subspace is the Uncontrolled Manifold:
motion within this subspace leaves the controlled
variables unaffected and thus the control of joint
combinations within this manifold is unnecessary. The
motion orthogonal to the UCM subspace does affect the
controlled variables and thus action planning should only
focus on it, with the crucial consequence of reducing the
dimensionality of the control problem.

• Muscle Synergies (Tresch et al., 1999; Saltiel et al., 2001;
D’Avella et al., 2003). The underlying concept of this model
of synergy formation is that an efficient solution for
addressing the redundancy of the motor control problem
might be achieved by representing all useful muscle patterns
as combinations of a small number of generators or motion
primitives, spanning the muscle activation subspace. This
would reduce the dimensionality of the problem and allow
sharing neural aggregates across many tasks, allowing the
CNS to simplify the control problem by combining discrete
elements. Such neural mechanism was investigated first in
spinalized or decerebrated animals (Mussa-Ivaldi et al.,
1994; Tresch et al., 1999), focusing on the activity of the

spinal cord, and then in purposive motor activities of
humans (D’Avella et al., 2003), aiming at the detection of
correlated patterns of electromyographic activity, specific
for each task.

• Optimal Feedback Control (Todorov and Jordan, 2002; Scott,
2004; Liu and Todorov, 2007). The Optimal Feedback Control
approach (OFC) expands the line of thought initiated by the
minimum jerk model. As a matter of fact, OFC is a powerful
engineering technique in process control applications, with
non-trivial implementation complexity: the theory is fully
developed in the case of linear systems, particularly if the
cost to be optimized is a quadratic function (of the state and
control variables) and a reliable estimate of the state is available.
In this case, the optimal control is a linear state feedback law
where the control gains are obtained by solving an equation (the
Riccati equation), for which robust and efficient algorithms are
available. However, if the system to be controlled is
characterized by nonlinear dynamics, no unique approach is
available and only approximated methods can be devised, to be
adapted to the specific task (Beeler et al., 2000). In the
application of this design methodology to biological motor
control it is necessary to guess the cost function that the brain
intends to minimize and implement numerical optimization
techniques that are difficult to explain in neural terms. The
rationale of the approach is that the best way to engineer a
complex control system is to specify a high-level performance
criterion and leave the details to “numerical optimization” but
while the approach is excellent for accurately fitting the
experimental data (Liu and Todorov, 2007) it is of little use
to figure out the biological organization of the suggested
numerical optimization.

• The Active Inference perspective (Friston et al., 2011; Friston
and Parr, 2019). This concept rests upon the idea that the
brain uses an internal generative model (Jeannerod, 2001) to
predict incoming sensory data. Remarkably, this force-
based mechanism solves the “Degrees of Freedom
problem” in an implicit manner, without explicit
kinematic inversion, and it naturally allows to combine
multiple goals by superimposing the corresponding force
fields. It is worth pointing at the analogy between PMP and
Active Inference: in both cases, there is no need to have
distinct sensory and motor representations, because the
“proprioceptive predictions” of the intended action,
generated by the simulation process, are sufficient to
allow the motor controller to produce the basic motor
synergies. Such predictions encode beliefs about the state
of the world, including both proprioceptive and
exteroceptive components. The standard causality
between sensory and motor representations is somehow
inverted: motor commands are not necessarily intended to
cause desired movements but desired movements (in the
form of the predicted consequences of movement) May
cause motor commands.

As better explained in the following, it can be shown that the
PMP model explains all the other models listed above and
provides a solid computational framework for both human
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motor neuroscience and humanoid robot cognition (Morasso,
2021). A key point of the paper is that it is impossible to clearly
separate motor control from motor cognition. The vast, recent
literature on motor imagery allowed to revitalize the traditional
Ideomotor Theory, proposed by William James in the 19th
century and recently revisited (Shin et al., 2010), namely the
concept that the “idea” of an action, i.e., the predicted/desired
sensory consequences of covert action, applies as well to goal-
directed overt actions and is the internal mechanism that
ultimately generates it through the simulation of an internal
model (Jeannerod, 2001).

The crucial point is that most theories formulated to account
for spatiotemporal invariances in the motor system are
“descriptive” of different aspects of the invariances of real
actions, by fitting the data with a various degree of accuracy.
In this sense, they are all “true” and there is no point in ranking
them according to the degree of accuracy or figuring out specific
modifications that may increase the accuracy of the predictions.
The main goal of the paper, in the GIPS framework, is to outline a
plausible approach to characterize a “generative” model that
applies equally well to overt and covert actions, in agreement
with the simulation theory of action formulated by Marc
Jeannerod (2001). As shown in the rest of the paper, PMP
appears to match this requirement in a simple “economic”
manner, providing a uniform computational mechanism for
both covert and overt actions that is complex but not too
complex. The OFC and the muscle synergy models may also
be considered “generative” but fail the requirements above in two
crucial aspects: 1) they are unable to apply to overt and covert
actions in a uniformway; 2) computationally, OFC is too complex
to be biologically plausible and the muscle synergies model is too
simple, because is a kind of table-lookup mechanism, based on a
linear combination of pre-recorded high-dimensional patterns).

Before proceeding in the analysis of the PMP model, it is
worth to clarify what is the specific meaning of the word Synergy
in the context of this paper. As a matter of fact, the DoF Problem
and the Synergy Concept are the two faces of the same coin: the
human body has too many DoFs and too many muscles to allow
the brain to control all of them independently. In any case, the
real function of the brain is not the control of movements per se
but the organization of purposive actions, identified by a small
number of control variables (thus reducing dimensionality) and
structured according to the principle of compositionality: this
means that humans simplify the generation of various motor
behaviors through the re-use of a limited number of basic motor
primitives to be combined in an additive manner, rather than
developing entirely new modules for each behavior/task. If we
consider the etymology of “synergy” (the word derives from two
ancient Greek words: συν+εργός, Sun + ergòs, i.e., “working
together”) it is not surprising that anybody working in motor
neuroscience agrees on its fundamental role in the organization
of purposive actions, although it is equally evident that in the
literature there is a large variety of synergies (or “zoo of synergies”
to quote Mark Latash, 2008): kinematic synergies (Freitas et al.,
2006; Huang et al., 2021), kinetic synergies (Slomka et al., 2015),
muscle synergies (Cheung and Seki 2021), to name a few. They all
clarify the concept that the DoFs are not independent but are

recruited by combining a limited number of adaptable primitives.
The muscle-less synergies advocated in this manuscript may also
be considered “ideomotor synergies” and their rationale is based
on the equivalence between overt actions (that imply the
generation of muscle patterns) and covert actions (that are
muscleless by definition). The working hypothesis that
muscleless synergies are “primitives on the top of the
computational chain” does not contradict the evidence that
low-level coordinative structures, possibly encoded by spinal
premotor interneurons, exist and are recruited during overt
actions. The frequently invoked need of a verified neural basis
of muscle synergies is descriptive of the correlation among
different neural processes but does not imply a causal
relationship: in our opinion, it is not a plausible
computational process capable to generate the observed
correlations in overt actions and, at the same time, available
to the brain for prospection in covert actions. The underlying
issue is that, in an embodied cognitive framework, motor
cognition and motor control of purposive actions are indeed
different neural processes but they must share a common
representation of action. A further point to be clarified is
related to the specific meaning of “motor primitives” and the
nature of the compositional process that allows them to be
combined. This point will be clarified in the section related
to GIPS.

HOW THE PMP MODEL EXPLAINS
SPATIO-TEMPORAL INVARIANCES

Let us consider the basic form of the PMPmodel, which is focused
on planar reaching movements but promptly generalizes to 3D
movements, from a starting point P0 to a target point PT. The
movements are driven by an attractive, virtual force field F,
centered in the target position PT and applied to the moving
end-effector p(t):

F(t) � K(PT − p(t)) (1)

If the matrix K is proportional to the unitary matrix, the
force field is isotropic and, by applying it to the end-effector,
the hand will follow a straight path terminating in the target
point. However, since the field intensity vanishes as the end-
effector approaches the target, the time to target is virtually
infinite and the velocity profile is far from bell-shaped. An
indirect control of the timing, used by the PMP model, is
obtained by a non-linear gating mechanism, namely the Γ-
function of Figure 2: this function is null before the initial
time instant t0 and grows smoothly but very quickly until the
designated final time tf � t0 + T, where it diverges to infinity
before collapsing to 0. The purpose of the Γ-function is to set a
hard deadline to the gradient descent process seeking an
equilibrium state, after the initial disequilibrium induced
by the instantiation of a target, whatever the
dimensionality of the underlying system and the distance
of the target from the initial state. Among the different
forms that can be used for this gating mechanism, the one
adopted by the PMP model is defined as follows:
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Γ �
_ξ

1 − ξ for 0< t − t0 <T

Γ � 0 for t − t0 ≤ 0 and t − t0 ≥T
(2)

where ξ � 6 γ5 − 15 γ4 + 10 γ3 is a smooth 0→1 transition and γ is
the normalized time: γ � t−t0

T .
The Γ-function does not impose the speed profile but forces

the gradient descent driven by the force field to achieve
equilibrium in finite time. Figure 2 shows an example of
reaching movement generated by Eq. 1 and Eq. 2, according
to the block diagram in the left panel of the figure; the right panel
shows the time course of the Γ-function and demonstrates that
the PMP model can indeed induce a smooth acquisition of the
target (the distance monotonically decreases to zero) with a
symmetric bell-shaped speed profile, without the explicit
optimization suggested by the minimum jerk model.
Moreover, the PMP model described above is not limited to
straight trajectories: curved trajectories can be generated by the
same block diagram of Figure 2 if the gain matrix K includes a
rotational component, without affecting the terminal attractor
properties of the model. The model can be used iteratively in such
a way to generate a sequence of PTP (Point to Point) movements:
the final point of each movement becomes the initial point of the
next one, provided that the Γ-functions of consecutive commands
are not overlapped in time, namely the initial instant of each
command occurs later than the final instant of the previous one.

The model can also be extended to any VP trajectory,
i.e., trajectory with multiple Via Points, as in cursive
handwriting or hand drawing, in a very simple and natural
way. The reason is that the PMP model is based on elastic
force fields and we should consider that the corresponding
energy functions are additive. Thus, a generic trajectory with
multiple VPs ca be generated by chaining a sequence of PTP
movements with time overlap between consecutive Γ-
functions. Figure 3 shows an example, characterized by 13
targets and 12 VPs: the targets are alternated back and forth on
the horizontal axis, with approximately equal distance (a small
random displacement is added for improving the graphical
rendering); the force field of each PTP movements is equally
curved; the Γ-functions of successive commands have a 50%

time overlap. The result is a sequence of elliptical shapes,
except for the first and the last curved movement (top panel of
Figure 3), and the remarkable feature of the generated
trajectory with multiple VPs is clarified by the bottom panel
of Figure 3, that plots the speed and curvature profiles,
together with the sequence of Γ-functions: speed and
curvature are clearly anti-correlated. The VPs are the points
of peak curvature but these points are not explicitly expressed:
they are implicitly generated by the systematic overlapping
strategy of the chaining procedure. Moreover, by plotting
speed vs. curvature in a logarithmic scale it is possible to
demonstrate that the PMP model applied to a sequence of
overlapped VPs matches the 2/3 power law mentioned above
without an explicit implementation of the law in a neural
controller of the synergy formation mechanism. Rather, the
correlation of shape and kinematics implied by the law is
simply the computational consequence of the repetitive
application of the simple PMP mechanism with an overlap
between two consecutive motor commands. In summary, the
simulation of the basic form of the PMP model is capable to
reproduce, at the same time, the minimum jerk hypothesis,
without any optimization mechanism, and the 2/3 power law,
without any explicit figural-timing constraint.

HOW THE PMP MODEL SOLVES THE
DEGREES OF FREEDOM PROBLEM

In the previous section, it was shown how the PMP model can
reproduce the spatio-temporal invariances of multi-joint motor
control, focusing on the kinematics of the end-effector. This
formulation neglected how the described neural model might be
integrated with the recruitment of the redundant DoFs of the
human body, namely the key point of the degrees of freedom
point. Mapping the planned trajectories of the end-effector onto
the redundant, articulated joint network is usually called inverse
kinematics, a typically ill-posed transformation due to the
kinematic redundancy of the human body. This means, in
particular, that the inverse transformation can have infinite
solutions or no solution at all. The rationale of the PMP
approach is to avoid this critical problem by focusing on force
rather than on motion, thus dealing only with a network of well-
posed transformations.

For example, if we wish to induce a small displacement of the
end-effector Δpee from a given equilibrium point and attempt
computing the incremental joint rotation Δq that allows the
desired displacement to occur, we run into the trouble of
inverse kinematics, i.e., an ill-posed transformation. However,
it is possible to avoid such problem by using the force field-based
approach described in the previous section: instead of forcing the
system to carry out the desired incremental motion Δpee, we may
“disturb” the current equilibrium with a force field attracting the
end-effector in the same direction: ΔFee � Kee Δpee. This
disturbance ΔFee can always be mapped from the end-effector
space to all the DoFs of the joint space, giving a unique solution
Δτ � JTΔFee, where J is the Jacobian matrix of the non-linear,
redundant kinematic transformation p � f (q). In other words,

FIGURE 2 | (A): PMP model for the generation of a pT(t)moving target
aimed to the final target PT . The virtual force field F is gated by the Γ-function
that indirectly control the speed profile _pT(t). (B) shows that the spiky Γ-
command induces a bell-shaped speed profile with the corresponding
smooth reduction of the distance from the target.
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while the transformation in terms of incremental motion
(Δpee → Δq) is generally ill-posed, the corresponding
transformation in terms of forces (ΔFee → Δτ) is well-posed
and admits a unique solution as a consequence of the principle of
virtual works.

The crucial step, at the heart of the PMP approach, is then to
apply the concept of “passive motion”, that consists in
updating the state of each joint so as to cancel the “stress”
induced by the simulated external perturbation: Δq � C Δτ,
where C is a square matrix that distributes the “passive
motion” induced by the virtual disturbance to all the joints.
This incremental motion in the joint space can then be mapped
uniquely to the end-effector space, using again the Jacobian
matrix: Δp̂ee � J Δq. Summing up, the PMP model avoids the
ill-posed inverse kinematic transformation q � f −1(p) by the
following chain of transformations that are all well-posed from
the end-effector space to the joint space and then back to the
end-effector space:

Δpee → ΔFee → Δτ → Δq → Δp̂ee (3)

Ideally, Δp̂ee should be equal to Δpee but this is not the case in
general because the stiffness matrix of the end-effector is
anisotropic: the natural solution is to close the loop of the
chain of transformations indicated above by redirecting the
force field to the designated target at each time instant, as
shown in Figure 4 (top panel). The figure clarifies the fact
that the Passive Motion Paradigm is split into two modules: a

module (A) that generates a moving target pT(t), terminating in
the final target PT, and a module (B) that moves all the DoFs in
such a way to keep the end-effector pee(t) as close as possible to
the moving target. Both modules are driven by force-fields and
thus in the PMP model there is a concurrent “double pulling
force”: from the moving target to the final target (FT) and from
the moving target to the moving end-effector (Fee). This aspect of
the PMPmodel is supported by experimental evidence linking the
maintenance of posture in a multijoint system to that of
generating a movement: it was found indeed that the CNS
does not apply a final position control mechanism but
programs a reaching movement by shifting the equilibrium
position of the hand toward the target in a continuous
manner (Bizzi et al., 1984; Shadmehr et al., 1993). In the PMP
model, the action of the two force fields is synchronized by gating
both of them with the same Γ-function: the bottom panel of
Figure 4 shows that both the moving target point pT(t) and the
end-effector pee(t) reach the final target point PT at the same
time, dictated by the Γ-function. Moreover, the figure illustrates
how the PMP model solves the DoF problem, distributing
smoothly the action among all the DoFs in an implicit way.

The biological plausibility of the model described above is also
supported by experiments on the coordination mechanisms
underlying bimanual reaching. Apart from the spatio-temporal
invariance of multi-joint reaching movements, exemplified by the
bell-shaped velocity profile, independent of starting posture,
movement direction and target distance, we should also
consider the speed-accuracy trade-off, elucidated by the Fitt’s

FIGURE 3 | (A): Example of a generic trajectory with multiple VPs generated by the PMP model by chaining a sequence of PTP movements with time overlap
between consecutive Γ-functions; the trajectory is characterized by 13 targets and 12 VPs; the Γ-functions of successive commands have a 50% time overlap. (B): time
course of speed (red), curvature (black) profiles, and the 13 Γ-functions (green). Each Γ-function has a duration of 1 s, with a 50% overlap between successive functions.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org January 2022 | Volume 9 | Article 7835017

Morasso The DoF Problem

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


law (Fitts, 1954): the duration of reaching movement grows with
the required index of difficulty, namely the ratio between target
distance and target size. In the PMP model this means that the
CNS should choose the duration of the Γ-function in accordance
with the expected difficulty index. But what about bimanual
reaching? Unless the two targets have the same difficulty, the
Fitt’s law would predict different reaching times. However, this is
not what happens: the experiments by (Kelso et al., 1979) clearly
show that bimanual motions reach the targets simultaneously and
the common duration is dictated by the motion with the higher
difficulty index. The picture that emerges from such studies of
interlimb coordination is that the role of central control patterns
is not to prescribe the full details of the intended action but rather
to organize functional groups of DoFs, also known as
coordinative structures (Turvey, 1977) or motor synergies. An
extension of the PMP model for covering bimanual coordination
is quite straightforward: it is sufficient to instantiate two copies of
the model of Figure 4 for the two arms (Aleft, Bleft, Aright, Bright)
and synchronize the four modules with the same Γ-command.
Other studies investigated bimanual coordination, for example
manipulating a nonholonomic car (Tsuji et al., 2002) and it was
found that the timing of the coordinated movements is
compatible with a non-linear gating model based on a TBG
(Time Based Generator) quite similar to the Γ-command.

As regards the motor synergies investigated by (D’Avella et al.,
2003), they clearly fit the quest, initiated by Bernstein, for
computational mechanisms capable to reduce the complexity of
motor control. However, demonstrating the low dimensionality of

patterns of electromyographic activities embedded in actions of
daily life is not sufficient to conclude that the small number of high-
dimensional muscle activation patterns “are” the sought “motor
primitives” to be combined for synergy formation in general. This
hypothesis is in contrast with the large body of research on motor
imagery that supports the fundamental equivalence of mental and
real motor actions, including the timing aspects: Decety and
Jeannerod (1995) showed that imagined discrete movements
obey Fitts’s law and their durations are well correlated with
those of actual movements; Karklinsky and Flash (2015)
demonstrated that imagination of continuous scribbles is
consistent with the two-thirds power law of real scribbles. Thus,
in our opinion a more appropriate approach to synergy formation
is not based on “muscle synergies” but on “muscle-less synergies”
or “ideomotor synergies” (Mohan et al., 2019) represented and
generated by the PMP model. In this framework, the muscle
synergies are not the motor primitives on the top of the
computational chain but the results of the force-field driven
internal simulation carried out by the PMP model. The motor
primitives are thus the recruited force fields and the muscle
synergies, evoked only in overt actions, are the visible
consequences: the dynamic effects of the interaction between a
muscle-less mental synergy and the control modules recruited for a
specific task, as a combination of feedforward and feedback control
mechanisms, in conjunction with coactivation patterns of muscle
activity for modulation of joint stiffness.

For the UCM concept, we may observe that it is incorporated
intrinsically in two crucial elements of the PMP model illustrated

FIGURE 4 | (A): Extended PMP model for solving the Degree of Freedom problem; the module A generates the moving target _pT(t), attracted to the final target
point by the force field FT ; the module (B) generates the trajectory of the end-effector (pee(t)) and distributes the action to all the DoFs (q(t)) by using the force field Fee.
In the lower part of the figure the left graph shows the time course of the distance from the final target point of the moving target (red curve) and of the end-effector (blue
curve); the right graph shows the time course of the 7 DoFs (yaw-pitch-roll of the wrist, pitch of the elbow, and yaw-pitch-roll of the wrist); both graphs also include
the common Γ-command.
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in Figure 4. First of all, the mapping of the virtual disturbance
from the end-effector space (i.e., the task space) to the joint space
(or DoF space) is indirectly and intrinsically ranking the whole set
of DoFs according to the relevance of each DoF for the planned
action: Δτ � JTΔF. The rank of each DoF dynamically changes
during the movement and we may estimate the relative weight of
each DoF (wi(t)), at each time instant, with the following
indicator: wi(t) � Δτi(t)/|Δτ|. In particular, the DoF with the
highest ranking will be the one that yields the most to the virtual
disturbance. The second elements of the PMP model that may be
associated to the UCM concept is the compliance matrix C that
maps the disturbing torque absorbed by each DoF into the
corresponding incremental displacement: Δq � C Δτ. This may
increase or decrease the ranking of each DoF and thus influence
the clustering of the whole set of DoFs in the controlled and
uncontrolled manifolds. Therefore, in the PMP framework there
is no need to explicitly specify the two alternative manifolds: the
border between the two clusters is rather fuzzy and time varying,
due to the complexity of the body kinematics and the task-
dependent requirements.

A further issue that is related to the UCM concept, on one side,
and to the additivity of force fields acting on complex kinematic
networks, on another side, is the possibility to integrate in the
dynamics of PMP models additional force fields that may express
additional constraints or task requirements. An example is the
“regularization” of the synergy formation process aimed at
satisfying the limited range of motion of each joint. This is a
constraint that would be very difficult to formulate in an exact
treatment of the inverse kinematic problem. In the PMP
framework it is sufficient to introduce an additional force
field, in the joint space, with a non-linear repulsive action
from the joint limits of each DoF. This force field may be
added to the attractive force field, defined in the end-effector
space for expressing the target reaching intention, and possibly to
other force fields for expressing additional constraints or
requirements. It is important to note that all such force fields
may be defined in different spaces with different reference frames
and thus the PMP model can be designated as a multi-referential
system of synergy formation. However, the effects of the different
force fields converge ultimately to the joint reference system,
coordinating the motion of the whole set of DoFs, using a
complex network of well-posed transformations. The crucial
point of synchronizing the effects of all the different
components is implemented, as shown in Figure 4, by gating
the different perturbing sources with the same Γ-function. This
also clarifies the fact that the abundance of DoFs is functionally
essential for achieving at the same time the multiple sub-goals of a
given task: for example, reaching a target at a given time, while
keeping each joint inside its range of motion and avoiding to hit
dangerous obstacles in the environment. A possible neural
implementation of the Γ-function is suggested by studies that
document the gating action of the basal ganglia on the activation
of the motor cortex. For example (Horak and Anderson, 1984),
found that two nuclei of the basal ganglia (the Substantia Nigra
pars reticulata and part of the Globus Pallidus) carry out a gating
and velocity scaling action of the commands sent to the motor
thalamus and precentral cortex.

In summary, the PMP model integrates in the same
computational framework the spatio-temporal invariants,
described by the minimum-jerk model, VITE model, and two-
thirds power law, as well as the coordination requirements of
redundant DoFs, expressed by the UCM model and the muscle
synergies.

THE GENERALIZED INFORMATION
PROCESSING SYSTEMS APPROACH

The Computational Level
A computational theory for addressing the Degrees of Freedom
Problem should stem from the fact that a cognitive agent is
continually involved in prospectively guided, goal-directed
actions that involve the whole body and thus is faced by the
challenge of choosing an action course that recruits the degrees of
freedom on the basis of the desirable and predictable outcome.
Thus, the core of the theory, namely the definition of “what needs
to be computed and why,” is a mechanism that allows the brain to
integrate in the same process the capability to shape the motor
system in anticipation to execution as well as the awareness of the
feasibility of potential actions without execution. Moreover, this
internal model should incorporate a knowledge about the causal
relationship between the task spaces (related to the designated
“end-effectors”) and the joint space (the DoF space): more
specifically, it should be able to predict the incremental
displacements in the task space determined by arbitrary
variations in the joint space as well to compute the joint
efforts capable to equilibrate virtual perturbations applied to
one of the end-effectors of the body in the task space.
Mathematically, such computations are equivalent to the
Jacobian matrices that link the joint space and the task spaces.
The computation of such Jacobian matrices is a key element for
solving the DoF problem because they allow to rank in a direct
and implicit way all the DoFs of the body for a given task,
expressed as a set of virtual force fields applied to the end-effector.

Another requirement of the computational theory is that the
theory must not be purely descriptive but provide robust
generative capabilities with cognitively penetrable features: this
means that the details of the simulation process that generates
ideomotor synergies should be relevant to cognitive processes
related to prospection, learning and decision making.

The other key element of the theory is that it must capture the
spatio-temporal invariants that characterize human actions,
independent of the number of involved end-effectors and
DoFs. The crucial function of the invariants is to allow the
process of coordination of the redundant DoFs to evolve in a
smooth and coherent manner, by relying on the composition of
complex gestures in terms of simpler sub-actions or motion
primitives. The solution to this is to integrate in the network
of Jacobian matrices, that represents the internal model of the
whole body, a non-linear gating mechanism applied to the virtual
force fields in such a way to dynamically synchronize all the
elements of the network, in analogy with the recall of information
in large associative networks, without any need of a universal
clock or metronome.
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The theory covers the motor cognitive aspects of synergy
formation with a mechanism of recruitment of the redundant
DoFs and of synchronization of motor primitives that allows
smooth composition. Thus, the theory fully represents the
organization of covert or mental actions but it does not and
must not cover specific control aspects in action execution that
are determined by the physical interaction of the body with the
environment: action execution, in addition to a well-structured
ideomotor synergy, will also require a combination of different
control mechanisms (feedforward, feedback, and stiffness
control) which are outside the scope of the computational theory.

The PMPmodel is intended to answer the above requirements
of the computational level formulation of the DoF problem,
although alternative formulations cannot be excluded.
However, the different models analyzed before for explaining
the spatio-temporal invariants do not fit the computational
requirements except for the Active Inference model, as
previously observed, and the VITE model but only for the
non-linear gating mechanism. The minimum jerk model and
the 2/3 power law are more descriptive than generative and, in
any case, do not address the redundancy issue of the DoF
problem. The UCM model is mainly descriptive, leaving open
the question of dynamically sorting the set of DoFs in relevant
and non-relevant subsets for a given task. The muscle synergy
model, as well as the OFCmodel, only apply to the control part of
overt actions and, in any case, they are far from being cognitively
penetrable. For a computational theory of this kind, the classical
planning-acting-sensing loop is not appropriate because it is
impossible to separate logically in a clear manner the three
components and sequence them in time.

The Algorithmic Level
In agreement with the computational theory defined above, we
suggest that the algorithmic level of analysis of the DoF problem
should be based on the simulation theories (Jeannerod, 2001; O’Shea
and Moran, 2017) and emulation theories (Grush, 2004; Ptak et al.,
2017) for the representation of prospectively guided, goal-directed
actions. This point of view is strongly supported by following
statement by (Marc Jeannerod, 2001): “The possibility to
experimentally access to cognitive or mental states characterized
by absence of overt behavior represents a new avenue for
neuroscience.” From this derived the hypothesis that the motor
system is part of a simulation network that is activated under a
variety of conditions in relation to action, either self-intended or
observed from other individuals. This is indeed the starting point for
the introduction of the PMP model which addresses the DoF
problem by factoring it out in two main components of synergy
formation: 1) giving shape to the synergy, by superimposingmultiple
virtual force-fields, and 2) giving rhythm to the synergy with a
suitable gating and velocity modulation. The PMPmodel relies on a
network of Jacobian matrices that correspond to the different
kinematic chains of the human body, including a mechanism of
serial/parallel connections. The basic algorithmic function is the
simulation of the network. The algorithmic level of analysis for
addressing the DoF problem is also appropriate for clarifying the
concept of motor primitive, as the basic cellular element to be
combined in order to generate general actions. In contrast with the

common wisdom, typical for example of popular methods of
movement notation, such as Labanotation (Laban, 1956),
Therblig notation (Aft, 2000) or the Human Action Language
(Guerra-Filho and Aloimonos, 2007), that identify motor
primitives with elementary movements, we think that it is more
appropriate to assume that motor primitives are force fields. The
basic (algorithmic reason) for this assumption is that in a complex
mechanical network, like the human body, force fields are additive
while elementary movements are not.

The Implementation/Physical Level
The algorithmic hypothesis, that the same internal model is
involved in the generation of overt and covert actions, can
lead to different implementation strategies for transforming a
selected covert action into the corresponding overt counterpart.
The underlying hardware that is supposed to allow the
neurobiological implementation of an internal mechanism
similar to the PMP model must count onto two main
modules: 1) a module for representing the Jacobian matrices
and 2) a module for the control of timing and synchronization.

A biomimetic approach for defining and implementing the
former module is the process of sensorimotor babbling. This is an
idea that was originally proposed by (Piaget, 1952) for the study of
sensorimotor development in children. He described a “primary
circular-reaction hypothesis” supported by the fact that newborn
infants repeatedly perform exploratory movements which are
“centered on themselves” rather than driven by external stimuli.
Such empirical observations prompted lines of research, both in
developmental psychology (von Hofsten, 1982) and computational
neural modeling (Kuperstein, 1988), that viewed “motor babbling”
inherent to primary circular-reactions (e.g., the performance of
random hand movements in front of the eyes) as a crucial
mechanism for enhancing the formation of associations between
efferent motor patterns and re-afferent perceptive/proprioceptive
patterns. More recently, motor babbling was applied to robotics
in order to promote learning the internal representation of the body:
Hersch et al. (2008) proposed an algorithm enabling an embodied
robot to visually learn its body schema, by visually observing its end-
effectors when moving them; Sturm et al. (2009) developed a model
based on Bayesian networks that allows a robot to simultaneously
identify its kinematic structure and learn the geometrical
relationships between its body parts as a function of the joint
angles. Moreover, the babbling-based approach was also extended
for the internal representation of the use of tools (Bhat et al., 2017),
considering the underlying neurophysiology about the adaptation of
the receptive fields of skilled users (Maravita and Iriki, 2004).

As regards the module for the control of timing and
synchronization of multiple sensorimotor processes, the previously
defined Γ-function or GO-signals are specific examples. A more
detailed analysis of the Γ-function is provided by the TBG (Time base
Generator) model (Tsuji et al., 2002) that allows a parametrization of
the function, in order to describe small modifications of the
symmetry of the bell-shaped velocity profile that are consistently
associated with any individual (Kittaka et al., 2020). This method of
analysis is also applicable in the clinical field by using it for the
quantitative evaluation of the Trail Making test (Sakai et al., 2021):
this is a neuropsychological test which is widely used to assess the
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cognitive function of patients with motor-cognitive impairments, as
in the case of stroke.

In general, we suggest that the Γ-function may be considered as a
member of the large family of CPGs (Central Pattern Generators),
although this kind of neural mechanisms have been investigated
mainly for explaining the neural drive of rhythmic and stereotyped
motor behaviors like walking, swimming, breathing, chewing,
swallowing. Although it is generally assumed that CPGs, typically
located in the spinal cord and brain stem, are characterized by the
ability to operate with a minimal intervention of higher brain areas,
still they require modulatory inputs in order to perform in a flexible
way. The role of CPGs in less stereotyped motor behaviors,
characterized by a clear cognitive interaction, has been clarified in
the field of speech motor control (Barlow et al., 2010; Rusaw, 2013)
or sign language (Tkachman et al., 2021). Reachingmovements seem
to be far away from the area of motor control related to rhythmicity
related to CPGs. However, cursive handwriting, scribbles or hand
gestures in dance strongly support the view that the observed motor
patterns may be the result of the superposition of motor primitives
similar to PTP movements, with a clear rhythmical and prosodic
structure that may imply a pattern generator, in charge of timing.
Such CPG clearly cannot be localized downstream the neuroaxis as
in the case of locomotion and there is diffused evidence, summarized
by (Bullock et al., 1999), that it may involve thalamo-cortical loops
with the purpose of gating and velocity scaling. In any case, we
suggest that the widespread use of CPGs for coordinating more or
less rhythmic behaviors of the highly redundant motor system is one
of the main techniques adopted by the CNS to tame the degrees of
freedom problem. This consideration is also consistent with the
evolutionary analysis of CPGs reported by (Katz, 2016).

CONCLUSION

In conclusion, we wish to emphasize our complete agreement
with the view by (Latash, 2012) that there is no “problem” of
motor redundancy; rather there is the bliss of motor abundance

that allows humans as well as members of other species to exhibit
adaptive behaviors across a variety of conditions, in a changing
and challenging environment. This is at the heart of what (Latash,
2012) denotes as “good variance” of human behavior, in contrast
with the “invariance” (and consequent inflexibility) of exact
algorithmic models. We only observe that such good variance
and the bliss of motor abundance are made possible by the
strategy of factoring out shaping and timing, described in
this essay.
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