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Abstract We present in vivo single-cell FRET measurements in the Escherichia coli chemotaxis

system that reveal pervasive signaling variability, both across cells in isogenic populations and

within individual cells over time. We quantify cell-to-cell variability of adaptation, ligand response,

as well as steady-state output level, and analyze the role of network design in shaping this diversity

from gene expression noise. In the absence of changes in gene expression, we find that single cells

demonstrate strong temporal fluctuations. We provide evidence that such signaling noise can arise

from at least two sources: (i) stochastic activities of adaptation enzymes, and (ii) receptor-kinase

dynamics in the absence of adaptation. We demonstrate that under certain conditions, (ii) can

generate giant fluctuations that drive signaling activity of the entire cell into a stochastic two-state

switching regime. Our findings underscore the importance of molecular noise, arising not only in

gene expression but also in protein networks.

DOI: https://doi.org/10.7554/eLife.27455.001

Introduction
Cellular physiology is deeply shaped by molecular fluctuations, resulting in phenotypic diversity and

temporal variability that can be both detrimental and beneficial (Rao et al., 2002; Kussell and Lei-

bler, 2005; Lestas et al., 2010; Hilfinger et al., 2016). One of the most important and well-studied

sources of intracellular fluctuations is stochastic gene expression (Elowitz et al., 2002; Eldar and

Elowitz, 2010; Raj and van Oudenaarden, 2008), which can generate substantial cell-to-cell vari-

ability in protein levels within isogenic populations under invariant environmental conditions. Such

heterogeneity in protein counts are readily measurable by fluorescent-protein reporters

(Elowitz et al., 2002; Ozbudak et al., 2002) , but mechanistically tracing the consequences of such

molecular noise to the level of complex cellular phenotypes such as signaling and motility remains a

significant challenge, in part due to the multitude of interactions between gene products, but also

because each of those interactions can, in principle, become an additional source of noise. In this

paper, we study how multiple sources of molecular noise, arising in both gene expression and pro-

tein-protein interactions, affect performance of the E. coli chemotaxis network, a canonical signaling

pathway.

In bacteria, gene-expression noise tends to manifest itself as stable cell-to-cell differences in phe-

notypes that persist over the cell’s generation time, because typical protein lifetimes are longer than

the cell cycle (Li et al., 2014). The architecture of signaling networks can have a profound influence

on their sensitivity to such noise-induced differences in protein levels, and it has been shown that

the design of the E. coli chemotaxis network confers robustness of a number of signaling parame-

ters, such as precision of adaptation, against variability in gene expression (Barkai and Leibler,
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1997; Kollmann et al., 2005). On the other hand, cell-to-cell differences in behavior can also be

advantageous for isogenic populations under uncertain and/or time-varying environments, and it has

been argued that the manner in which the chemotaxis network filters gene expression noise to

shape phenotype distributions could be under selective pressure (Frankel et al., 2014; Waite et al.,

2016).

In principle, molecular noise arising in processes other than gene expression, such as protein-pro-

tein interactions within signaling pathways, can also contribute to cellular variability. However, such

noise sources tend to be harder to study experimentally because, in contrast to gene-expression

noise, which can be characterized by measuring fluorescent reporter levels (Elowitz et al., 2002;

Raser et al., 2004), requirements for in vivo measurements of protein-protein interactions tend to

be more demanding and no generically applicable strategies exist. The E. coli chemotaxis system

provides a compelling experimental paradigm for addressing protein-signaling noise, because a

powerful technique for in vivo measurements of protein signaling, based on Förster resonance

energy transfer (FRET), has been successfully developed (Sourjik and Berg, 2002a; Sourjik et al.,

2007).

The chemotaxis network controls the motile behavior of E. coli, a run-and-tumble random walk

that is biased by the signaling network to achieve net migrations toward favorable directions. The

molecular mechanisms underlying this pathway have been studied extensively (for recent reviews,

eLife digest Many sophisticated computer programs use random number generators to help

solve challenging problems. These problems range from achieving secure communication across the

Internet to deciding how best to invest in the stock market. Much research in recent years has found

that randomness is also widespread in living cells, where it is often called “noise”. For example, the

activity of some genes is so unpredictable to the extent that it appears random. Yet, relatively little

is known about how such gene-expression noise propagates up to change how the cell behaves.

Many open questions also remain about how cells might exploit these or other fluctuations to

achieve complex tasks, like people use random number generators.

Bacteria perform a number of complex tasks. Some bacteria will swim toward chemicals that

suggest a potential reward, such as food. Yet they swim away from chemicals that could lead them

to harm. This ability is called chemotaxis and it relies on a network of interacting enzymes and other

proteins that coordinates a bacterium’s movements with the input from its senses.

Keegstra et al. set out to find sources of noise that might act as random number generators and

help the bacterium E. coli to best perform chemotaxis. An improved version of a technique called in

vivo Förster resonance energy transfer (or in vivo FRET for short) was used to give a detectable

signal when two proteins involved in the chemotaxis network interacted inside a single bacterium.

The experiments showed that this protein network amplifies gene-expression noise for some genes

while lessening it for others. In addition, the interactions between proteins encoded by genes acted

as an extra source of noise, even when gene-expression noise was eliminated.

Keegstra et al. found that the amount of signaling within the chemotaxis network, as measured

by in vivo FRET, varied wildly over time. This revealed two sources of noise at the level of protein

signaling. One was due to randomness in the activity of the enzymes involved in tuning the cell’s

sensitivity to changes in its environment. The other was due to protein interactions within a large

complex that acts as the cell’s sensor. Unexpectedly, this second source of noise under some

conditions could be so strong that it flipped the output of the cell’s signaling network back and

forth between just two states: “on” and “off”.

Together these findings uncover how signaling networks can not only amplify or lessen gene-

expression noise, but can themselves become a source of random events. The new knowledge of

how such random events interact with a complex trait in a living cell – namely chemotaxis – could aid

future antimicrobial strategies, because many bacteria use chemotaxis to help them establish

infections. More generally, the new insights about noise in protein networks could help engineers

seeking to build synthetic biochemical networks or produce useful compounds in living cells.

DOI: https://doi.org/10.7554/eLife.27455.002
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see refs. (Wadhams and Armitage, 2004; Tu, 2013; Parkinson et al., 2015)). In brief, transmem-

brane chemoreceptors bind to ligand molecules, inhibiting the autophosphorylation of a central

kinase, CheA. When active, CheA transfers its phosphate to CheY to form CheY-P. Meanwhile, the

phosphatase CheZ dephosphorylates CheY-P to limit the signal lifetime. CheY-P binds to a flagellar

motor, which in turn increases the chance of the motor to turn clockwise, leading to a tumble. An

adaptation module consisting of the enzymes CheR and CheB implements negative integral feed-

back by tuning the sensitivity of the chemoreceptors via reversible covalent modifications that

restore the kinase activity (and CheY-P level).

Despite its relative simplicity, this pathway exhibits many interesting network-level functionalities,

such as cooperative signal amplification (Segall et al., 1986; Sourjik and Berg, 2002a; Bray et al.,

1998), sensory adaptation (Barkai and Leibler, 1997; Alon et al., 1999), and Weber’s law and fold-

change detection (Mesibov et al., 1973; Lazova et al., 2011; Clausznitzer et al., 2014), and FRET

microscopy has proven extremely powerful in characterizing such signal processing of the chemo-

taxis pathway, especially in E. coli (Sourjik and Berg, 2002a; Sourjik and Berg, 2004;

Shimizu et al., 2010; Oleksiuk et al., 2011), but also in Salmonella (Lazova et al., 2012; Rosier and

Lazova, 2016) and B. subtilis (Yang et al., 2015). It has been implemented in various ways

(Sourjik and Berg, 2002a; Sourjik and Berg, 2002b; Shimizu et al., 2006; Kentner and Sourjik,

2009; Neumann et al., 2012), but most commonly by using CFP and YFP as the FRET donor-accep-

tor pair, fused to CheY and CheZ, respectively. To date, however, nearly all applications of FRET in

the bacterial chemotaxis system have been population-level measurements in which signals from

hundreds to thousands of cells are integrated to achieve a high signal-to-noise ratio. A pioneering

study applied FRET at the single-cell level to study spatial heterogeneities in CheY-CheZ interactions

(Vaknin and Berg, 2004), but those measurements were limited to relatively short times due to pho-

totoxicity and bleaching.

By exploring a range of fluorescent proteins as FRET pairs, and improving measurement proto-

cols, we have developed a robust method for single-cell FRET measurements of chemotactic signal-

ing dynamics in single bacteria over extended times. The data reveal extensive cell-to-cell variability,

as well as temporal fluctuations that are masked in population-level FRET measurements. In contrast

to previous single-cell experiments that relied on measurements of motor output or swimming

behavior (Berg and Brown, 1972; Spudich and Koshland, 1976; Segall et al., 1986;

Korobkova et al., 2004; Park et al., 2010; Masson et al., 2012), FRET alleviates the need to make

indirect inferences about intracellular molecular interactions through the highly noisy 2-state switch-

ing of the flagellar motor, whose response function can vary over time due to adaptive remodeling

(Yuan et al., 2012). In a typical experiment, we are able to obtain dozens of (up to ~ 100) single-cell

FRET time series simultaneously, to efficiently collect statistics of phenotypic diversity and temporal

variability.

Results

Single-cell FRET reveals pervasive phenotypic diversity in intracellular
signaling
To measure variability in intracellular signaling, we adapted a FRET assay for chemotaxis widely used

for population-level measurements with fluorescent fusions to CheY and its phosphatase CheZ

(Sourjik and Berg, 2002a). On timescales longer than the relaxation of CheY’s phosphorylation/

dephosphorylation cycle, the FRET level reflects the phosphorylation rate of CheY by the CheA

kinase, thus providing an efficient in vivo measurement of the network activity (Figure 1—figure

supplement 1). Instead of the conventional CFP/YFP FRET pair we used the fluorophores YFP and

mRFP1 to avoid excitation with blue light, which induces considerably stronger photoxicity and also

perturbs the chemotaxis system as a repellent stimulus (Taylor and Koshland, 1975; Taylor et al.,

1979; Wright et al., 2006). Fusions of these fluorophores to CheZ and CheY still yield a fully func-

tional phenotype (Wolfe and Berg, 1989), when observing chemotaxis on soft agar (see Figure 1—

figure supplement 1d).

A field of E. coli cells expressing this FRET pair were immobilized on a glass surface imaged in

two fluorescence channels, and segmented offline to obtain fluorescence intensities of donor and

acceptor. From the fluorescence ratio, FRET time series for each cell in the field of view (see
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Materials and methods) can be computed, after dividing out the decay (Figure 1—figure supple-

ment 1) in each channel due to bleaching. Ratiometric FRET provides an anti-parallel response sig-

nature and confers robustness to parallel fluctuations that affect both fluorescent channels, such as

differences in absolute fluorescence intensity due to inhomogeneous illumination and differences in

cell size.

For wildtype cells (Figure 1a) we found that the ensemble mean of single-cell FRET responses,

hFRETiðtÞ, agrees well with previous population-level measurements (Sourjik and Berg, 2002a).

Upon prolonged stimulation with a saturating dose of attractant a-methylaspartate (MeAsp),

hFRETiðtÞ rapidly fell to zero before gradually returning to the pre-stimulus level due to adaptation.

Upon removal of attractant, hFRETiðtÞ rapidly increased to a maximum before returning to the pre-

stimulus baseline. Single-cell FRET time series, FRETiðtÞ, had qualitatively similar profiles, but the

kinetics of adaptation and response amplitudes demonstrate differences from cell to cell. For each

cell, FRETiðtÞ is limited by the autophosphorylation rate of CheA and hence is proportional

to ai[CheA]T,i (provided [CheY] and [CheZ] are sufficiently high, see Materials and methods), in which

ai is the activity per kinase (0 � ai � 1) and [CheA]T,i the total concentration of receptor-kinase com-

plex of the i-th cell. The FRET level of each cell is thus bounded at a value FRETi;max which occurs

when its kinases are fully active (ai=1), and can be measured by the removal of a sufficiently large

stimulus after adaptation (as in the experiment of Figure 1). Hence from FRETiðtÞ the activity per

kinase aiðtÞ can be readily determined by normalizing each FRET time series by its maximum

response aiðtÞ ¼ FRETiðtÞ=FRETi;max (Figure 1b). The steady-state activity a0;i, defined as the time-

average of aiðtÞ before the addition of attractant, was found to vary from cell-to-cell with a coeffi-

cient of variation CVða0Þ ¼ 0:23 (Figure 1c). The network activity controls the flagellar motor rota-

tion, and hence this is consistent with the observation that cells in an isogenic population exhibit a

broad range of steady-state tumble frequencies (Spudich and Koshland, 1976; Bai et al., 2013;

Dufour et al., 2016).

The adaptation precision is defined as its post-adaptational activity level divided by the pre-stim-

ulus level (P ¼ aadapted;i=a0;i), hence a precision of 1 refers to perfect adaptation. The adaptation

kinetics are quantified by the recovery time trecovery, the time required for each cell to recover to 50%

of its post-adaptation activity level (aadapted;i). When observing the distributions of these parameters

we noted that the cell-to-cell variability is high in the precision P (Figure 1d, CV=0.40) but the aver-

age precision (0.79) agrees well with population measurements (Neumann et al., 2014). The varia-

tion is also substantial in trecovery (Figure 1e, CV=0.20) considering that the underlying kinetics of

receptor methylation (catalyzed by CheR) involve thousands of events per cell, but falls within the

range of ~20-50% from previous reports in which single-cell recovery times were estimated from

motor-rotation or swimming-behavior measurements (Berg and Tedesco, 1975; Spudich and Kosh-

land, 1976; Min et al., 2012). The time required to recover from a saturating amount of attractant is

determined not only by the stimulus size, but also the methylation rate of receptor modification sites

catalyzed by CheR and the number of such sites that need to be methylated. Variability in the recov-

ery time is thus likely to reflect cell-to-cell variability in the ratio between the expression level of

CheR and that of the chemoreceptor species responding to ligand (Tar for the experiment in

Figure 1).

The diversity we observed here in adaptation precision, recovery time and steady-state activity

was not explained by variation in salient experimental parameters (Figure 1—figure supplement

2a–f), are reproducible across experimental days (Figure 1—figure supplement 2g), and, on aver-

age, agree well with previous population-level FRET experiments and single-cell flagellar-based

experiments. We thus conclude that single-cell FRET allows efficient measurement of signaling

dynamics within individual bacteria to reveal variability in a wide variety of signaling parameters.

Diversity in the ligand response is modulated during population growth
The chemoreceptor clusters in E. coli are the central processing units and are responsible for signal

integration and amplification. The sensory output of the cluster, the activity of the kinase CheA, is

activated by a mixture of chemoreceptors. Cooperative interactions within the receptor-kinase com-

plex leads to amplifications of small input stimuli and weighting different input signals. It has been

shown that the composition of the receptor-kinase complexes can affect both the amplification as

well as the weighting of different input signals (Ames et al., 2002; Sourjik and Berg, 2004;
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Figure 1. Single-cell FRET over extended times reveals cell-to-cell variability in signaling response. (a) Step-

response experiment on wildtype cells (CheRB+; VS115). (Top) The ligand time series ½L�ðtÞ indicates the applied

temporal protocol for addition and removal of 500 mM MeAsp. (Bottom) FRET response of 54 cells (grey) with the

ensemble-averaged time series (dark red) overlaid from a representative single experiment. Single-cell time series

were lowpass filtered with a 14 s moving-average filter. (b) Heatmap representation of the normalized FRET

response time series, with each row representing a single cell, and successive columns representing the 10 s time

bins in which the color-indicated activity was computed from the FRET time series. Activity was computed by

normalizing FRET to the total response amplitude (Max-Min for each time series). Rows are sorted by the

corresponding cell’s recovery time (grey curve), defined as the time at which the activity recovered to 50% of the

activity level after adaptation (see panel e). Single-cell FRET assay schematic and image processing pipeline are

shown in Figure 1—figure supplement 1. (c) Steady-state activity a0 of the cells shown in panels (a–b). Also

shown are the mean steady-state activity (red vertical line) and the steady-state activity of the population averaged

time series (blue vertical line). (d) Adaptation precision P obtained from the FRET data. An adaptation precision of

1 denotes perfect adaptation. Also shown are the mean precision (red vertical line) and the precision of the

population averaged time series (blue vertical line). The mean and std of the distribution is 0.79 � 0.32. All colored

shaded areas represent 95% confidence intervals obtained through bootstrap resampling. (e) Recovery time of

cells defined as time to reach 50% of the post-adaptational activity level (red, 54 cells) or 50% of pre-stimulus

activity (black dashed, 44 cells with precision >0.5) and simulated effect of experimental noise for a population

with identical recovery times (grey). The latter was obtained from a simulated data set in which 55 time series were

generated as described in Figure 1—figure supplement 3. The width of the bar is defined by the mean ± std of

the simulated distribution. The mean ± std of the distributions for the experimental and simulated data sets are

respectively 416 ± 83 and 420 ± 35 s.

DOI: https://doi.org/10.7554/eLife.27455.003

The following source data and figure supplements are available for figure 1:

Source data 1. Source data (.mat) file containing FRET data and analysis.

DOI: https://doi.org/10.7554/eLife.27455.007

Figure supplement 1. Single-cell FRET assay schematic and workflow.

DOI: https://doi.org/10.7554/eLife.27455.004

Figure supplement 2. The observed diversity in signaling parameters can not be explained by variation in

experimental parameters and is reproducible.

DOI: https://doi.org/10.7554/eLife.27455.005

Figure supplement 3. Influence of experimental noise on estimating recovery times.

DOI: https://doi.org/10.7554/eLife.27455.006
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Kalinin et al., 2010), but how the amplification and integration varies across a population has not

been characterized. To bridge the gap between collective behavior and its underlying single-cell

motility it is essential to determine the variability of these important signaling parameters, as well as

the origin of the variability. Also, current estimates of the apparent gain in the response (defined as

the fractional change in output divided by fractional change in input) are based on population-aver-

aged measurements which may or may not reflect single-cell cooperativity levels. In population aver-

aged measurements, the largest gain is observed in adaptation-deficient (CheRB-) cells (Sourjik and

Berg, 2004), in which the receptor population is homogeneous with respect to their adaptational

modification state and hence in these cells variability in ligand sensing can be studied separately

from variability induced by the adaptation enzymes.

We probed the ligand sensitivity of CheRB- cells (TSS58) at the single-cell level by FRET dose-

response measurements in which step stimuli of successively larger amplitudes were applied over

time (Figure 2). Considerable variability in the response to the attractant L-serine were observed

across the population of immobilized cells simultaneously experiencing the same stimulus, with

response magnitudes often ranging from virtually zero to full response (Figure 2a). The resulting

dose-response data could be well described by a Hill curve of the form ½1þ ð½L�=KÞH ��1, where the

parameters ð1=KÞ and H are defined as the sensitivity and steepness, respectively, of the response

of each cell. The family of dose response curves constructed from this ensemble of fit parameters

reveals considerable variability from cell to cell in the shape of the response curve (Figure 2b).

What could be the cause of the diversity in ligand response in the absence of adaptation-induced

heterogeneity? We reasoned that expression-level variability of the five chemoreceptor species of E.

coli, which are known to form mixed clusters with cooperative interactions (Ames et al., 2002;

Sourjik and Berg, 2004), could endow isogenic populations with sensory diversity. In line with this

idea, CheRB- cells expressing only a single chemoreceptor species (Tsr) demonstrated not only

higher cooperativity, but also attenuated variability in the dose-response profile from cell to cell

(Figure 2b–c), showing that the composition of the receptor population is important not only to

tune the average ligand response of a population, but also in generating a wide range of sensory

phenotypes within an isogenic population.

It has been shown that expression level of chemoreceptors changes during growth of E. coli batch cul-

tures: concomitant with the slowing of growth upon the transition from the exponential phase towards

early stationary phase, the relative expression level ratio Tar/Tsr, the two most abundant chemorecep-

tors, increases from majority Tsr (Tar/Tsr<1) to majority Tar (Tar/Tsr>1) (Salman and Libchaber, 2007;

Kalinin et al., 2010). To probe the consequence of such changes for ligand-sensing diversity, we mea-

sured single-cell dose response curves in populations harvested at different cell densities during batch

growth (Figure 2d). The resulting population-averaged responses show a dependence of dose-response

parameters on the optical density (OD) of the culture, shifting from highly sensitive (low K) and highly

cooperative (high H) at low cell densities (OD » 0.3) to less sensitive (high K) and less cooperative (low H)

at increased cell densities (OD » 0.45, and OD » 0.6) (Figure 2d, open triangles, and Figure 2—figure

supplement 2). This trend is also visible at the level of single cells, but we found the responses to be

highly variable under each condition (Figure 2d, filled points). Remarkably, both K and H varied by over

an order of magnitude, far exceeding the uncertainty in parameter estimates due to experimental noise

(Figure 2—figure supplement 3).

To further test the idea that ligand-response diversity is governed by differences in receptor expres-

sion levels, we considered the pattern of covariation between the fitted sensitivity K and cooperativity H

in single cells (Figure 2b, blue). In contrast to cells expressing Tsr as the only chemoreceptor, in which the

variability in K is only ~0.15-20% (Figure 2c), single cells expressing a wildtype complement of chemore-

ceptors demonstrated strong variation in K. This variation was negatively correlated with the cooperativ-

ity H (Figure 2d). Noting that this overall pattern of covariation agrees well with dose response

parameters obtained from population-level FRET experiments in which the Tar/Tsr ratio was experimen-

tally manipulated via plasmid-based expression control (Figure 2d, red circles; data from (Sourjik and

Berg, 2004)), we proceeded to quantitatively estimate the diversity in the Tar/Tsr ratio via fits of a multi-

species MWC model (Mello and Tu, 2005; Keymer et al., 2006) to single-cell FRET data (see

Materials and methods). The resulting distribution of single-cell Tar/Tsr estimates (Figure 2e) was domi-

nated by Tsr in cells harvested early (OD » 0.3) but the relative contribution of Tar increased in cells har-

vested at later stages of growth (OD » 0.45) and OD » 0.6). Interestingly, in addition to this increase in

the mean of the Tar/Tsr distribution during batch growth, which confirms previous reports that found
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increased Tar/Tsr ratios at the population level (Salman and Libchaber, 2007; Kalinin et al., 2010), we

find that the breadth of the distribution also increases at later stages of growth. Thus, modulation of

receptor expression during growth provides a means of tuning not only response sensitivity and coopera-

tivity, but also single-cell diversity in the response of cell populations experiencing identical changes in

their common environment.

The large variability in the Tar/Tsr ratio (CV» 0.5 at OD=0.45) is somewhat surprising given that the

mean expression level of both receptors are known to be high and of order 103-104 copies per cell

(Li and Hazelbauer, 2004). At such high expression, intrinsic noise in expression levels (i.e. due to the

Figure 2. Ligand dose-response parameters vary strongly across cells in an isogenic population, even in the absence of adaptation, and depend on

receptor-complex composition. (a) Single-cell dose-response experiment on adaptation deficient (CheRB-; TSS58) cells with a wildtype complement of

receptors. (Top) Temporal protocol of stimulation ½L�ðtÞ by the attractant L-serine. (Middle) The ensemble-averaged FRET response of the population

(blue) and single cells (gray) in signaling activity of 59 cells from a single experiment, normalized to the full-scale FRET response amplitude. (Bottom)

Heatmap representation of the single-cell FRET timeseries, with the rows sorted by the sensitivity K of the corresponding cell obtained from Hill-curve

fits. (b) Ensemble of Hill-curve fits (gray) to single-cell dose-response data from a single experiment on CheRB- cells with a wildtype complement of

receptors (TSS58). Fits for five example cells from the ensemble are shown above together with data points (error bars: �2 s.e.m. over 19 frames). The

blue curve overlaid on the ensemble was obtained by applying the same analysis to the population-averaged time series shown in panel (a), yielding fit

values K=50 ± 3 mM and H=2.7 ± 0.5. (c) As in panel (b), but with CheRB- cells expressing only the serine receptor Tsr (UU2567/pPA114). The orange

curve was obtained from fits to the population average, yielding K=20.0 ± 0.3 mM and H=22 ± 8. (d) Cells from a single overnight culture were

inoculated into three flasks harvested at different times during batch-culture growth to sample the state of the population at three points along the

growth curve: at OD600 = 0.31 (green), 0.45 (blue) and 0.59 (purple). Fits to the population-averaged time series are shown in Figure 2—figure

supplement 2. Shown are Hill-curve sensitivity ð1=KÞ and cooperativity H obtained from fits to the single-cell dose-response data, at different

harvesting OD’s (filled dots) together with the fit values for the population-averaged dose-response data (triangles). Also shown are population-FRET

results from (Sourjik and Berg, 2004) in which the average Tar and Tsr levels were tuned using inducible promotors (red circles). Shown are 25 out of

28 cells harvested at OD = 0.31, 59 out of 64 cells at OD = 0.45, 34 out of 40 cells at OD = 0.59. The excluded cells had fits with a mean squared error

higher then 0.05. The influence of experimental noise on the fit parameters is shown in Figure 2—figure supplement 3. (e) Histograms of Tar/Tsr ratio

obtained by fitting the multi-species MWC model from (Mello and Tu, 2005) to single-cell FRET time series. The mean Tar/Tsr ratios (low to high OD)

are 0.4, 0.9, and 1.2 with coefficients of variance of respectively 1.1, 0.5, and 0.4. Inset: average cluster size (MWC-model parameter N) of Tar (grey) and

Tsr (black) at different harvesting OD’s obtained from the fit results in panel d.

DOI: https://doi.org/10.7554/eLife.27455.008

The following source data and figure supplements are available for figure 2:

Source data 1. Source data (.mat) file containing FRET data and analysis.

DOI: https://doi.org/10.7554/eLife.27455.012

Figure supplement 1. Dose response curve parameters uncertainty estimation and reproducibility.

DOI: https://doi.org/10.7554/eLife.27455.009

Figure supplement 2. Dose response curves from population averaged time series at different harvesting OD’s.

DOI: https://doi.org/10.7554/eLife.27455.010

Figure supplement 3. Influence of experimental noise on fit parameters K and H, for Hill curve fits to single-cell dose-response data.

DOI: https://doi.org/10.7554/eLife.27455.011

Keegstra et al. eLife 2017;6:e27455. DOI: https://doi.org/10.7554/eLife.27455 7 of 33

Research article Computational and Systems Biology

https://doi.org/10.7554/eLife.27455.008
https://doi.org/10.7554/eLife.27455.012
https://doi.org/10.7554/eLife.27455.009
https://doi.org/10.7554/eLife.27455.010
https://doi.org/10.7554/eLife.27455.011
https://doi.org/10.7554/eLife.27455


production and degradation process of proteins, expected to scale as the square root of the mean) could

be as low as a few percent of the mean, and gene-expression fluctuations are expected to be dominated

by extrinsic noise components (i.e. those affecting regulation of gene expression, which do not scale with

the mean). Quantitative measurements of gene expression reported in previous studies indicate a high

degree of covariation among the expression level of chemotaxis genes, both at the population level

under changes in growth conditions (Li and Hazelbauer, 2004) and at the single-cell level across isogenic

cells sampled from the same growth culture (Kollmann et al., 2005). Correlated expression-level varia-

tion is also expected given the architecture of the flagellar regulon, in which all chemotaxis genes are

under the control of a common master regulator (Chilcott and Hughes, 2000). These results indicate

that the extrinsic (correlated) component of variation is greater than the intrinsic (uncorrelated) variability.

Interestingly, however, a recent study (Yoney and Salman, 2015) found using single-cell flow-cytometry

a high degree of variability in the ratio of Tar/Tsr promotor activities (CV» 0.45 at OD=0.51) comparable

to the range of ratios extracted from our analysis of dose response data. Given that cell-to-cell variability

in the Tar/Tsr ratio is much greater than achievable lower bounds of gene-expression noise in bacteria, it

would be interesting to investigate the mechanistic sources of this variability, such as operon organiza-

tion, promotor stochasticity, and translation-level regulatory structures (Frankel et al., 2014).

Variability in receptor expression could also explain the distribution of adaptation precision we

observed in wildtype cells (Figure 1d). In a previous population-level study, it has been shown that

adaptation precision depends strongly on the expression-level ratio between the multiple chemore-

ceptor species, with the highest adaptation precision being achieved when the ligand-binding recep-

tor is a minority within the total receptor population (Neumann et al., 2014). Thus, the substantial

heterogeneity in adaptation precision we observed (CV=0.40) upon a saturating MeAsp stimulus is

consistent with strong variability in the Tar/Tsr ratio.

CheB phosphorylation feedback attenuates cell-to-cell variability
While bacteria can exploit molecular noise for beneficial diversification, variability can also limit reli-

able information transfer and degrade sensory performance. In the framework of E. coli’s run-and-

tumble navigation strategy, chemotactic response to gradients requires that cells maintain a finite

tumble bias, the fraction of time a bacterium spends tumbling, and avoids extreme values zero and

one. The latter cases would correspond to unresponsive phenotypes that fail to switch between run

and tumble states in response to the environmental inputs. One important mechanism that ensures

responsiveness to stimuli over a broad range of input levels is sensory adaptation mediated by the

methyltransferase/methylesterase pair CheR/CheB. These receptor-modifying enzymes provide neg-

ative feedback through the dependence of their catalytic activity on the receptor’s signaling state:

the rate of methylation (demethylation) by CheR (CheB) is a decreasing (increasing) function of

receptor-kinase activity (Borczuk et al., 1986; Amin and Hazelbauer, 2010). This dependence of

enzyme activity on the substrate conformation provides negative integral feedback that ensures pre-

cise adaptation (Barkai and Leibler, 1997) toward the pre-stimulus steady-state activity a0.

Interestingly, one of the two adaptation enzymes, CheB, can be phosphorylated by CheA, the kinase

whose activity CheB controls through its catalytic (demethylation) activity on receptors. Effectively, this

adds an additional negative feedback loop to the network, but the role of this phosphorylation-depen-

dent feedback has remained elusive since it has been shown to be dispensable for precise adaptation

(Alon et al., 1999). Through theoretical analysis, it has been conjectured that this secondary feedback

loopmight play a role in attenuating effects of gene-expression noise (Kollmann et al., 2005), but experi-

mental verification has been lacking. We therefore sought to investigate the influence of perturbations to

this network topology on the variability of chemotactic signaling activity.

CheB consists of two domains connected by a flexible linker (Figure 3a). A regulatory domain,

with structural similarity to CheY, can be phosphorylated at residue Asp56(Djordjevic et al., 1998;

Stewart et al., 1990). A catalytic domain mediates binding to specific residues on chemoreceptor

cytoplasmic domains and removes a methyl group added by the counterbalancing activity of CheR.

Phosphorylation induces a conformational change and activates CheB (CheB*) (Djordjevic et al.,

1998; Lupas and Stock, 1989). Several mutants of CheB lack phosphorylation feedback while retain-

ing catalytic activity. Here, we focus on two specific mutants: CheBD56E, which bears a point mutation

at the phosphorylation site, and CheBc, which expresses only the catalytic domain of CheB
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(Stewart et al., 1990; Alon et al., 1999). Cells expressing these mutants have an altered network

topology (Figure 3b) which lacks CheB phosphorylation feedback.

To study the influence of network topology on cell-to-cell variability, we expressed different forms

of CheB (CheBWT, CheBD56E, CheBc) from an inducible promoter in a DcheB strain and measured the

response to a saturating amount of attractant (500 mM MeAsp). The expression levels of each mutant

are tuned such that they approximate the wildtype steady state activity level. The response of

CheBWT was qualitatively very similar to cells in which CheB is expressed from its native chromo-

somal position (compare Figure 3—figure supplement 1a and Figure 1a) despite the fact that plas-

mid expression breaks the translational coupling with CheR (Løvdok et al., 2009). By contrast, cells

expressing either of the two CheB mutants defective in phosphorylation demonstrated increased

cell-to-cell variability in the steady-state activity compared to cells expressing CheBWT. The

increased variability of the CheB phosphorylation-deficient mutants (CheBD56E and CheBc) was mani-

fested not only in a higher coefficient of variation in a0 (1.07 and 1.10, respectively, and WT 0.7), but

also a qualitatively different shape of the distribution of a0 across the population (Figure 3c).

Whereas the distribution demonstrated a single peak in CheBWT cells with phosphorylation feed-

back, the distribution for the phosphorylation-feedback mutants demonstrated a bimodal shape

with peaks close to the extreme values a0={0,1}.

We tested whether these strong differences in cell-to-cell variability might be the result of gene

expression noise, by comparing expression-level distributions of the CheB mutants. We constructed

fluorescent fusions of each cheB allele to the yellow fluorescent protein mVenus and quantified the

distribution of single-cell fluorescence levels under the same induction conditions as in the FRET

experiments (Figure 3—figure supplement 1). The ratio between the measured expression-levels

(CheBc:WT:D56E » 0.7:1:2.5) was compatible with expectations from the hierarchy of reported in

vitro catalytic rates of CheB (kD56E
b <kWT

b <kcb) (Anand and Stock, 2002; Simms et al., 1985; Stew-

art, 1993), and expression-level variability was very similar between the three strains (CV’s of

0.87,0.90 and 0.82; we note that these rather high CV values likely include contributions from plas-

mid copy number variability). These findings suggest that the differences in cell-to-cell variability

observed in FRET are not due to differences between the expression-level distributions of the three

cheB alleles, but rather to the differences they impose on the signaling network topology.

What feature of the signaling network could generate such broad (and even bimodal) distributions of

a0? A general paradigm for models of adaptation that exhibit precise adaptation is activity-dependent

(integral) feedback (Barkai and Leibler, 1997; Yi et al., 2000), which in bacterial chemotaxis can be

implemented by the activity of the feedback enzymes CheR and CheB being dependent of the conforma-

tional state (i.e. activity) of their substrate chemoreceptors. This results in a steady-state activity a0 that

only depends on the [R]/[B] expression-level ratio and not on their absolute abundance. We can view this

mapping as a transfer function ƒ between the ratio [R]/[B] and the steady-state activity,

a0 ¼ f ð½R�=½B�Þ

Depending on the function ƒ, the input variance PRB([R]/[B]) may lead to high or low variance in

the distribution P(a0). This is because the manner in which the transfer function ƒ filters the [R]/[B]

distribution,

Pða0Þ ¼
PRBðf�1ða0ÞÞ
f 0ðf�1ða0ÞÞj j :

Hence a steep function ƒ can impose bimodality in the methylation level, and thereby also in the

activity of steady-state CheA activity, a0, even at quite modest input variances for distributions of

the ratio [R]/[B].

Thus, even if expression-level noise for both CheR and CheB are modest, a sensitive transfer func-

tion ƒ can effectively amplify the variation in [R]/[B], and if the distribution of the latter ratio, PRB([R]/

[B]) extends below and above the narrow region over which ƒ is steep, the decreased slope of ƒ (i.e.

lower ƒ’([R]/[B]) in those flanking regions will tend to increase the weight on both sides of the broad

Pða0Þ distribution to produce a bimodal profile. On the other hand, if the network topology effec-

tively reduces the steepness of ƒ, the resulting Pða0Þ will have a reduced variance for the same input

PRB([R]/[B]) (Figure 3d). Our results suggest that ƒ is much steeper in the absence of phosphorylation

feedback than in its presence.

Keegstra et al. eLife 2017;6:e27455. DOI: https://doi.org/10.7554/eLife.27455 9 of 33

Research article Computational and Systems Biology

https://doi.org/10.7554/eLife.27455


Figure 3. CheB phosphorylation feedback attenuates variability in steady-state kinase activity. (a) Schematic

depiction of CheB activation by phosphorylation. (Top) CheB consists of two domains connected by a flexible

linker. The aspartate at residue 56 within the N-terminal receiver domain can be phosphorylated. (Middle) CheBc

lacks the receiver domain with the phosphorylation site. (Bottom) CheB-D56E carries a point mutation at the

phosphorylation site. (b) Effective network topology of cells expressing WT CheB (top), CheBc (middle) and CheB-

D56E (bottom). All three topologies are capable of precise adaptation due to activity-dependent feedback

(Barkai and Leibler, 1997). (c) Heatmap representation of histograms of the activity aðtÞ about the unstimulated

steady-state of single cells, from FRET experiments of the type shown in Figure 3—figure supplement 1. Each

column represents a single cell, sorted by the steady-state activitya0 (colored curves) for each CheB mutant

expressed in a cheB background (VS124, colors as in panel (a)). (right) Normalized histograms (probability density

function, pdf) of a0 for each CheB mutant. Histograms contain results for cells with a signal-to-noise ratio greater

than one from at least three independent FRET experiments, corresponding to 231 out of 280 cells (WT), 169 out

of 210 cells (CheBc) and 156 out of 246 cells (D56E). Shaded regions represent bootstrapped 95% confidence

intervals. We verified that the bimodality was not due to clipping from FRET-pair saturation, by mapping the

dependence of FRET on donor/acceptor expression (Figure 3—figure supplement 2). (d) A simple kinetic model

of the chemotaxis network illustrates the crucial role of CheB phosphorylation feedback in circumventing

detrimental bimodality in a0. Due to sublinear enzyme kinetics in the adaptation system, the transfer function a0=ƒ

([R]/[B]) mapping the P([R]/[B]) expression ratio to steady-state network output a0 can be highly nonlinear (main

panel). The shape of this transfer function determines the distribution Pða0Þ of steady-state activity (right panel) by

transforming the distribution P([R]/[B]) of adaptation-enzyme expression ratios (bottom panel). Three variations of

the model are shown, corresponding to WT (orange, with phosphorylation feedback), CheBD56E (purple, no

phosphorylation feedback and low catalytic rate), and CheBc (green, no phosphorylation feedback, high catalytic

rate).

DOI: https://doi.org/10.7554/eLife.27455.013

The following source data and figure supplements are available for figure 3:

Source data 1. Source data (.mat) file containing FRET data and analysis.

DOI: https://doi.org/10.7554/eLife.27455.019

Figure supplement 1. Example FRET time series and CheB localization.

DOI: https://doi.org/10.7554/eLife.27455.014

Figure supplement 2. Relation between maximum FRET response and expression levels of donor and acceptor

fluorophores.

DOI: https://doi.org/10.7554/eLife.27455.015

Figure supplement 3. Linear and supralinear models of CheB feedback cannot explain bimodality in a0.

DOI: https://doi.org/10.7554/eLife.27455.016

Figure 3 continued on next page
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We find that models with linear or supra-linear dependence of the methylation rate on activity

generate a function ƒ that is very shallow (Figure 3—figure supplement 3), making them unsuitable

for explaining the observed bimodal behavior. However, if we assume CheR and CheB follow

Michaelis-Menten kinetics in which the dependence of the methylation rates on receptor activity is

sub-linear, the dependence of ƒ on [R]/[B] can become very steep. It has been conjectured

(Barkai and Leibler, 1997; Emonet and Cluzel, 2008) that in vivo the enzymes CheR and CheB

operate at or near saturation, an idea supported by population-level FRET measurements of adapta-

tion kinetics (Shimizu et al., 2010). An important consequence of enzyme saturation in such revers-

ible modification cycles is that the steady-state activity of the substrate can become highly sensitive

to the expression level ratio of the two enzymes, a phenomenon known as zero-order ultrasensitivity

((Goldbeter and Koshland, 1981); see Materials and methods). Within the chemotaxis system, satu-

ration of both CheR and CheB can thus render the receptor modification level, and in turn, the CheA

activity a0; ultrasensitive to the [R]/[B] concentration ratio (Emonet and Cluzel, 2008).

Could the known biochemical differences between the three forms of CheB (CheBWT, CheBD56E,

CheBc) explain the contrasting patterns of a0 variability observed in our single-cell FRET experi-

ments? In the absence of any feedback, the steepness of ƒ’([R]/[B]) is solely determined by the low

Michaelis-Menten constants KB;R, which corresponds to saturated kinetics of the enzymatic activity of

CheRB and hence ultransensitivity of the steady-state substrate activity. The expression ratio of

CheR/CheB which determines the crossover point (a0=0.5) is set by the ratio of catalytic rates of

CheR and CheB (kr;b). Hence the phosphorylation deficient mutants CheBD56E and CheBc both have

steep curves but are shifted along the R/B axis due to very different catalytic rates. However,in the

case of phosphorylation feedback, CheBWT, the same enzyme can be in two states, each with equal

Kr;b but one low and one high kr. Whether CheB is in the one state or the other is determined by the

activity-dependent phosphorylation feedback. As a result, the curve of CheBWT is activity dependent

(ƒ(a,[R]/[B])) and changes with activity by shifting between the two curves corresponding to the

extremes of all phosphorylated or all unphosphorylated. Effectively, this makes the resulting curve ƒ

less steep (Emonet and Cluzel, 2008). The mean of the distributions PRB are tuned such to get the

same mean activity level ðha0iÞ, but the same variance in PRB leads to very wide Pða0Þdistributions in

absence of phosphorylation, while phosphorylation feedback ensures a much smaller, single-peaked

distribution.

It has also been conjectured that the CheB phosphorylation feedback is responsible for the highly

nonlinear kinetics of recovery from repellent (or attractant removal) responses (Shimizu et al., 2010;

Clausznitzer et al., 2010). Indeed, in cells expressing CheBc, the kinetics of recovery from the

response to removal of 500 mM MeAsp after adaptation appeared qualitatively different from that in

cells expressing wildtype CheB, lacking the characteristic rapid recovery and instead appearing

more symmetric with the CheR-mediated recovery upon addition of a saturating dose of attractant

(Figure 3—figure supplement 4). By contrast, CheBD56E was found to still possesses a fast compo-

nent, despite being defective in phosphorylation, albeit also with somewhat slower kinetics than wt.

In summary, the clearest difference between wildtype and phosphorylation-defective CheB mutants

is found in the variability of the steady-state signal output (i.e. kinase activity).

The bimodal distribution in kinase activity we observed in the phosphorylation-deficient CheB

mutants implies that a large fraction of cells have a CheY-P concentration far below or far above the

motor’s response threhold and hence will impair chemotactic responses to environmental gradients.

Consistent with this idea, in motility-plate experiments (Supplementary Figure 3—figure supple-

ment 5) we found that chemotactic migration on soft-agar plates was severely compromised for

both CheBD56E and CheBc compared to CheBWT, indicating that the phosphorylation feedback is

important for efficient collective motility.

Figure 3 continued

Figure supplement 4. Phosphorylation feedback is not a necessary condition for fast removal adaptation

dynamics.

DOI: https://doi.org/10.7554/eLife.27455.017

Figure supplement 5. Phosphorylation defective mutants show impaired chemotaxis on soft agar.

DOI: https://doi.org/10.7554/eLife.27455.018
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Protein-signaling noise generates large temporal fluctuations in
network output
The slow kinetics of the adaptation enzymes CheR and CheB have been hypothesized to play a role

not only in determining the steady-state kinase activity a0, but also in generating temporal fluctua-

tions of the intracellular signal (Korobkova et al., 2004; Emonet and Cluzel, 2008; Park et al.,

2010; Celani and Vergassola, 2012). We found substantial differences between wildtype (CheRB+)

and adaptation-deficient (CheRB-) cells in the variability of their FRET signals across time (Figure 4).

The effect is clearly visible upon comparing long ( ~1 hr) FRET time series obtained from cells of

these two genotypes (Figure 4a). The FRET signal in wildtype cells demonstrated transient excur-

sions from the mean level that were far greater in amplitude than those in CheRB- cells. To distin-

guish between variability across cells in a population (which we discuss in terms of coefficients of

variation, CV) and that over time within a single cell, we denote the temporal noise amplitude as

h � sa=a0. This amplitude was quantified by computing the variance of each single-cell time series,

low-pass filtered with a moving average filter of 10 s, and shows that the fluctuation amplitudes are

much larger in wildtype cells compared to adaptation-deficient cells (hhi = 0.44 and 0.09 respec-

tively, Figure 4b). Importantly, these experiments were carried out under conditions in which no pro-

tein synthesis can occur due to auxotrophic limiation (see Materials and methods), thus ruling out

gene-expression processes as the source of these fluctuations.

Power spectral density (PSD) estimates computed from such time series confirm a nearly flat noise

spectrum for CheRB- cells, whereas CheRB+ cells demonstrated elevated noise at low frequencies

(Figure 4c). The amplitude of these low-frequency noise components do clearly vary from cell to

cell, as can be gleaned in the diversity of single-cell power spectra. To quantify this protein-level

noise due to CheR/CheB activity, we describe the fluctuating signal as an Ornstein-Uhlenbeck (O-U)

process of the single variable a, with relaxation timescale t and diffusion constant c, which can be

interpreted as a linear-noise approximation (Van Kampen, 1981; Elf and Ehrenberg, 2004) to the

multivariate stochastic kinetics of the underlying chemical network controlling the mean kinase activ-

ity a(Tu and Grinstein, 2005; Emonet and Cluzel, 2008):

da

dt
¼� 1

tm
aðtÞþ

ffiffiffi

c
p

GðtÞ (1)

where GðtÞ is a Gaussian white noise process. The parameters tmtm and c for each cell are readily

extracted via the power-spectrum solution of the O-U process:

Sað!Þ ¼
2ct2

1þð2p!tmÞ2
þE (2)

where we have added to the standard Lorentzian solution (Gillespie, 1996) a white-noise term E

that may vary from cell to cell to account for experimental shot noise in the photon-limited FRET sig-

nal. Single-cell PSD data were well fit by Equation 2 (Figure 4d), and the average of extracted sin-

gle-cell fluctuation timescales (htmi ¼ 12:6s) (Figure 4e) are in good agreement with previously

reported correlation times of flagellar motor switching (Park et al., 2010; Korobkova et al., 2004),

as well as the kinetics of CheRB-mediated changes in receptor modification from in vivo measure-

ments using radioactively labeled methyl groups (Lupas and Stock, 1989; Terwilliger et al., 1986).

The variance of the fluctuations obtained from the fits of the PSD, sa ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

ctm=2
p

yielded very similar

noise amplitudes hOU � sa;OU=a0 as calculated from the time series (hhOUi ¼ 0:42, Figure 4—figure

supplement 3). We note that these noise levels are larger than expected - in a considerable fraction

of cells, the standard deviation of fluctuations is comparable to the mean level of activity, and the

steady-state fluctuations span the full range of kinase activity (see e.g. that represented by the red

curve in Figure 4a). Previous studies had predicted a value of ~10-20%, based either on reported

fluctuation amplitudes of motor switching (Korobkova et al., 2004; Tu and Grinstein, 2005) or bio-

chemical parameters of the intracellular signaling network (Emonet and Cluzel, 2008;

Shimizu et al., 2010). The noise amplitudes are also highly variable (CV=0.55, sh=0.24) from cell to

cell.

In summary, we confirmed the presence of strong temporal fluctuations in single-cell chemotaxis

signaling attributable to the stochastic kinetics of the adaptation enzymes CheR/CheB, and further
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Figure 4. Temporal fluctuations in WT cells due to stochastic activity of adaptation enzymes CheR/CheB. (a)

Representative single-cell FRET time series of steady-state fluctuations Da(t)=a(t)-a0 in WT cells (VS115, red),

together with analogous data from CheRB- cells (TSS58,blue) for comparison (low-pass filtered with a 10 s moving

average filter). (b) Histogram of fluctuation amplitude h (� sa=a0) for both WT (89 cells, red, from three

independent experiments) and CheRB- (33 cells, blue, from two independent experiments), extracted from

calculating the standard deviation of a low-pass filtered FRET time series over a 10 s window divided by the mean

FRET level of a single cell. Shaded areas represent 95% confidence intervals obtained from bootstrap resampling.

(c) Power spectral density (PSD) computed from single-cell FRET time series of 31 WT cells (red, from single

experiment) and 17 CheRB- cells (blue, from single experiment), each from a single experiment. Thin curves in the

lighter shade of each color represent single-cell spectra, and their ensemble average is shown as thick curves in a

darker shade. The increased power at low-frequencies in WT cells was lost when PSD was computed after

ensemble-averaging the time series Figure 4—figure supplement 1, indicating that these slow fluctuations are

uncorrelated across cells. (d) Representative single-cell PSDs and fits by an Ornstein-Uhlenbeck (O–U) process.

Shown are O-U fits (Lorentzian with constant noise floor; dashed curves) to three single-cell PSDs (solid curves).

Shaded areas represent standard errors of the mean for PSDs computed from nine non-overlapping segments of

each single-cell time series. Fits to all cells from the same experiment are shown in (Figure 4—figure supplement

2). Noise amplitudes computed from the O-U fit parameters (Figure 4—figure supplement 3) demonstrate

excellent agreement with those computed directly from the time series (panel b). (e) Histogram of fluctuation

timescales t extracted from O-U fits to single-cell PSDs (red, 75 out of 89 cells). Cells without a clear noise plateau

at low frequencies were excluded from the analysis (Figure 4—figure supplement 3). Red shaded region

represents 95% confidence intervals obtained from bootstrap resampling. The gray shaded region indicates the

variability (mean±std) that can be explained by experimental noise and a finite time window, obtained from

simulated O-U time series (see Materials and methods).

DOI: https://doi.org/10.7554/eLife.27455.020

The following source data and figure supplements are available for figure 4:

Source data 1. Source data (.mat) file containing FRET data and analysis.

DOI: https://doi.org/10.7554/eLife.27455.024

Figure supplement 1. PSD estimates from population-averaged time series.

DOI: https://doi.org/10.7554/eLife.27455.021

Figure supplement 2. Fits of OU process to PSD estimates from single-cell FRET time series from a single

experiment.

DOI: https://doi.org/10.7554/eLife.27455.022

Figure supplement 3. Comparison between noise amplitudes obtained from time series and power spectra and

reproducibility of noise characteristics between different experiments.

DOI: https://doi.org/10.7554/eLife.27455.023
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found that the amplitude of these fluctuations vary considerably across cells in an isogenic

population.

Receptor-kinase fluctuations in the absence of adaptation reveal two-
level switching
The fluctuation amplitude h in CheRB+ cells (Figure 4b) is much greater than previous estimates

from pathway-based models that considered sublinear kinetics in the enzymatic activities of CheR

and CheB (Emonet and Cluzel, 2008) and receptor cooperativity (Shimizu et al., 2010) as possible

mechanisms that amplify noise originating in the stochastic kinetics of receptor methylation/demeth-

ylation. A possible explanation for this discrepency is the presence of one or more additional noise

source(s) independent of methylation/demethylation dynamics. Although we found that the noise

amplitude h was much lower than wildtype in unstimulated CheRB- cells (Figure 4), it is possible

that the strong activity bias of these cells in the absence of chemoeffectors (a0 » 1) masks noise con-

tributions that would be observable if receptors were tuned to the more responsive regime of inter-

mediate activity (e.g. as in wt cells, where a0 »1/3). We reasoned that in CheRB- cells, tuning the

activity to an intermediate level by adding and sustaining a sub-saturating dose of attractant could

reveal additional noise sources. Hence we measured the temporal variability of CheRB- cells during

prolonged stimulation with 50 mM L-serine, which elicits a half-maximal population-level response

(Figure 5b). Although no large fluctuations were be observed in the population-averaged time series

(Figure 5b), averaging the power spectra computed from all single-cell time series revealed a some-

what elevated noise level at low frequencies, compared to the case without ligand (Figure 5a), indi-

cating the possibility of a noise source independent of receptor methylation.

To further test whether and how these methylation-independent fluctuations are affected by the

composition of the chemoreceptor arrays, we also measured the response of CheRB- cells express-

ing Tsr as the sole chemoreceptor during a sustained stimulus of magnitude close to the population-

level K (Figure 5c). Surprisingly, the averaged single-cell power spectra (Figure 5a) indicated the

presence of very large fluctuations, even surpassing the fluctuation magnitude in CheRB+ cells. The

time series of single-cell responses demonstrated strong deviations from the population average

(Figure 5d and - Video Supplement). Whereas all cells responded identically to the saturating dose

of attractant, the behavior during the sub-saturating step was highly diverse. Some cells (11/141)

showed no apparent response in kinase activity, whereas in others (32/141) complete inhibition was

observed (Figure 5d, yellow curves). The majority of cells (98/141), however, had an intermediate

level of activity when averaged over time, but demonstrated strong temporal fluctuations, often with

magnitudes exceeding those observed in wildtype cells.

We further noted that within this subset of cells with large temporal fluctuations, a large fraction

(54/98) demonstrated fluctuations that resemble rapid step-like transitions between discrete levels

of relatively stable activity that could be identified as peaks in the distribution of activity values

across time (Figure 5d, marginal histograms). Among these ‘stepper’ cells, the majority (37/54)

appeared to transition between three or more discrete activity levels (Figure 5d, brown curve),

whereas the remaining sizable minority of steppers (17/54) demonstrated binary switching between

two discrete levels corresponding to the maximum (a» 1) and minimum (a »0) receptor-kinase activ-

ity states (Figure 5d, red curve). The remaining fraction of cells (44/98) demonstrated fluctuations

that were also often large but in which discrete levels could not be unambiguously assigned

(Figure 5d, black curve). The numbers of cells corresponding to each of the categories described

above are summarized in Figure 5e.

The observation of cells that demonstrate spontaneous two-level switching is particularly surpris-

ing, given the large number of molecules involved in receptor-kinase signaling. The expression level

of each protein component of the chemoreceptor-CheW-CheA signaling complex in our background

strain (RP437) and growth medium (TB) has been estimated (by quantitative Western Blots) to be of

order 10
4 copies/cell (Li and Hazelbauer, 2004). Considering that the core unit of signaling has a

stoichiometric composition of receptor:W:A = 12:2:2 (monomers) (Li and Hazelbauer, 2011), the

number of core units is likely limited by the number of receptors, leading to an estimate 104/12~103

core units for a typical wildtype cell. This estimate does not apply directly to the experiments of Fig-

ure 5 because receptors are expressed from a plasmid in a strain deleted for all receptors. But the

FRET response amplitudes of these cells were similar to those of cells with a wildtype complement
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Figure 5. Temporal fluctuations in adaptation-deficient cells depend strongly on activity and composition of

chemoreceptor population. (a) Power spectral density (PSD) for temporal signal fluctuations during sub-saturating

ligand stimulation of 18 cells with wild-type receptor complement (light blue, CheRB-, TSS58) and 58 cells

expressing only chemoreceptor Tsr (orange, CheRB- Tsr+, TSS1964/pPA114). Also shown, for comparison, are

PSDs from experiments without ligand stimulation for WT cells and CheRB- cells (red and dark blue, respectively;

same data as in Figure 4). Error bars represent standard error of the mean. We note that the Tsr+ experiment had

a larger FRET amplitude scaling factor FRETmax (see Materials and methods) compared to the standard

conditions under which the other strains were measured, and to account for this difference, the Tsr+ power

spectrum has been scaled by a factor �2 ¼ 0:17, where � � FRETmax;std=FRETmax;Tsrþ to account for this

difference. (b) (Top) Stimulus protocol for modulation of the L-serine ligand concentration ([L](t)). Cells were

incubated either in buffer ([L]=0, white) or a subsaturating stimulus ([L] = 50 mM, gray) for 1> hr. A saturating

stimulus ([L] = 1 mM, black) is applied at the end of the experiment. (Bottom) Population- averaged time series for

adaptation-deficient cells with wildtype receptor complement (CheRB-, TSS58) for experiments with (18 cells, light

blue) and without (17 cells, dark blue) a sustained 50 mM L-serine stimulus during the time interval used to

compute the PSDs in panel a (indicated by the red bar). (c) (Top) Stimulus protocol for L-serine concentration ([L]

(t)). At the start of the experiment, a saturating concentration ([L] = 1 mM, black) is applied for a short time. After

flushing buffer ([L]=0, white), an intermediate concentration ([L] = 25 mM, gray) is sustained for 10 min. (Bottom)

Population-averaged time series of 58 adaptation-deficient cells expressing Tsr as the sole chemoreceptor (RB-Tsr

+; TSS1964/pPA114) under the stimulus protocol indicated above. (d) Selected single-cell time series of the

population shown in panel (c), each normalized to its activity level before adding the first stimulus. To the

unfiltered data (gray) a 7 s moving average filter is applied and superimposed (colored according to categories in

panel (e)). All time series and corresponding activity histograms of the same experiment are shown in Figure 5 -

Supplement 1 and 5. (e) Classification of RB-Tsr+ single cell fluctuation phenotypes by the number of stable

activity levels observed during the sustained subsaturating stimulus. Many cells show only one stable activity level

(yellow), corresponding to either full-amplitude response (a ! 0) or no response (a ! a0). Some cells show two

(red) or more (purple) apparently stable states. In other cells, fluctuations appeared chaotic with no discernibly

stable state (black). (f) Definitions for analysis of two-state switching dynamics. The transition timescales tþ and t�
were determined by fits of a symmetric exponential function (see main text) to the upward (cyan) and downward

(purple) switching transients, respectively. Residence times Dtup;down were defined as the interval between two

successive transitions, at 50% activity. (g) Histogram of transition timescales, tþ (4.2 ± 2.2 s, 26 events, cyan) and t�

Figure 5 continued on next page
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of receptors, and we thus expect the number of active core units per cell in the experiments of Fig-

ure 5 to be similar to or greater than that in wildtype cells.

We analyzed further the temporal statistics of the discrete transitions in the subset of cells exhibit-

ing two-level switching (Figure 5g–h). We first quantified the duration of such transitions by fitting

segments of the activity time series over which these switches occured (Figure 5d) by a symmetrized

exponential decay function (see Materials and methods) to obtain switch durations tþ and t� for

upward and downward transitions, respectively. The fitted values for tþ and t� correspond to the

duration over which the activity trajectory traverses a fraction 1� e�1 of the transition’s full extent,

and were found to be similar between switches in both directions: htþi � stþ ¼ 4.2 ± 2.2 s and

ht�i � st� ¼ 3.5 ± 3.2 s (Figure 5e). We note that these transition times are significantly greater

than, but close to, the data acquisition interval (1 s), and so the shape of the fitted function should

be considered a first approximation to the true rise and decay dynamics.

We then considered the duration of time between switching events. We defined Dtup;k and Dtdown;k

as the duration of the k-th time interval between transitions with high- and low-activities, respectively

(Figure 5d), and computed the average over all k of Dtup=down;k for each individual cell to estimate its

residence timescales tup=down for states of high/low activity, respectively. From each cell’s set of inter-

vals fDtup=down;kg we also computed a parameter a1=2, defined as the fraction of time the cell spent in

the high activity level, as a measure of its time-averaged activity during the sub-saturating (20M)

L-serine stimulus that yielded a population-averaged response hai» 1=2 (see Materials and methods).

We found that the logarithms of the mean residence times tup and tdown scale approximately line-

arly with ln½a1=2=ð1� a1=2Þ� (Figure 5f). The latter can be considered a free-energy difference

ð�DGÞ ¼ Gdown � Gup between the inactive and active states of an equilibrium two-state switching

process in which the time-averaged activity a1=2 is given by the probability of being in the active

state, a1=2 ¼ pðactiveÞ ¼ ð1þ eDGÞ�1. The residence time in each state can then be described by an

Arrhenius-type relation with characteristic time for barrier crossing tr and the height of the energy

barrier dependent on DG,

tdown ¼ tr exp ½�gdownDG=kBT�
tup ¼ tr exp ½�gupDG=kBT�

(3)

where the (dimensionless) constants gdown and gup describe how the barrier heights of the down and

up states, respectively, depend on the free-energy difference DG¼ kBT ln½ð1� a1=2Þ=a1=2�. We find

gdown ¼�0:4� 0:1, gup ¼ 0:6� 0:1, and the characteristic timescale tr, defined here as equivalent to

tup ¼ tdown when DG¼ 0 (and hence a1=2 ¼ 0:5), was found to be 110 ± 10 s. The fact that the mean

residence times (tup;tdown) scale exponentially with the apparent free energy difference (DG)

Figure 5 continued

(3.5 ± 3.2, 29 events, purple) from 10 two-state switching cells of a single experiment with 1 Hz acquisition

frequency. (h) Mean residence times tup and tdown for two-state switching cells as a function of the average activity

bias ln½a1=2=ð1� a1=2Þ�. The slopes are gdown ¼ �0:4 and gup ¼ 0:6, and the crossover point at tup ¼ tdown ¼
110� 10 s defines a characteristic switching timescale. Data of 17 cells from three independent experiments (one

at 1 Hz acqusition, two at 0.2 Hz acquisition).

DOI: https://doi.org/10.7554/eLife.27455.025

The following video, source data, and figure supplements are available for figure 5:

Source data 1. Source data (.mat) file containing FRET data and analysis.

DOI: https://doi.org/10.7554/eLife.27455.028

Figure supplement 1. All single-cell time series from a single representative experiment.

DOI: https://doi.org/10.7554/eLife.27455.026

Figure supplement 2. Histograms of activity during attractant stimulation for all cells from a single representative

experiment.

DOI: https://doi.org/10.7554/eLife.27455.027

Figure 5—video 1. Segmentation video of three cells showing stochastic switching dynamics.

DOI: https://doi.org/10.7554/eLife.27455.029
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indicates that receptor-kinase switching can, to a first approximation, be treated as a barrier-cross-

ing process.

In summary, these data demonstrate the existence of a signaling noise source that is independent

of the adaptation enzymes CheR/CheB. The fluctuations they generate can be very strong in cells

expressing Tsr as the sole chemoreceptor, leading to two-level switching in a subset of cells. The lat-

ter observation suggests that cooperativity among signaling units in homogeneous chemoreceptor

arrays can reach extremely high values, with up to ~ 103 units switching in a cooperative fashion. The

temporal statistics of these two-level switches are consistent with a barrier-crossing model in which

the residence time of both states depend on the activity bias ln½a1=2=ð1� a1=2Þ� in a nearly symmetric

manner with opposing signs.

Discussion
The single-cell FRET measurements described here allowed us to quantify variability in a variety of

signaling parameters of the bacterial chemotaxis system, both across cells in a population and within

individual cells over time. The magnitude of variation was large across a wide variety of signaling

parameters, as summarized in Table 1. By imaging many (typically ~50) cells simultaneously, we are

able to record signaling in individual cells at high throughput, to build up single-cell statistics.

Although single-cell experiments have a long history in studies of bacterial chemotaxis (Berg and

Brown, 1972; Spudich and Koshland, 1976; Block et al., 1982; Korobkova et al., 2004;

Dufour et al., 2016), nearly all examples to date have relied on measurements of flagellar motor

output (in either tethered or swimming cells). A major advantage of the FRET approach is that it pro-

vides a direct measurement of intracelluar signaling that bypasses the noisy behavior of the flagellar

motor (a stochastic two-state switch), thereby enabling accurate and efficient determination of sig-

naling parameters. The anti-parallel response signature of ratiometric FRET provides a good way to

discriminate genuine FRET changes from imaging artifacts. As in population-level FRET, single-cell

FRET is most easily applied to study large and rapid changes in signaling (e.g. response to step stim-

uli), but we have shown that with careful correction of drifts in the signal level (primarily due to

bleaching, but also including contributions from fluorophore maturation and/or recovery from long-

lived dark states), it can be applied effectively to measure more subtle changes in signaling over

extended times, including steady-state fluctuations. Care is required in these corrections of long-

time fluorescence-intensity drifts because imperfect correction can distort dynamics on timescales

comparable to that of the signal drift. We note that our analysis of chemotaxis signaling dynamics

presented here is relatively insensitive to such artifacts, given that the longest timescales we

observed ( ~400 s for sensory adaptation, Figure 1) are well below the time constants of fluores-

cence intensity drift (>1 hr under hour experimental conditions), but caution is warranted for future

applications to systems with slower dynamics. More generally, quantification of single-cell variability

is a challenging task because any experimental noise source can potentially contribute to the

observed variability. Although we have not undertaken here a comprehensive survey of experimental

noise sources for single-cell FRET, our results demonstrate meaningful differences in variability

across cells measured under identical experimental conditions. The experimental duration for single-

cell FRET is photon-limited, meaning that optimal experimental strategies must carefully negotiate

with a finite photon budget an inherent trade-off between measurement duration, temporal resolu-

tion, and signal-to noise ratio. Future improvements of donor/acceptor fluorophores (in parameters

such as photostability, brightness, maturation, as well as FRET efficiency) could enhance the effective

photon budget, and hence the power of the experiment.

From gene-expression noise to diversity in signaling phenotypes
A key feature of bacterial chemotaxis as an experimental system is that one can study in vivo signal-

ing and behavior in a manner that is decoupled from gene expression and growth. Being an entirely

protein-based signaling network, chemotaxis signaling responses do not require changes in gene

expression, and the relatively short timescales of signaling reactions (subsecond to minutes) are well

separated from those of changes in protein counts due to gene expression noise (minutes to hours).

The ensemble of single-cell FRET time series measured in each of our experiments thus provide a

snapshot of cell-to-cell variability due to stochastic gene expression in a variety of signaling

parameters.
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Our data revealed high variability in important signaling parameters connected to the adaptation

system (Figure 1). In the case of the variability in recovery times (CV=0.20), this is likely due to vari-

ability in the CheR/receptor ratio from cell to cell. What consequences might such variability have on

chemotactic behavior? A recent theoretical study has established that long (short) adaptation times

are better suited for maximizing chemotactic migration rates in shallow (steep) gradients

(Frankel et al., 2014). Thus, variability in adaptation times could partition the population into cells

that will be more efficient in running up steep gradients, and others better suited to climbing shal-

low ones. Interestingly, it was also found that optimal performance at each gradient involves tuning

not only the adaptation time, but also other parameters such as swimming speed or tumble bias,

leading to the prediction that selective pressures act not only on the distribution of individual param-

eters, but also on the pattern of covariation among them (Frankel et al., 2014; Waite et al., 2016).

Exploring such correlated variation of signaling parameters, both under changes in environmental

conditions such as nutrient levels (Khursigara et al., 2011) and within identically grown populations,

would be a fruitful avenue for future single-cell FRET studies.

In the ligand response of the network, we observed large cell-to-cell variability in the sensitivity

ð1=KÞ and steepness ðHÞ of dose-response relations, for cells with a wildtype receptor population

(Figure 2). Using a mixed-species MWC model (Mello and Tu, 2005), we were able to estimate the

Tar/Tsr ratio in single cells, which spans a broad range from nearly zero to more than two. This

strong variability in the receptor-cluster composition has the potential to dramatically impact behav-

ior. In their natural habitats, cells likely experience a variety chemoeffector gradients simultaneously,

each associated with an unknown fitness payoff for chemotactic pursuit. Generating diversity in the

chemoreceptor ratio, which has been shown to determine which gradient to climb when challenged

with such conflicting possibilities (Kalinin et al., 2010), could allow the isogenic population to hedge

its bets to maximize net fitness gains. The Tar/Tsr ratio has also been shown to play an important

role in setting the preferred temperature for thermotaxis (Salman and Libchaber, 2007; Yoney and

Salman, 2015; Paulick et al., 2017). Variability in Tar/Tsr would allow diversification of the preferred

temperature across cells in the population, which will promote spreading of bacteria in environments

with temperature gradients. Finally, when chemotactic bacteria colonize an initially nutrient-rich envi-

ronment, they are known to successively exploit resources by emitting multiple traveling waves of

chemotactic bacteria, each of which consumes and chases by chemotaxis a different nutrient compo-

nent outward from the colony origin (Adler, 1966). Our observation that the population diversity in

receptor ratios, and hence chemotactic preference, varies concomitantly with population growth

could provide a means to tune the population fractions that engage in such excursions into virgin

territory, and those that remain for subsequent exploitation of remaining resources. Thus, the diver-

sity in ligand response and preference generated by variability in the Tar/Tsr ratio could have

Table 1. Variability in signaling parameters reported in this study with 95 % CI obtained by

bootstrap resampling.

N.D.: Not determined; N/A: Not applicable.

Parameter Genotype Literature

CheR,CheB CheRB+ CheRB- CheRB-

Chemoreceptors + (all) + (all) Tsr+

CVða0Þ 0.23 � 0.06 N/A N/A

CVðtrecoveryÞ 0.20 � 0.06 N/A N/A 0.18–0.5*

CVðPÞ 0.40 � 0.10 N/A N/A

CVðKÞ N.D. 0.49 � 0.09 0.16 � 0.07

h 0.44 � 0.12 0.09 � 0.04 0.49 � 0.09 >0.2†

CVðhÞ 0.52 � 0.08 1.25 � 0.60 0.64 � 0.12

*Berg and Tedesco, 1975; Min et al., 2012
†Tu and Grinstein, 2005

DOI: https://doi.org/10.7554/eLife.27455.030
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nontrivial consequences in a variety of behavioral contexts encountered by isogenic chemotactic

(and thermotactic) populations.

Suppression of gene expression noise by CheB phosphorylation
feedback
The role of phosphorylation feedback has been a long standing open question in the field of bacte-

rial chemotaxis signaling, ever since its presumed role in providing precise adaptation was decisively

ruled out by (Alon et al., 1999). In the ensuing years, a diverse set of hypotheses have been pro-

posed to explain its purpose. Apart from precise adaptation, CheB phosphorylation has been sug-

gested as possibly responsible for the non-linear response of CheB activity to changes in CheA

kinase activity (Shimizu et al., 2010; Clausznitzer et al., 2010), ligand sensitivity of wildtype cells

(Barkai et al., 2001), and has been implicated theoretically as a possible mechanism to buffer gene-

expression noise to suppress detrimental variability in the steady-state kinase activity

(Kollmann et al., 2005; Emonet and Cluzel, 2008; Pontius et al., 2013). Here, we tested the latter

hypothesis, by severing the phosphorylation feedback loop as a possible noise-reduction mecha-

nism. Our single-cell FRET data revealed that, not only does CheB phosphorylation feedback

strongly attenuate the magnitude of variability in the steady-state kinase activity a0, it also qualita-

tively changes the shape of the distribution Pða0Þ across cells to convert an otherwise bimodal distri-

bution into a unimodal one (Figure 3d). The highly polarized bimodal distribution of steady-state

activities in CheB phosphorylation mutants are likely detrimental, as they could drive a0 of a large

fraction of the population too far from the flagellar motor’s steep response threshold (Cluzel et al.,

2000; Yuan and Berg, 2013) to effectively control swimming.

By analyzing simplified models of adaptation kinetics, we found that a bimodal Pða0Þ could occur

in the absence of phosphorylation feedback if the enzyme kinetics of CheR and CheB depend subli-

nearly on the activity a of their receptor substrates. As a limiting case, when both enzymes work at

or near saturation, this model leads to zero-order ultrasensitivity (Goldbeter and Koshland, 1981;

Emonet and Cluzel, 2008), which could act as a strongly non-linear transfer function f ð½R�=½B�Þ that
converts a unimodal distribution Pð½R�=½B�Þ into a bimodal Pða0Þ. We note that ultrasensitivity due to

sublinear (Michaelis-Menten) enzyme kinetics is by no means the only possible explanation for the

observed bimodality in Pða0Þ. Any mechanism that renders f ð½R�=½B�Þ a strongly nonlinear (sigmoidal)

function could lead to the same effect. The merit of the sublinear kinetic (ultrasensitivity) model is in

its simplicity, but it is worth noting that reality is likely to be more complex due to, for example,

effects of spatial organization. It is known that both CheR and CheB interact with chemoreceptors

not only at their substrate modification residues, but also with a second binding site on a flexible

tether at the receptor C-terminus. Such bivalent interactions with the receptor array could affect the

movement of these enzymes across the receptor lattice (Levin et al., 2002), and such movements

could shift the balance between processivity and distributivity of enzyme activity on their substrate

receptors (Pontius et al., 2013), which could in turn attenuate or enhance the nonlinearity in the

relationship f ð½R�=½B�Þ between the enzyme expression ratio [R]/[B] and the steady-state activity a0 of

their substrate receptors (Takahashi et al., 2010).

Diversity in temporal variability: bet-hedging across exploration and
exploitation strategies
In addition to cell-to-cell variability in signaling parameters, single-cell FRET allowed us to resolve

temporal fluctuations in signaling about the steady-state output within individual cells. In wildtype

cells, we found that the steady-state activity fluctuates slowly (Figure 4,correlation time t » 10s) with

a large amplitude (h ¼ sa=hai» 40%), but this amplitude also varies significantly from cell to cell

(CV » 0.6). Fluctuations on this timescale were absent in CheRB- cells defective in receptor methyla-

tion/demethylation, indicating that these fluctuations are generated by stochastic processes in the

activity of the adaptation enzymes CheR and CheB. Whereas the fluctuation correlation time t in our

FRET experiments was in close agreement with those from previously reported flagellar motor

switching experiments (Korobkova et al., 2004; Park et al., 2010), the fluctuation amplitude

hhi» 40% was surprisingly large. Theoretical analysis of the motor-based noise measurements indi-

cated that, in the frequency range of our experiments, stochastic methylation kinetics are indeed the

dominant source of noise (Clausznitzer and Endres, 2011). Another theoretical study of the motor
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noise (Tu and Grinstein, 2005), had predicted a modest noise level of intracellular noise, with a

lower bound of 20% of the mean. The discrepancy is likely due, at least in part, to the recently dis-

covered adaptation at the level of the flagellar motor (Yuan et al., 2012), which must effectively act

as a high-pass filter that attenuates frequencies near or below a cutoff frequency determined by its

own characteristic timescale for adaptation. The fluctuation amplitude h was also much greater than

previous estimates from pathway-based models and we have shown that there is an additional noise

source, independent from methylation, which contributes to the total noise amplitude in wildtype

cells and not considered in previous modeling efforts.

The large temporal noise we observed in wildtype (CheRB+) cells may seem counterintuitive,

given that the chemotaxis pathway is a transduction path for sensory information, and noise gener-

ally reduces information transmission capacity of communication channels (Shannon, 1949). How-

ever, the chemotaxis signaling pathway is not only a sensory system but also a control circuit for

motile behavior, and recent studies have highlighted the importance of considering the behavioral

context in understanding the design of this signaling pathway (Dufour et al., 2016; Wong-Ng et al.,

2016; Long et al., 2017). The temporal noise we observed could have profound implications for E.

coli’s random-walk motility strategy, because slow fluctuations in the intracellular signal can enhance

the likelihood of long run events and stretch the tail of the run-length distribution to yield power-

law-like switching-time distributions over a range of time scales (Korobkova et al., 2004; Tu and

Grinstein, 2005). Such non-exponential statistics are known to yield superior foraging performance

in environments where resource distribution is sparse (Viswanathan et al., 1999), and temporal fluc-

tuations in run-tumble behavior has also been shown theoretically to enhance climbing of shallow

gradients by generating runs that are long enough to integrate over the faint gradient a detectable

difference in ligand input (Flores et al., 2012; Sneddon et al., 2012). Hence, the noise generated

by the adaptation system can be advantageous in resource-poor environments (deserts) in which

efficient exploration of space for sparsely distributed sources (oases) is of utmost importance. By

contrast, strong temporal noise clearly degrades response fidelity in rich environments where the

gradient signal is strong enough for detection with short runs, and might also complicate coordina-

tion of cells in collective behaviors such as the aforementioned traveling-wave exploitation of

nutrients. Our finding that the noise amplitude varies strongly from cell to cell thus suggests that iso-

genic populations might be hedging their bets by partitioning themselves between specialists for

local exploitation of identified resource patches and those for long-range exploration in search for

new ones.

Giant fluctuations and digital switching in adaptation deficient cells
with homogeneous chemoreceptor arrays
We found the most dramatic temporal fluctuations in adaptation-deficient (CheRB-) cells expressing

Tsr as the sole chemoreceptor species (Figure 5). When brought close to their dose-response transi-

tion point (K) by attractant stimulation, these cells demonstrated strong temporal fluctuations,

revealing that there exist sources of signal fluctuations that are independent of CheR and CheB

activity. The origin of these adaptation-independent fluctuations remain unknown, but in broad

terms, one can envisage that they are due to either intrinsic sources (i.e. fluctuations arising within

the components of the receptor-kinase complex), extrinsic sources (i.e. fluctuations in other cellular

processes/environmental variables), or both. Possible intrinsic sources include coupled fluctuations in

protein conformations (Duke and Bray, 1999; Shimizu et al., 2003; Mello et al., 2004;

Skoge et al., 2011), the slow-timescale changes in receptor ‘packing’ that have been observed by

fluorescence anisotropy measurements (Frank and Vaknin, 2013; Vaknin, 2014), and the stochastic

assembly dynamics of receptor clusters (Greenfield et al., 2009). Possible extrinsic sources include

fluctuations in metabolism, membrane potential, or active transport/consumption of ligand. Many of

these possibilities could be tested by experiments of the type presented here with appropriate

mutant strains and environmental controls, and present promising directions for future research.

The adaptation-independent fluctuations we observed were not only large in amplitude but often

(though not always) took the form of discrete steps in activity, in some cases between only two lev-

els. Two-state descriptions of receptor signaling are a common feature of nearly all mechanistic

models of bacterial chemotaxis signaling addressing both cooperativity (Duke and Bray, 1999;

Shimizu et al., 2003; Mello et al., 2004; Mello and Tu, 2005; Keymer et al., 2006) and adaptation

(Asakura and Honda, 1984; Barkai and Leibler, 1997; Morton-Firth et al., 1999; Endres and
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Wingreen, 2006; Emonet and Cluzel, 2008; Tu et al., 2008), yet direct evidence for two-state

switching by receptor-kinase complexes has been lacking. Although as noted above, it is yet possi-

ble that the two-level switching we observed (Figure 5d) is due to extrinsic noise sources (e.g.

metabolism or transport), the temporal statistics (Figure 5e–h) are compatible with a simple model

in which two stable signaling states are separated by an energy barrier sensitive to both environmen-

tal stimuli and internal cell variables. Regarding cells that exhibited step-like transitions among more

than two stable states, a plausible interpretation is that the underlying transitions are actually two-

level, but the majority of the receptor-kinase population is partitioned into two or more disjoint sig-

naling arrays which fluctuate independently.

While two-state switching has been observed in small oligomers such as ion channels

(Keller et al., 1986) and larger protein assemblies such as the bacterial flagellar motor

(Silverman and Simon, 1974; Bai et al., 2010), controlled by up to a few dozen units, our findings

suggest (as discussed in results) that at least many hundreds, if not thousands of receptor-kinase

units can switch in a concerted fashion. The rather long timescale associated with intervals between

switches ( »102 s) is clearly distinct from the methylation-dependent fluctuation timescale ( »101 s)

observed in CheRB+ cells, and might reflect the large size of the cooperatively switching signaling

array. The switching duration ( »4 s), is also much slower than the sub-second response to attractant

stimuli (Segall et al., 1982; Sourjik and Berg, 2002b). These fluctuations of surprisingly large magni-

tude indicate the possibility that cooperativity between arrayed chemoreceptors are much stronger

than suggested by previous population-averaged measurements, and represent a promising direc-

tion for future investigations.

Concluding remarks
We described a new single-cell FRET technique capable of resolving intracellular signaling dynamics

in live bacteria over extended times. Our results highlight how a protein-based signaling network

can either generate or attenuate variability, by amplifying or filtering molecular noise of different

molecular origins. Gene expression noise is harnessed, on the one hand, to generate diversity in the

ligand response of isogenic populations, or attenuated, on the other the hand, in the control of

steady-state signal output. In addition, we showed that signaling noise generated at the level of

interacting gene products can have a profound impact. Stochastic protein-protein interactions within

the signaling network, as well as other ‘extrinsic’ fluctuations, can be amplified by the signaling net-

work to generate strong temporal fluctuations in the network activity.

Materials and methods

Strains and plasmids
All strains used are descendants of E. coli K-12 HCB33 (RP437). Growth conditions were kept uni-

form by transforming all strains with two plasmids. All strains and plasmids are shown in Tables 2

and 3.

The FRET acceptor-donor pair (CheY-mRFP and CheZ-YFP) is expressed in tandem from a IPTG

inducible pTrc99A plasmid, pSJAB12 or pSJAB106, with respective induction levels of 100 and 50

mM IPTG. The differences between pSJAB12 and pSJAB106 are (i) the presence of a noncoding

spacer in pSJAB106 to modify the ribosome binding site of CheZ (Salis et al., 2009), such that CheZ

is expressed approximately three fold less, and (ii) a A206K mutation in YFP to enforce monomerity.

We also used pVS52 (CheZ-YFP) and pVS149 (CheY-mRFP1) to express the fusions from separate

plasmids with induction levels of 50 mM IPTG and 0.01 % arabinose, respectively. We transformed

the FRET plasmids in an adaptation-proficient strain (VS104) to yield CheRB+ and an adaptation-

deficient strain (VS149) to get CheRB-. For attachment with sticky flagella from pZR1 we used the

equivalent strains in fliC background (VS115 and TSS58).

Experiments with Tsr as the sole chemoreceptor were performed in UU2567 or TSS1964, in which

the native FliC gene is changed to sticky FliC (FliC*). Tsr is expressed from pPA114 Tsr, a pKG116

derivative, at with an induction of 0.6 mM NaSal.

For the experiments with the CheB mutants, pSJAB12 was transformed into VS124 together with

plasmids expressing CheBWT , CheBD56E and truncated mutant CheBc (plasmids pVS91, pVS97 and

pVS112, respectively, with induction levels of 1.5E-4, 6E-4 and 3E-4 % arabinose.
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FRET microscopy
Föster Resonance Energy Transfer [FRET] microscopy was performed as previously reported

(Sourjik et al., 2007; Vaknin and Berg, 2004). Cells were grown to OD = 0.45–0.5 in Tryptone Broth

(TB) medium from a saturated overnight culture in TB, both with 100 g/mL ampicillin and 34 g/mL

chloramphenicol and appropriate inducers in the day culture. For the FRET experiments we used

Motility Media (MotM, (Shimizu et al., 2006)), in which cells do not grow and protein expression is

absent. Cells were washed in 50 mL MotM, and then stored 0.5–6 hr before experiment. In the

dose-response curve experiments and the temporal fluctuation measurements, cells were stored up

to three hours at room temperature to allow for further red fluorescence maturation. A biological

replicate or independent FRET experiment was defined as a measurement from separately grown

cultures, each grown on a separate day.

Cells were attached by expressing sticky FliC (FliC*) from a pKG116 plasmid or the chromosome

(TSS1964), induced with 2mM Sodium Salicylate (NaSal), or with Poly-L-Lysine (Sigma), or with anti-

FliC antibodies column purified (Using Protein A sepharose beads, Amersham Biosciences) from rab-

bit blood serum and pre-absorbed to FliC- cells (HCB137, gifts from Howard Berg). We found FRET

experiments with sticky FliC to have the highest signal-to-noise ratio.

Fluorescent images of the cells were obtained with a magnification of 40-100x (Nikon instru-

ments). For excitation of YFP, we either used 514 nm laser excitation set to 30 mW for 2 ms or an

LED system (CoolLED, UK) with an approximate exposure time of 40 ms to approximate the same

illumination intensity per frame. The sample was illuminated stroboscopically with a frequency

between 1 and 0.2 Hz. RPF excitation was performed by 2 ms exposure of 60 mW 568 nm laser or

equivalent with LED to measure acceptor levels independently from FRET.

Excitation light was sent through a 519 nm dichroic mirror (Semrock, USA). Epifluorescent emis-

sion was led into an Optosplit (Cairn Research, UK) with a second dichroic mirror 580 nm and two

emission filters (527/42 nm and 641/75 nm, Semrock, USA) to project the RFP and YFP emission side

by side on an EM-CCD (Princeton Instruments, USA) with multiplication gain 100.

Image processing
Images were loaded and analyzed by means of in-house written scripts (Image segmentation script

FRETimaging.py available online) in MATLAB and Python. For ratiometric FRET experiments, we seg-

mented single cells using the donor emission with appropriate filter steps to remove clusters of cells

or cells improperly attached to the coverslip. At the position of each cell a rectangular ROI is defined

in which all fluorescence intensity is integrated.

Table 2. Strains used in this study.

Background Plasmids

Strain Source Relevant genotype Plasmid 1 Plasmid 2

VS115 V. Sourjik DYZ DFliC pSJAB106 pZR1

VS104 Sourjik and Berg, 2002a DCheYZ pSJAB12 pBAD33

TSS58 this work DRBYZ DFliC pSJAB106 pZR1

VS149 Sourjik and Berg, 2004 DRBYZ pVS12 pVS33

VS124 Clausznitzer et al., 2010 DCheBYZ pSJAB12 pVS112

VS124 DCheBYZ pSJAB12 pVS97

VS124 DCheBYZ pSJAB12 pVS91

UU2567 Kitanovic et al., 2015 DCheRBYZ,DMCP† pSJAB106 pPA114 Tsr

TSS1964 this work DCheRBYZ,DMCP FliC* pSJAB106 pPA114 Tsr

UU2614 J.S. Parkinson CheB D(4-345) pTrc99a pVS91,97,112

All strains are descendants of E. coli K-12 HCB33 (RP437). In all FRET experiments, strains carry two plasmids and therefore confer resistance to chloram-

phenicol and ampicillin.
†all five chemoreceptor genes tar tsr tap trg aer deleted.

*expresses sticky FliC filament (Scharf et al., 1998)

DOI: https://doi.org/10.7554/eLife.27455.031
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For FRET experiments in which the concentration of donor molecules may influence the FRET sig-

nal, the experiments on the CheB mutants, segmentation was done separately for each frame to

determine the cell shape and then linking these segmented images with a tracking algorithm

(Crocker and Grier, 1996), afterwards, fluorescence intensities are normalized for the cell size (mask

surface area) in segmentation, intensities were corrected for inhomogeneous illumination, and cells

with low acceptor intensities were excluded from the analysis. The ROI for the donor intensity were

subsequently used to obtain the acceptor intensity per cell, both in photon-count per pixel.

Fluorescence intensities were corrected for long-time drift (primarily due to bleaching, but also

including contributions from fluorophore maturation and/or recovery from long-lived dark states) by

fitting a linear, single exponential or double exponential function to the fluorescence decay, sepa-

rately for both donor and acceptor channels. The net decay in the FRET signal was dominated by

photobleaching of the donor (YFP) intensity (on average 25% over the course of a 30 min experi-

ment; Figure 1—figure supplement 2). Red fluorescent proteins tend to have long maturation

times, which under our experimental conditions (in which gene expression is halted upon harvesting

via auxotrophic limitation) could result in a residual increase in red fluorescence intensity during

experiments. In control experiments, we determined mRFP1’s maturation half time under our condi-

tions to be ~2–3 hr, with a maximum increase in the FRET signal of ~25% at ~5–6 hr. Cells in which

the intensity decay could not accurately be corrected were excluded from the analysis.

Table 3. Plasmids used in this study.

Plasmid Product System Ind Res Source

pVS52 CheZ-5G-YFP pBAD33 ara cam Sourjik and Berg, 2002a

pVS149 CheY-5G-mRFP1 pTrc99a IPTG amp Sourjik and Berg, 2002a

pSJAB12 CheZ-5G-YFP/CheY-5G-mRFP1 PTrc99a IPTG amp This work

pSJAB106 CheZ-5G-YFP/CheY-5G-mRFP1¶ PTrc99a IPTG amp This work

pVS91 CheB† pTrc99a ara cam Liberman et al., 2004

pVS97 CheB-D56E‡ pBAD33 ara cam Clausznitzer et al., 2010

pVS112 CheBc§ pBAD33 ara cam V. Sourjik

pSJAB 122 CheBc-GS4G-mVenus pBAD33 ara cam This work

pSJAB 123 CheB(D56E)-GS4G-mVenus pBAD33 ara cam This work

pSJAB 124 CheB-GS4G-mVenus pBAD33 ara cam This work

pZR 1 FliC* pKG116 NaSal cam This work

pPA114 Tsr Tsr pPA114 NaSal cam Ames et al., 2002

¶Contains a A206K mutation to enforce monomerity..
†expresses WT CheB.
‡carries a point mutation D56E in CheB.
§expresses only residues 147–349 of CheB, preceded by a start codon (Met).

*expresses sticky FliC filament (Scharf et al., 1998)

DOI: https://doi.org/10.7554/eLife.27455.032

Table 4. List of global parameters used for model of Mello and Tu.

In these fits, ~K is a free parameter while others are constrained ±5% by published values.

Parameter Start value (Mello and Tu, 2007) Final value

C 0.314 0.29

�0 0.80 0.84

�A 1.23 1.29

�S 1.54 1.61

~K – 21.2 mM

DOI: https://doi.org/10.7554/eLife.27455.033
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In non-ratiometic fluorescence experiments (CheB-mVenus) the fluorescence intensities obtained

after segmentation were corrected for inhomogeneous illumination and divided by cell area.

FRET analysis
The FRET signal is calculated from fluorescent time series. We observe changes in the ratio R ¼ A=D,

in which A and D are the fluorescence intensities of the acceptor and donor. In previous population-

averaged FRET experiments the FRET per donor molecule (DD=D0) is calculated as (Sourjik and

Berg, 2002a; Sourjik et al., 2007):

DD

D0

¼ DR

aþR0þDR
(4)

in which R0 is the ratio in absence of FRET, a¼ DA=DDj j is a constant that depends on the experi-

mental system (in our case a = 0.30) and the change in ratio as a result of energy transfer DR and R0

are obtained through observing the ratio just after adding and removing saturated attractant stimuli.

This expression is convenient for population FRET since is invariant to attachment densities of a pop-

ulation. However, in single-cell FRET this expression may generate additional variability in FRET due

to variable donor levels from cell to cell. Hence it is more convenient to define the FRET levels in

terms of the absolute change in donor level DD, since this reflects the number of resonance energy

transfer pairs

FRETðtÞ ¼ DD¼D0

DR

aþR0 þDR
(5)

Since FRET occurs only when CheY-P and CheZ interact, the FRET level is proportional to the con-

centration of complex [Yp-Z]. If we assume the CheY-P dephosphorylation by CheZ follows Michae-

lis-Menten kinetics we can describe the [Yp-Z] concentration in terms of the activity of the kinase

CheA. For this, we assume the system is in steady-state for timescales much larger than CheY phos-

phorylation-dephosphorylation cycle (»100 ms). In that case, the destruction rate should equal the

rate of CheA phosphorylation and hence the FRET signal is proportional to the activity per kinase a

and the amount of CheA in the receptor-kinase complex (Sourjik and Berg, 2002a; Oleksiuk et al.,

2011):

FRET/ ½Yp�Z� ¼ a
kA

kZ
½CheA�»akA

kZ
½CheA�T (6)

This last step is only valid if we further assume CheA autophosphorylation being the rate-limiting

step. This is the case only if sufficient amounts of CheZ and CheY present in the cell. We have found

that the FRET level initially increases with donor (CheZ) levels, but then saturates and remains con-

stant for CheY and CheZ (see Figure 3—figure supplement 2).

In many cases the most relevant parameter is the normalized FRET response. The FRET level

reaches maximum if all kinases are active (a» 1). In case of CheRB+cells, this is the case when remov-

ing a saturating amount of attractant after adaptation (Sourjik and Berg, 2002a). For CheRB- cells

the baseline activity is (Sourjik and Berg, 2002a; Shimizu et al., 2010) close to 1. Hence the normal-

ized FRET FRETðtÞ=FRETmax represents the activity per kinase aðtÞ and is the relevant parameter for

many quantitative models for chemoreceptor activity (Tu, 2013).

aðtÞ ¼ FRETðtÞ
FRETmax

(7)

and from aðtÞ the steady-state activity a0 can be determined by averaging aðtÞ over baseline values

before adding attractant stimuli.

Analysis of power spectra
From FRET time series of length T and acquisition frequency f we calculated Power Spectral Density

(PSD) estimates as

SFRETð!Þ ¼
1

T
jFð!Þj2 (8)
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where Fð!Þ is the (discrete-time) Fourier transform of the FRET time series FRETðtÞ. We only con-

sider positive frequencies and multiply by two to conserve power.

To study the influence of experimental noise and the effect of estimating t and c from a finite

time window, we generated O-U time series using the update formula (Gillespie, 1996)

XðtþDtÞ ¼ XðtÞ� t�1Dtþ c1=2nðDðtÞÞ1=2 (9)

in which n denotes a sample value from a normally distributed random variable (�¼ 0;s¼ 1). To the

generated time series Gaussian white noise was added to simulate experimental noise. The experi-

mental noise amplitude was obtained from the average power at high frequencies.

Two-state switching analysis
Since the amplitude of two-state switches is much greater than the noise, switching events times t0

could be easily read off by eye. We obtained switching durations by fitting the function

aðtÞ ¼ 1

2
� 1

2

t� t0

t� t0j j ð1� e�2 t�t0j j=t�Þ (10)

to the normalized FRET time series in a 30 s time window, approximately ±15 s from t0. The resi-

dence times Dtup;i;k and Dtdown;i;k of event k in cell i were defined by the time between transitions or

the beginning/end of the 25 mM stimulus time window. The steady-state activity during activity was

then calculated as

a1=2;i ¼
P

k Dtup;i;k
P

k Dtdown;i;k þ
P

k Dtup;i;k
(11)

and for the residence times we take the mean over k to get tdown and tup. If we treat the system as

an equilibrium process we can use the Arrhenius equations that describe the residence times as a

function of the distance to the energy barrier

tdown ¼ tr exp gdown ln ½a1=2=ð1� a1=2Þ�=kBT
� �

tup ¼ tr exp gup ln ½a1=2=ð1� a1=2Þ�=kBT
� � (12)

in which gdown and gup are constants corresponding to the slopes of lntdown and lntup against

ln ½a1=2=ð1� a1=2Þ�, respectively. The fit parameters and standard error are obtained with the robustfit

function in Matlab (statistics toolbox).

Dose response curve analysis
Normalized FRET responses to different levels of ligand are fit to a hill curve of the form

a¼ ½L�H

½L�H þ½K�H
(13)

This can be connected to an MWC-type model (Monod et al., 1965) of receptor cluster activity

(Tu et al., 2008) in the regime KI<<½L�<<KA, resulting in the correspondence key

H ¼N

K ¼KIe
fmðmÞ

which relates the Hill slope directly to the cluster size N, and sensitivity K to the methylation energy

of the receptor. We plot K on a logarithmic scale to scale linearly with energy.

The parameter estimate uncertainties of K and H are defined by the covariance matrix for each

cell i

COVi ¼
sKK sHK

sKH sHH

� �

i

(14)

in which s denotes the standard error from the fit. For each covariance matrix the corresponding
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eigenvectors and eigenvalues are determined. The eigenvalues and vectors constitute an ellipsoid

which represent error basins in K�H space.

To obtain expression level estimates of different receptor species we use a different MWC model.

Following (Mello and Tu, 2005), we use as an expression for the normalized response of cells to

ligand ½L� serine

a¼ �0�
NS

S �NA

A ð1þC½L�=~KÞNs

ð1þ½L�=~KÞNs þ �0�
NS

S �NA

A ð1þC½L�=~KÞNs
(15)

in which NA is the number of Tar receptors in the cluster and NS is the number of Tsr receptors.

Parameters �A, �S, �0 are the energies corresponding to binding of ligand to Tar, Tsr and the other

three receptors and are the same for each cell, like C and ~K which describe the disassociation con-

stant for the active state as KA ¼ ~K=C, while NA and NT may vary from cell to cell. This yields the mini-

mization problem for all 128 cells

min
X

Ncells

i

X

Nstim

j

ðmi;j� ai;jÞ2 (16)

in which mi;j the measured FRET response normalized to the response amplitude of cell i to stimulus

Lj. This function was minimized using the matlab function fmincon (optimization toolbox). The total

number NT ¼NA þNS is limited to 32. When fitting the model used the energy parameters � from ref-

erence (Mello and Tu, 2005) where used as initial guess with a maximum of �5% deviation. This

yielded an estimate of NA and NS for each cell. Under the assumption that receptor clusters are well-

mixed, this yields a Tar/Tsr ratio of NA=NS.

Sublinear model of adaptation kinetics with phoshorylation feedback
For our model, we consider CheR and CheB to perform opposite operations on the same substrate.

For simplicity, we do not explicitly describe the methylation and demethylation of the receptors

explicitly but instead assume that CheR (R) activates the receptor-kinase complex directly (A�), and

that CheB (B) deactivates it (A)

In general, the corresponding reaction equation is a function of the methylation of inactive kin-

ases by CheR, and demethylation of active kinases by CheB, described by two functions g and h

da

dt
¼ gðvr;aÞ� hðvb;aÞ (17)

with vr and vb being the rates for CheR and CheB, respectively. We now assume that these reactions

follow Michaelis-Menten kinetics, following (Goldbeter and Koshland, 1981) and (Emonet and Clu-

zel, 2008), and the total amount of kinase complexes is constant (AT ¼ A� þA). Hence the change in

activity a¼ A�=AT has a sublinear dependence on a:

da

dt
¼ vr

1� a

Kr þ 1� a
� vb

a

aþKb

(18)

The Michaelis-Menten constants Kb and Kr are in units of AT and are therefore dimensionless

numbers. We are interested in the steady-state level a0 and its dependence on the kinetic parame-

ters in equation 18. This is described by the Goldbeter-Koshland function (Tyson et al., 2003), an

exact solution to the system in case [R] and [B] are much smaller than [A]T.

a0½vr;vb;Kr;Kb� ¼
2vrKr

ðvb � vr þ vbKb þ vrKr þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðvb � vr þ vbKb þ vrKrÞ2 � 4ðvb � vrÞvrKr

q (19)

The shape of this curve is sigmoidal if the Michaelis-Menten constants Kr and Kb are much smaller

than one. For CheB phosphorylation, we assume the phosphorylation rate depends linearly on active

CheA and write

d½Bp�
dt

¼ kp½B�aðvr;vb;Kb;KrÞ� kdp½Bp� (20)
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with the corresponding conservation law BT = BP + B. For the case for wild-type CheB, with phos-

phorylation feedback, the rates can be described in terms of catalytic rate times the enzyme (sub-

species) concentration

vb ¼ kbð½BT �� ½Bp�ÞþMkb½Bp�
vr ¼ kr½R�

(21)

in which M stands for the ratio of demethylation rates of unphosphorylated and phosphorylated

CheB. The fraction of the phosphorylated CheB, [Bp]/½B�Tthen determines the effective activity of

CheB. Equation 20 is solved numerically using Mathematica (Mathematica model source code avail-

able online) for [Bp] and the result is substituted in equation 19. In the absence of feedback, the

activity can be directly calculated from equation 19 with the rates being simply

vb ¼ kb½B�
vr ¼ kr½R�

We only need to consider the ratio of rate constants kr and kb which determines at which expres-

sion ratio [CheR]/[CheB] the activity equals 1/2. We assume kr ¼ kb for simplicity, since the shape of

the curve from Equation 19 is not affected by the values of kr and kb, changing their ratio only shifts

the curve along the horizontal axis. Similarly, we only consider the ratio of phosphorylation and

dephosphorylation rates. This leaves the system of equations above only has a few parameters:

Kb;r and M; and the ratios kr=bb and kp=kdp. In Table 5, the parameters used for the calculations are

listed.

We first fixed the phosphorylation rates kp=1=2kdp. This means that the steady-state phosphory-

lated level of CheB [Bp]/[BT ] at activity » 1=3 is around 15 %. This parameter is not constrained by

any direct observation, but it is clear the system benefits from a relatively low fraction of phosphory-

lation, to be able to up and down regulate the levels effectively upon changes in activity.

Generally, we assume CheB-D56E to behave like unphosphorylated CheB. The gain in catalytic

rate of activated CheB is estimated to be nearly a 100 fold, but this does not agree with the expres-

sion level differences between the different CheB mutants so we made a conservative estimate of 15

(the attenuating effect increases with the gain). CheBc behaves approximately like phosphorylated

CheB (albeit with increase of only seven compared to D56E), qualitatively consistent with measured

in vitro rates for CheBc and phosphorylated intact CheB (Anand and Stock, 2002). The difference

between predicted rates and might be due to the fact that the rate experiments were performed in

vitro. Michaelis Menten constants used in the model are lower than 1, but how low is not well con-

strained by data, and estimations do not take into account the possible attenuating effect of phos-

phorylation. Our experimental data on the distribution of a0 implies the sigmodial curve is steep in

the absence of phosphorylation and hence that Kb and Kr are quite small. The variability in a0 for

CheBc is lower than D56E, implying that the curve is less steep and hence we have chosen are Kr

which is not quite as low as D56E.

To simulate gene expression noise, we simulated [CheR]/[CheB] log-normal distributions with s ¼
0:18 for all three strains. The mean of the distribution was chosen to yield an average steady-state

Table 5. List of parameters used for Goldbeter-Koshland description of CheB phosphorylation

feedback.

Parameter Value Literature Source

kr=kp 1 0.75 Shimizu et al., 2010

kdp=kp 2 kp ¼ 0:37s�1 Kentner and Sourjik, 2009

Kr 0.03 <<1 Emonet and Cluzel, 2008

Kb 0.03 <<1 Emonet and Cluzel, 2008

KbðCheBcÞ 0.2 <<1

M (WT) 15 100 Anand and Stock, 2002

M (CheBc) 7 15 Simms et al., 1985

DOI: https://doi.org/10.7554/eLife.27455.034
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network activity (a0) of 0.4. The resulting distribution of a0 was calculated using the corresponding

Goldbeter-Koshland function for each genotype.

Linear and supralinear models of adaptation kinetics
Instead of assuming a sub-linear (Michaelis-Menten) dependence of CheR- and CheB-catalyzed rates

on the receptor-kinase activity a, one may also assume linear, quadratic or cubic dependence of the

methylation rates on the activity, as was for example done in (Clausznitzer et al., 2010). Here, CheR

feedback is assumed to be linear (g ¼ kr½R�ð1� aÞ), while CheB feedback can be linear (h ¼ kb½B�a),
quadratic (h ¼ kb½B�a2) or cubic (h ¼ kb½B�a3) in the receptor-kinase activity a. The supralinear (qua-

dratic and cubic) forms of dependence are intended to model the case with CheB phosphorylation,

and the linear form the case without CheB phosphorylation. The steady-state activity a0 can be found

by solving gðvr; aÞ ¼ hðvb; aÞ and the dependence of a0 to [R]/[B] (a0=f([R]/[B])) for these linear and

supralinear cases are shown in Figure 3—figure supplement 3.

Acknowledgements
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