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Abstract

Coronaviruses (CoVs) have a remarkable potential to change tropism. This is particularly
illustrated over the last 15 years by the emergence of two zoonotic CoVs, the severe
acute respiratory syndrome (SARS)- and Middle East respiratory syndrome (MERS)-
CoV. Due to their inherent genetic variability, it is inevitable that new cross-species trans-
mission events of these enveloped, positive-stranded RNA viruses will occur. Research
into these medical and veterinary important pathogens—sparked by the SARS and
MERS outbreaks—revealed important principles of inter- and intraspecies tropism
changes. The primary determinant of CoV tropism is the viral spike (S) entry protein. Tri-
mers of the S glycoproteins on the virion surface accommodate binding to a cell surface
receptor and fusion of the viral and cellular membrane. Recently, high-resolution struc-
tures of two CoV S proteins have been elucidated by single-particle cryo-electron
microscopy. Using this new structural insight, we review the changes in the
S protein that relate to changes in virus tropism. Different concepts underlie these tro-
pism changes at the cellular, tissue, and host species level, including the promiscuity or
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adaptability of S proteins to orthologous receptors, alterations in the proteolytic cleav-
age activation as well as changes in the S protein metastability. A thorough understand-
ing of the key role of the S protein in CoV entry is critical to further our understanding of
virus cross-species transmission and pathogenesis and for development of intervention
strategies.

1. INTRODUCTION

Coronaviruses (CoVs) (order Nidovirales, family Coronaviridae, sub-

family Coronavirinae) are enveloped, positive-sense RNA viruses that con-

tain the largest known RNA genomes with a length of up to 32 kb. The

subfamily Coronavirinae, which contains viruses of both medical and

veterinary importance, can be divided into the four genera alpha-, beta-,

gamma- and deltacoronavirus (α-, β-, γ- and δ-CoV). The coronavirus particle
comprises at least the four canonical structural proteins E (envelope

protein), M (membrane protein), N (nucleocapsid protein), and S (spike

protein). In addition, viruses belonging to lineage A of the betacoronaviruses

express the membrane-anchored HE (hemagglutinin–esterase) protein. The
S glycoprotein contains both the receptor-binding domain (RBD) and the

domains involved in fusion, rendering it the pivotal protein in the CoV

entry process.

Coronaviruses primarily infect the respiratory and gastrointestinal tract of

a wide range of animal species includingmanymammals and birds. Although

individual virus species mostly appear to be restricted to a narrow host range

comprising a single animal species, genome sequencing and phylogenetic

analyses testify that CoVs have crossed the host species barrier frequently

(Chan et al., 2013; Woo et al., 2012). In fact most if not all human cor-

onaviruses seem to originate from bat CoVs (BtCoVs) that transmitted to

humans directly or indirectly through an intermediate host. It therefore

appears inevitable that similar zoonotic infections will occur in the future.

In the past 15 years, the world witnessed two such zoonotic events. In

2002–2003 cross-species transmissions from bats and civet cats were at

the base of the SARS (severe acute respiratory syndrome)-CoV epidemic

that found its origin in the Chinese Guangdong province (Li et al., 2006;

Song et al., 2005). The SARS-CoV nearly became a pandemic and led to

over 700 deaths, before it disappeared when the appropriate hygiene and

quarantine precautions were taken. In 2012, the MERS (Middle East respi-

ratory syndrome)-CoV emerged in the human population on the Arabian
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Peninsula and currently continues to make a serious impact on the local but

also global health system with 1800 laboratory confirmed cases and 640

deaths as of September 1, 2016 (WHO j Middle East respiratory

syndrome coronavirus (MERS-CoV) – Saudi Arabia, 2016). The natural

reservoir of MERS-CoV is presumed to be in dromedary camels from

which zoonotic transmissions repeatedly give rise to infections of the lower

respiratory tract in humans (Alagaili et al., 2014; Azhar et al., 2014; Briese

et al., 2014; Reusken et al., 2013; Widagdo et al., 2016). Besides these two

novel CoVs, four other CoVs were previously identified in humans which

are found in either the alphacoronavirus (HCoV-NL63 and HCoV-229E) or

the betacoronavirus genera (HCoV-OC43 and HCoV-HKU1). Phylogenetic

analysis has shown that the bovine CoV (BCoV) has been the origin for

HCoV-OC43 following a relatively recent cross-species transmission event

(Vijgen et al., 2006). Moreover, HCoV-NL63, HCoV-229E, SARS-CoV,

and MERS-CoV also have been predicted to originate from bats (Annan

et al., 2013; Bolles et al., 2011; Corman et al., 2015; Hu et al., 2015;

Huynh et al., 2012).

In general, four major criteria determine cross-species transmission of a

particular virus (Racaniello et al., 2015). The cellular tropism of a virus is

determined by the susceptibility of host cells (i.e., presence of the receptor

needed for entry) as well as by the permissiveness of these host cells to allow

the virus to replicate and to complete its life cycle. A third determinant con-

sists of the accessibility of susceptible and permissive cells in the host. Finally,

the innate immune response may restrict viral replication in a host species-

specific manner. The above-mentioned criteria may play a critical role in the

success of a cross-species transmission event. However, for CoVs, it seems

that host tropism and changes therein are particularly determined by the sus-

ceptibility of host cells to infection. While CoV accessory genes, including

the HE proteins, are thought to play a role in host tropism and adaptation to

a new host, the S glycoprotein appears to be the main determinant for the

success of initial cross-species infection events. In this review, we focus on

the molecular changes in the S protein that underlie tropism changes at the

cellular, tissue, and host species level and put these in perspective of the

recently published cryo-EM structures.

2. STRUCTURE OF THE CORONAVIRUS S PROTEIN

The CoV S protein is a class I viral fusion protein (Bosch et al., 2003)

similar to the fusion proteins of influenza, retro-, filo-, and paramyxoviruses
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(Baker et al., 1999; Bartesaghi et al., 2013; Lee et al., 2008; Lin et al., 2014).

Like other class I viral fusion proteins, the S protein folds into a metastable

prefusion conformation following translation. The size of the abundantly

N-glycosylated S protein varies greatly between CoV species ranging from

approximately 1100 to 1600 residues in length, with an estimated molecular

mass of up to 220 kDa. Trimers of the S protein form the 18–23-nm long,

club-shaped spikes that decorate the membrane surface of the CoV particle.

Besides being the primary determinant in CoV host tropism and pathogen-

esis, the S protein is also the main target for neutralizing antibodies elicited

by the immune system of the infected host (Hofmann et al., 2004).

The S protein can be divided into two functionally distinct subunits: the

globular S1 subunit is involved in receptor recognition, whereas the S2 sub-

unit facilitates membrane fusion and anchors S into the viral membrane

(Fig. 1A). The S1 and S2 domains may be separated by a cleavage site that

is recognized by furin-like proteases during S protein biogenesis in the

infected cell. X-ray crystal structures of several S domains have furthered

our understanding of the S protein in the past. In addition, recent elucidation

of the high-resolution structures of the spike ectodomain of two

betacoronaviruses—MHV and HCoV-HKU1—by single-particle cryo-

electron microscopy (Kirchdoerfer et al., 2016; Walls et al., 2016) has pro-

vided novel insights into the architecture of the S trimer in its prefusion state

(Fig. 1B and C).

2.1 Structure of the S1 Subunit
The S1 subunit of the betacoronavirus spike proteins displays a multidomain

architecture and is structurally organized in four distinct domains A–D of

which domains A and B may serve as a RBD (Fig. 1C). The core structure

of domain A displays a galectin-like β-sandwich fold, whereas domain

B contains a structurally conserved core subdomain of antiparallel β-sheets
(Kirchdoerfer et al., 2016; Li et al., 2005a; Walls et al., 2016; Wang et al.,

2013). Importantly, domain B is decorated with an extended loop on the

viral membrane-distal side. This loop may differ greatly in size and structure

between virus species of the betacoronavirus genus and is therefore also

referred to as hypervariable region (HVR). The cryo-EM structures of

the MHV-A59 and HCoV-HKU1 S trimers show an intricate interlocking

of the three S1 subunits (Fig. 1B). Oligomerization of the S protomers results

in a closely clustered trimer of the individual B domains close to the three-

fold axis of the spike on top of the S2 trimer, whereas the three A domains are
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Fig. 1 Spike protein features and structure of the mouse hepatitis coronavirus spike
glycoprotein trimer. (A) Schematic linear representation of the coronavirus S protein
with relevant domains/sites indicated: signal peptide (SP), two proteolytic cleavage
sites (S1/S2 and S20), two proposed fusion peptides (FP1 and FP2), two heptad repeat
regions (HR1 and HR2), transmembrane domain (TD), and cytoplasmic tail (CT).
(B) Front and top view of the trimeric mouse hepatitis coronavirus (strain A59) spike
glycoprotein ectodomain obtained by cryo-electron microscopy analysis (Walls et al.,
2016; PDB: 3JCL). Three S1 protomers (surface presentation) are colored in red, blue,
and green. The S2 trimer (cartoon presentation) is colored in light orange. (C) Schematic
representation of MHV spike protein sequence (drawn to scale), the S1 domains A,
B, C, and D are colored in blue, green, yellow, and orange, respectively, and the linker
region connecting domains A and B in gray, the S2 region is colored in red, and the
TM region is indicated as a black box. Red-shaded region indicates spike region that was

(Continued)
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ordered more distally of the center. In contrast to domains A and B, the S1
C-terminal domains C and D are made up of discontinuous parts of the pri-

mary protein sequence and form β-sheet-rich structures directly adjacent to

the S2 stalk core, while the separate S1 domains are interconnected by loops

covering the S2 surface. Compared to the S2 subunit, the S1 subunit displays

low level of sequence conversation among species of different CoV genera.

Moreover, S1 subunits vary considerably in sequence length ranging from

544 (infectious bronchitis virus (IBV) S) to 944 (229-related bat coro-

navirus S) residues in length (Fig. 2), indicating differences in architecture

of the spikes of species from different CoV genera. Structural information

from the spikes of gamma- and deltacoronavirus species is currently lacking.

Two independently folding domains have been assigned in the S1 subunit

of alphacoronavirus spikes, that can interact with host cell surface molecules,

an N-terminal domain (in transmissible gastroenteritis virus (TGEV) S resi-

dues 1–245) and a more C-terminal domain (in TGEV S residues

506–655). Contrary to betacoronaviruses, these two receptor-interacting

domains in alphacoronavirus spikes are separated in sequence by some 275

residues, which may fold into one or more separate domains. Structural infor-

mation is only available for the C-terminal S1 RBD of two α-CoV S proteins,

which differs notably from that of betacoronaviruses. The RBD in the S1
CTR of alphacoronaviruses displays a β-sandwich core structure, whereas a

β-sheet core structure is seen for betacoronaviruses (Reguera et al., 2012;

Wu et al., 2009).

2.2 Structure of the S2 Subunit
The highly conserved S2 subunit contains the key protein segments that

facilitate virus-cell fusion. These include the fusion peptide, two heptad

Fig. 1—Cont’d not resolved in the cryo-EM structure. (Lower panel) Two views on
the structure of the mouse hepatitis virus spike glycoprotein protomer (cartoon repre-
sentation); domains are colored as depicted earlier. (D) Comparison of the S2 HR1 region
in its pre- and postfusion conformation. (Lower left) Structure of the MHV S2 protomer
(cartoon presentation) with four helices of the HR1 region (and consecutive linker
region) and the downstream central helix colored in blue, green, yellow, orange, and
red, respectively. (Upper right) The structure of a single SARS-CoV S HR1 helix of the post-
fusion six-helix bundle structure (PDB: 1WYY) is colored according to the homologous
HR1 region in the MHV S2 prefusion structure shown in the lower left panel. Structures
are aligned based on the N-terminal segment of the central helix (in red). Figures were
generated with PyMOL.
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Fig. 2 Overview of currently known receptors and their binding domains within S1.
Schematic representation of coronavirus spike proteins drawn to scale. Yellow boxes
indicate signal peptides. Blue boxes indicate the N-terminal regions in alpha- and
betacoronavirus spike proteins, which were mapped based on sequence homology
between viruses within the same genus. Green boxes indicate known receptor-binding
domains in the C-terminal region of S1. Known receptors are indicated in the boxes: APN,
aminopeptidase N; ACE2, angiotensin-converting enzyme 2; CEACAM, carcinoembryonic
antigen-related cell adhesion molecule 1; Sia, sialic acid; O-ac Sia, O-acetylated sialic
acid; DPP4, dipeptidyl peptidase-4. Gray boxes indicate transmembrane domains. Spikes
proteins are shown of PEDV strain CV777 (GB: AAK38656.1), TGEV strain Purdue P115
(GB: ABG89325.1), PRCoV strain ISU-1 (GB: ABG89317.1), Feline CoV strain UU23 (GB:
ADC35472.1), Feline CoV strain UU21 (GB: ADL71466.1), Human CoV NL63 (GB:
YP_003767.1), 229E-related bat CoV with one N domains (GB: ALK28775.1), 229E-related
bat CoV with two N domains (GB: ALK28765.1), Human CoV 229E strain inf-1 (GB:
NP_073551.1), MHV strain A59 (GB: ACO72893), BCoV strain KWD1 (GB: AAX38489),
HCoV-OC43 strain Paris (GB: AAT84362), HCoV-HKU1 (GB: AAT98580), SARS-CoV strain
Urbani (GB: AAP13441), MERS-CoV strain EMC/2012 (GB: YP_009047204), HKU4 (GB:
AGP04928), HKU5 (GB: AGP04943), IBV strain Beaudette (GB: ADP06471), and PDCoV

(Continued)
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repeat regions (HR1 and HR2) and the transmembrane domains which are

well conserved among CoV species across different genera. In the MHV

and HKU1 S prefusion structures, the S2 domain consists of multiple α-helical
segments and a three-stranded antiparallel β-sheet at the viral membrane-

proximal end. A 75 Å long central helix located immediately downstream

of the HR1 region stretches along the threefold axis over the entire length

of the S2 trimer. The HR1 motif itself folds as four individual α-helices along
the length of the S2 subunit, in contrast to the 120 Å long α-helix formed by

this region in postfusion structures (Duquerroy et al., 2005; Gao et al., 2013;

Xu et al., 2004). A 55 Å long helix upstream of the S2
0 cleavage site runs parallel

to and is packed against the central helix via hydrophobic interactions (Fig. 1C).

The fusion peptide forms a short helix of which the strictly conserved hydro-

phobic residues are buried in an interface with other elements of S2. Unlike

other class I fusion proteins, this conserved fusion peptide (FP1) is not directly

upstream of HR1 but located some 65 residues upstream of this region

(Fig. 1A). Intriguingly, a recent published report provided experimental evi-

dence for the existence of another fusion peptide (FP2) immediately upstream

of the HR1 region (Ou et al., 2016), that had been predicted earlier based on

the position, hydrophobicity profile and amino acid composition canonical for

class I viral fusion peptides (Bosch and Rottier, 2008; Bosch et al., 2004;

Chambers et al., 1990). The HR2 region locates closely to the C-terminal

end of the S ectodomain, but it appeared to be disordered in both cryo-EM

structures and therefore its prefusion conformation remains unknown.

The metastable prefusion conformation of S2 is locked by the cap formed

by the intertwined S1 protomers. The distal tip of the S2 trimer connects via

hydrophobic interactions with domains B. This distal tip of the S2 trimer

consists of the C-terminal region of HR1 in the prefusion conformation,

while the entire HR1 rearranges to form a central three-helix coiled coil

in the postfusion structure (Duquerroy et al., 2005; Lu et al., 2014;

Supekar et al., 2004). Interactions between this region of the S2 trimer

and domain B may therefore prevent premature conformational changes

resulting in the conversion of the prefusion S protein into the very stable

Fig. 2—Cont’d strain USA/Ohio137/2014 (GB: AIB07807). PSI-BLAST analysis using the
NTR of the HCoV-NL63 S protein (residues 16–196) as a query detected two homologous
regions in the first 425 residues of the 229E-related bat coronavirus spike protein
(GB: ALK28765.1)—designated N1 (residues 32–213) and N2 (residues 246–422) with
32% and 35% amino acid sequence identity, respectively, suggesting a duplication
of the NTR. Spike proteins are drawn to scale and aligned at the position of the con-
served fusion peptide (FP1).
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postfusion structure. Also domains C and D of the betacoronavirus S1
subunit and the linker region connecting domain A and B interact with

the surface of the adjacent S2 protomer and may hence play a role in stabi-

lizing the prefusion S2 trimer. Domain A appears to play a minor role in

this respect in view of its relatively small a surface area that interacts with

the S2 trimer.

3. SPIKE–RECEPTOR INTERACTIONS

3.1 Different Domains Within S1 May Act as RBD
Over the past decades, molecular studies on the CoV S glycoprotein have

shown that both the N-terminal region (NTR, domain A in β-CoV) and
the C-terminal region of S1 (CTR, comprising domain B, C, and D in

β-CoV) can bind host receptors and hence function as RBDs (Fig. 2)

(Li, 2015). The CTR of alpha- and betacoronaviruses appears to bind

proteinaceous receptors exclusively. The α-CoV HCoV-229E, serotype

II feline CoV (FCoV), TGEV, and porcine respiratory coronavirus use

the human aminopeptidase N (APN) of their respective hosts as recep-

tors (Bonavia et al., 2003; Delmas et al., 1992; Reguera et al., 2012).

The HCoV-NL63 (α-CoV) and SARS-CoV (β-CoV) both utilize

angiotensin-converting enzyme 2 (ACE2) as a functional receptor (Li

et al., 2005b; Wu et al., 2009), whereas the β-CoVs MERS-CoV and

BtCoV-HKU4 recruit dipeptidyl peptidase-4 (DPP4) as a functional recep-

tor (Lu et al., 2013; Mou et al., 2013; Raj et al., 2013; Wang et al., 2014;

Yang et al., 2014).

The receptor-binding motifs (RBMs) in the S1 CTRs of alpha- and

betacoronavirus spike proteins are presented on one or more loops exten-

ding from the β-sheet core structure. Within alpha- and betacoronavirus

genera the RBD core is structurally conserved yet the RBM(s) that deter-

mine receptor specificity may vary extensively. For instance, the CTR

of the α-CoVs PRCoV and HCoV-NL63 has a similar core structure

suggesting common evolutionary origin but diverged in their RBMs rec-

ruiting different receptors (APN and ACE2, respectively). A similar situa-

tion is seen for the CTRs of β-CoVs SARS-CoV and MERS-CoV that

bind ACE2 and DPP4, respectively (Li, 2015). Conversely, the CTRs of

the α-CoV HCoV-NL63 and β-CoV SARS-CoV both recognize ACE2,

yet via distinct molecular interactions (ACE2 recognition via three vs

one RBM, respectively), which suggested a convergent evolution path-

way for these viruses in recruiting the ACE2 receptor (Li, 2015). The core
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structures of the CTRs in α- and β-CoVs provide a scaffold to present

RBMs from extending loop(s), which may accommodate facile recep-

tor switching by subtle alterations in or exchange of the RBMs via

mutation/recombination.

Contrary to the CTR, the NTR appears to mainly bind glycans. The

NTR of the α-CoV TGEV and of the γ-CoV IBV S proteins binds to sialic

acids (Promkuntod et al., 2014; Schultze et al., 1996), while the NTR

of betacoronaviruses including BCoV and HCoV-OC43 was shown to

bind to O-acetylated sialic acids (K€unkel and Herrler, 1993; Peng

et al., 2012; Schultze et al., 1991; Vlasak et al., 1988). Only the NTR of

MHV (domain A) is known to interact with a protein receptor, being

mCEACAM1a (Peng et al., 2011), while lacking any detectable sialic acid-

binding activity (Langereis et al., 2010). However, as the NTR of MHV

displays the β-sandwich fold of the galectins, a family of sugar-binding pro-

teins, it probably has evolved from a sugar-binding domain (Li, 2012).

The presence of RBDs in different domains of the S protein that can bind

either proteinaceous or glycan receptors illustrates a functional modularity of

this glycoprotein in which different domains may fulfill the role of binding

to cellular attachment or entry receptors. The CoV S protein is thought to

have evolved from a more basic structure in which receptor recognition was

confined to the CTR within S1 (Li, 2015). The observed deletions of the

NTR in someCoV species in nature are indicative of a less stringent require-

ment and integration of this domain with other regions of the spike trimer

compared to the more C-terminally located domains of S1 and support a sce-

nario in which the NTR has been acquired at a later time point in CoV evo-

lutionary history. For example, the NTR of MHV, which displays a human

galectin-like fold, was suggested to originate from a cellular lectin acquired

early on in CoV evolution (Peng et al., 2011). Acquisition of glycan-binding

domains and fusion thereof to the ancestral S protein may have resulted in a

great extension of CoV host range and may have caused an increase in CoV

diversity. The general preference of the NTR and CTR to bind to, respec-

tively, glycan or protein receptors may be related to their arrangement in the

S protein trimer. In contrast to the CTR, which is located in the center of

the S trimer, the NTR is more distally oriented (Fig. 1B). As protein–glycan
interactions are often of low affinity, the more distal orientation of domain

A may allow multivalent receptor interactions, thereby increasing avidity.

Interestingly, some CoVs appear to have a dual receptor usage as they

may bind via their NTR and CTR to glycan and protein receptors, respec-

tively (Fig. 2).
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3.2 CoV Protein Receptor Preference
Although the number of currently knownCoV receptors is limited, receptor

usage does not appear to be necessarily conserved between closely related

virus species such as HCoV-229E (APN) and HCoV-NL63 (ACE2),

whereas identical receptors (ACE2) can be targeted by virus species from

different genera such as HCoV-NL63 and SARS-CoV. It seems that CoVs

prefer certain types of host proteins as their entry receptor, with three out of

four of the so far identified proteinaceous receptors being ectopeptidases

(APN, ACE2, and DPP4), although enzymatic activity of these proteins

was shown not to be required for infection by their respective viruses

(Bosch et al., 2014). Possibly, the localization to certain membrane micro-

domains and efficient internalization of two of these proteins in polarized

cells (APN and DPP4) may contribute to their suitability to function as entry

receptors (Aı̈t-Slimane et al., 2009). In the case of MERS-CoV, the region

of DPP4 that is bound by the S protein coincides with the binding site for its

physiological ligand adenosine deaminase (Raj et al., 2014). Employment of

conserved epitopes such as these may also contribute to the cross-species

transmission potential of viruses (Bosch et al., 2014), as is exemplified by

MERS-CoV being able to use goat, camelid, cow, sheep, horse, pig, mon-

key, marmoset, and human DPP4 as entry receptor (Barlan et al., 2014;

Eckerle et al., 2014; Falzarano et al., 2014; M€uller et al., 2012; van

Doremalen et al., 2014). Similarly, this may apply for the ability of feline,

canine, porcine, and human CoVs to use fAPN as entry receptor, at least

in vitro (Tresnan et al., 1996).

4. S PROTEIN PROTEOLYTIC CLEAVAGE AND
CONFORMATIONAL CHANGES

Coronavirus entry is a tightly regulated process that appears to be

orchestrated by multiple triggers that include receptor binding and proteo-

lytic processing of the S protein and that ultimately results in virus-cell

fusion. It is initiated by virion attachment mediated through interaction

of either the NTR or CTR (or both) in the S1 subunit of the spike protein

with host receptors. Upon attachment, the virus is taken up via receptor-

mediated endocytosis by clathrin- or caveolin-dependent pathways

(Burkard et al., 2014; Eifart et al., 2007; Inoue et al., 2007; Nomura

et al., 2004) although other entry routes have also been reported (Wang

et al., 2008). Prior to and/or during endocytic uptake the CoV S protein
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is proteolytically processed. The spike protein may contain two proteolytic

cleavage sites. One of the cleavage sites is located at the boundary between

the S1 and S2 subunits (S1/S2 cleavage site), while the other cleavage site is

located immediately upstream of the first fusion peptide (S2
0 cleavage site).

Although not irrevocably proven, it is expected that all CoVs depend on

proteolytic cleavage on or close to S2
0 for fusion to occur. Virus-cell fusion

thus not only critically depends on the conformational changes following

spike–receptor engagement, and perhaps on acidification of endosomal ves-

icles (Eifart et al., 2007; Matsuyama and Taguchi, 2009; Zelus et al., 2003),

but also on proteolytic activation of the S protein by proteases along the

endocytic route (Burkard et al., 2014; Simmons et al., 2005). Indeed, inhi-

bition of intracellular proteases has been shown to block virus entry and

virus-cell fusion (Burkard et al., 2014; Frana et al., 1985; Simmons et al.,

2005; Yamada and Liu, 2009). The specific proteolytic cleavage require-

ments of the S protein at the S1/S2 boundary and particularly at the S2
0 site

may furthermore determine the intracellular site of fusion (Burkard et al.,

2014). In agreement herewith, it has become evident that the protease

expression profile of host cells may form an additional determinant of the

host cell tropism of coronaviruses (Millet and Whittaker, 2015).

Analysis of the CoV S prefusion conformation suggests that relocation

(or shedding) of the S1 subunits that cap the S2 subunit is a prerequisite

for the conformational changes in S2 that ultimately result in fusion. Shed-

ding of S1 probably requires receptor binding as well as proteolytic

processing at S1/S2. The cryo-EM structure indicates that the S1/S2 proteo-

lytic cleavage site is accessible to proteases prior to spike–receptor interac-
tion, and depending on the particular cleavage site present may already be

processed in the cell in which the virions are produced. As indicated earlier,

the conformational changes in the S protein that result in virus-cell fusion

most likely also require cleavage at the S2
0 site immediately upstream of

the fusion peptide. Interestingly, the S2
0 cleavage site is located within an

α-helix exposed on the prefusion S structure which prevents efficient pro-

teolytic cleavage (Robertson et al., 2016). This indicates the necessity for

preceding conformational changes induced by receptor binding and subse-

quent shedding of S1, upon which the secondary structure of the S2
0 site

transforms into a cleavable flexible loop. Following proteolytic cleavage

activation at the S2
0 site, hydrophobic interactions between the fusion pep-

tide and the adjacent S2 helices are disturbed which allows the four α-helices
and the connecting regions that make up the HR1 region in the prefusion

S protein to refold into a long trimeric coiled coil (Fig. 1D). This coiled coil
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forms an N-terminal extension of the central helix projecting the fusion

peptide(s) toward the target membrane. Successively, the fusion peptide(s)

will be inserted into the limiting membrane of the host cell endocytic com-

partment. Next, as a consequence of S2 rearrangements, the twoHR regions

will interact to form an antiparallel energetically stable six-helix bundle

(Bosch et al., 2003, 2004), enabling the close apposition and subsequent

fusion of the viral and host lipid bilayers.

5. TROPISM CHANGES ASSOCIATED WITH S PROTEIN
MUTATIONS

Changes in the S protein may result in an altered host, tissue, or cel-

lular tropism of the virus. This is clearly exemplified by genomic recombi-

nation events that result in exchange of (part of ) the S protein and in a

concomitant change in tropism. The propensity of CoVs to undergo homol-

ogous genomic recombination has been exploited for the genetic manipu-

lation of these viruses (de Haan et al., 2008; Haijema et al., 2003; Kuo et al.,

2000). To this end, interspecies chimeric coronaviruses were generated,

which carried the spike ectodomain of another CoV and which could be

selected based on their altered requirement for an entry receptor. Exchange

of S protein genes may also occur in vivo, resulting in altered tropism as is

illustrated by the occurrence of serotype II feline infectious peritonitis virus

(FIPV). This virus results from a naturally occurring recombination event

between feline and canine CoVs (CCoVs) in which the feline virus acquires

a CCoV spike gene (Herrewegh et al., 1995; Terada et al., 2014). As a result

of the acquisition of this new S protein, the rather harmless enteric feline

CoV (FECV) turns into a systemically replicating and deadly FIPV. As

FECV has a strict feline tropism (Myrrha et al., 2011), while CCoV has been

shown to infect feline cells (Levis et al., 1995), it is likely that serotype II

FIPVs arise in cats coinfected with serotype I FECV and CCoV. Further-

more, as different recombination sites have been observed for each serotype

II FIPV, while serotype II FECVs have not been observed, it appears that

serotype II FIPVs exclusively result of reoccurring recombination events

(Terada et al., 2014). In addition to these feline–CCoV recombinants, a chi-

meric porcine coronavirus with a TGEV backbone and a spike of the por-

cine epidemic diarrhea virus (PEDV) was recently isolated from swine fecal

samples in Italy and Germany, likely also resulting from a recombination

event (Akimkin et al., 2016; Boniotti et al., 2016). Moreover, the α-CoV
HKU2 BtCoV probably resulted from genomic recombination as it encodes
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an S protein that resembles a betacoronavirus S protein except for its N-ter-

minal region that is similar to that of alphacoronaviruses (Lau et al., 2007).

Thus, such genomic recombination events are not necessarily restricted to

occur between viruses of the same genus.

5.1 S1 Receptor Interactions Determining Tropism
5.1.1 S1 NTR Changes
Several changes in the amino-terminal domain of S1 have been associated

with changes in the tropism of the virus. For example, for several α-CoVs,
loss of NTR of the S protein appears to be accompanied with a loss of

enteric tropism. While the porcine CoV TGEV displays a tropism for both

the gastrointestinal and respiratory tract, the closely related PRCoV, which

lacks the sialic acid-binding N-terminal region (Krempl et al., 1997), only

replicates in the respiratory tract. The loss of sialic acid-binding activity

by four-amino acid changes in the NTR of its S protein resulted in an

almost complete loss of enteric tropism (Krempl et al., 1997). Similar to

TGEV, enteric serotype I FCoVs also have been reported to bind to sialic

acids (Desmarets et al., 2014). Large deletions within the S1 subunit

corresponding to the N-terminal region have been found in variants of

the systemically replicating FIPV (strains UU16, UU21, and C3663) after

intrahost emergence from enteric FECV (Chang et al., 2012; Terada

et al., 2012). Also FIPVs seem to have lost the ability to replicate in the

enteric tract (Pedersen, 2014). Clinical isolates of human coronavirus

229E as well as of the related alpaca coronavirus, both of which cause respi-

ratory infections, encode relatively short spike proteins that lack the NTR

(Crossley et al., 2012; Farsani et al., 2012). In contrast, closely related bat

coronaviruses with intestinal tropism contain S proteins with a NTR or

sometimes even two copies of the NTR (Corman et al., 2015) (Fig. 2).

Overall, these observations suggest that the alphacoronavirus spike

NTR—in particular its sialic acid-binding activity—may contribute to

the enteric tropism of these alphacoronaviruses, while it is not required

for replication in the respiratory tract or in other extraintestinal organs. It

has been hypothesized that the sialic acid-binding activity of the spike pro-

tein can allow virus binding to (i) soluble sialoglycoconjugates that may pro-

tect the virus from hostile conditions in the stomach or (ii) to mucins that

may prevent the loss of viruses by intestinal peristalsis and allow the virus to

pass the thick mucus barrier, thereby gaining access to the intestinal cells to

initiate infection (Schwegmann-Wessels et al., 2003).
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Besides deletions of entire domains of the S protein, more subtle changes

consisting of amino acid substitutions in S1 NTRmay also suffice to alter the

virus’ tropism. For example, MHV variants have been observed that

acquired the ability to use the human homologue of their murine

CEACAM1a receptor to enter cells as a result of mutations in their RBD

that is located in S1 NTR (Baric et al., 1999).

5.1.2 S1 CTR Changes
As the CTR of the S1 subunit contains the protein RBD for most CoVs, also

mutations in this part of S have been associated with changes in the virus’

tropism. Perhaps the most well-known example of viral cross-species trans-

mission involves the SARS-CoV. Studies support a transmission model in

which a SARS-like CoV was transmitted from Rhinolophus bats to palm

civets, which subsequently transmitted the palm civet-adapted virus to

humans at local food markets in southern China (Li et al., 2006). According

to this model, SARS-like viruses adapted to both the palm civet and human

host, which was reflected in the rapid viral evolution observed for these

viruses within these species (Song et al., 2005). Two-amino acid substitu-

tions within the RBD were elucidated that are of relevance for binding

to the ACE2 proteins of palm civets and humans (Li et al., 2005b, 2006;

Qu et al., 2005). From these studies it appears that due to strong conserva-

tion of ACE2 between mammalian species only a few amino acid alterations

within the RBD are needed to change coronavirus host species tropism.

Indeed serial passage of SARS-CoVs in vitro or in vivo can rapidly lead

to adaptation to new host species (Roberts et al., 2007). SARS-like viruses

isolated from bats displayed major differences including a deletion in the

ACE2 RBM compared to human SARS-CoV (Drexler et al., 2010; Ren

et al., 2008) and as a consequence were unable of using human ACE2 as

an entry receptor (Becker et al., 2008). However, recently a novel SARS-

like BtCoV was identified, which could use ACE2 ofRhinolophus bats, palm

civets as well as of humans as a functional receptor (Ge et al., 2013). These

findings not only provide further evidence that bats are indeed the natural

reservoir for SARS-like CoVs, but also that these bat coronaviruses can

directly include human ACE2 in their receptor repertoire. The detection

of sequences of SARS-CoV-like viruses in palm civets and raccoon dogs

(Guan et al., 2003; Tu et al., 2004) therefore probably reflects the unusually

wide host range of these viruses. A similar promiscuous receptor usage is also

observed for MERS-CoV which binds to DPP4 of many species (Barlan
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et al., 2014; Eckerle et al., 2014; Falzarano et al., 2014; M€uller et al., 2012;
van Doremalen et al., 2014) as indicated earlier.

Just as SARS like and MERS-CoVs are able to use entry receptors of

different host species, also several α-CoVs display promiscuity to ortho-

logous receptors. For example, the feline APN molecule can be used as a

receptor by feline (serotype II FIPV), canine (CCoV), porcine (TGEV),

and human (HCoV-229E) α-CoVs in cell culture (Tresnan and Holmes,

1998; Tresnan et al., 1996). Conversely, serotype II FIPV can only enter

cells expressing feline APN (Tresnan and Holmes, 1998). The ability of

TGEV and CCoV to use feline APN as a receptor probably results from

strong conservation of the viral-binding motif (VBM) among APN

orthologs in combination with the RBDs recognizing APN in a similar

fashion (Reguera et al., 2012). Though recruiting the same receptor,

HCoV-229E binds another domain within APN, which apparently is also

conserved in feline APN (Kolb et al., 1997; Tusell et al., 2007). Conserva-

tion of the VBM obviates the need for large adaptations within the RBD of

these viruses to orthologous receptors allowing more facile cross-species

transmission.

Other mutations in the S1 CTR associated with altered tropism have

been described for the β-CoV MHV. Similar to the humanized

CEACAM1a-recognizing MHV variant, serial passaging of virus-infected

cells resulted in the selection of viruses with an extended host range, which

were subsequently shown to be able to enter cells in a heparan sulfate-

dependent and CEACAM1a-independent manner (de Haan et al., 2005;

Schickli et al., 1997). Two sets of mutations in the S protein were shown

to be critically required for this phenotype, both of which resulted in the

occurrence of multibasic heparan sulfate-binding sites. While one heparan

sulfate-binding site was located in the S2 subunit immediately upstream of

the fusion peptide, the other was located in the S1 CTR. The presence

of this latter, but not of the former, domain resulted in MHV that depended

on both heparan sulfate and CEACAM1a for entry. Additional introduction

of the second heparan sulfate-binding site enabled the virus to become

mCEACAM1a independent (de Haan et al., 2006). In addition, a mutation

of the HVRof S1 may affect CoV tropism as was demonstrated for theMHV

strain JHM (MHV-JHM). The spike protein of MHV-JHM may induce

receptor-independent fusion (Gallagher et al., 1992, 1993). However, dele-

tion of residues in HVR of MHV-JHM resulted in the spike protein being

entirely dependent on CEACAM1a binding for fusion (Dalziel et al., 1986;

Gallagher and Buchmeier, 2001; Phillips and Weiss, 2001).
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5.2 Changes in Proteolytic Cleavage Site and Other S2
Mutations Associated with Altered Tropism

5.2.1 Changes in Proteolytic Cleavage Sites
Although the S2 subunit does not appear to contain any RBDs, several

mutations in this subunit have been associated with changes in the virus’ tro-

pism. Some of these changes affect the cleavage sites in the S protein that are

located at the S1/S2 boundary or immediately upstream of the fusion peptide

(S2
0 cleavage site). As these cleavages appear to be essential for virus-cell

fusion, the availability of host proteases to process the S protein is of critical

importance for the virus’ tropism. The importance of S protein cleavage at

the S1/S2 boundary for the tropism of the virus is exemplified by the BtCoV

HKU4, which is closely related to the MERS-CoV. Although domain B of

the HKU4 S protein can interact with both bat and human DPP4, it is only

in the context of bat cells, but not human cells, that the virus can utilize these

molecules as entry receptors (Yang et al., 2014). In contrast, MERS-CoV

can enter cells of human and bat origin via both DPP4 orthologues. This

difference results from host restriction factors at the level of proteolytic

cleavage activation. Two-amino acid substitutions (S746R and N762A)

in the S1/S2 boundary of the S protein were shown to be crucial for the

adaptation of bat MERS-like CoV to the proteolytic environment of the

human cells (Yang et al., 2015).

Although probably not directly responsible for the tropism change asso-

ciated with the enterically replicating FECV evolving into the systemically

replicating FIPV, loss of a furin cleavage site at S1/S2 junction is observed in

the majority of the FIPVs, whereas this furin cleavage site is strictly con-

served in the parental FECV strains (Licitra et al., 2013). Apparently, con-

servation of this furin cleavage site is not required for efficient systemic

replication. However, as FIPV is generally not found in the feces of cats,

it may well be that loss of the furin cleavage site at S1/S2—as well as muta-

tions in other parts of the genome, such as the accessory genes—may prevent

efficient replication of FIPV in the enteric tracts.

Besides the influence of the S1/S2 cleavage site, virus tropism may also

depend on the S2
0 cleavage site upstream of FP1. In contrast to wild-type

MHV strain A59, a recombinant MHV carrying a furin cleavage site at this

position was shown to no longer depend on lysosomal proteases for efficient

entry to occur (Burkard et al., 2014). As a consequence, this virus was able to

infect cells in which trafficking to lysosomes was inhibited. Cleavage at the

S2
0 site may also be important for the tropism of PEDV, which causes major

damage to the biofood industry in Asia and the Americas (Lee, 2015;
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Song et al., 2015). PEDV replication in cell culture is strictly dependent

on trypsin-like proteases, a requirement which is expected to limit its tro-

pism in vivo to the enteric tract. The trypsin dependency of PEDV entry

was shown, however, to be lifted after introduction of a furin cleavage

site at the S2
0 cleavage site by a single-amino acid substitution. Such muta-

tions may potentially affect the spread of this virus in the pig by allowing it to

replicate in nonenteric tissues in the absence of trypsin-like proteases

(Li et al., 2015).

5.2.2 Other S2 Mutations Associated with Altered Tropism
Mutations in other parts of the S2 subunit than those affecting the pro-

teolytic cleavage sites may also influence the tropism of different CoVs.

Several studies report a correlation between mutations in the HR1 region

of FCoVs and the conversion of FECV into FIPV (Bank-Wolf et al.,

2014; Desmarets et al., 2016; Lewis et al., 2015). Such a correlation

appeared even more convincing for mutations found in the recently

identified FP2 (Chang et al., 2012; Ou et al., 2016). While these corre-

lations suggest an important role for the S protein in the transition of

FECV into FIPV, the causal relationship between these mutations in

S and FIP remains to be determined. It is plausible, however, that such

mutations may play a role in the acquired ability of FIPVs to infect mac-

rophages. Indeed, for serotype II FCoV, the ability to replicate in

macrophages was shown to be determined by residues located in the

C-terminal part of the S2 subunit, although the responsible residues were

not identified (Rottier et al., 2005).

Also for other CoVs, mutations in the S2 subunit have been linked to

changes in the virus’ tropism. A serially passaged MHV-A59 virus was

shown to obtain mutations (M936V, P939L, F948L, and S949I) in and

adjacent to the HR1 region which conveyed host range expansion of the

mutant virus to normally nonpermissive mammalian cell types in vitro

(Baric et al., 1999; McRoy and Baric, 2008). Contrary, Krueger et al.

reported three mutations in the S2 subunit of MHV-JHM (V870A located

upstream of the S2
0 cleavage site and A994V and A1046V located in the

HR1 region) all of which reduced the CEACAM1a-independent

fusogenicity of this virus (Krueger et al., 2001). Many studies on MHV-

JHM point to a crucial role of a leucine at amino acid position 1114 in

S protein fusogenicity. The MHV S cryo-EM structure demonstrates

that the L1114 residue is located in the central helix and contributes to inter-

protomer interactions. A L1114F substitution in the MHV-JHM S protein
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was observed in a mutant strain of JHM and correlated with an increased

S1–S2 stability and the loss of the ability to induce CEACAM1a-

independent fusion (Taguchi and Matsuyama, 2002), while a substitution

of the same residue to an Arg (L1114R) reduced the neurotropism of this

virus (Tsai et al., 2003). Mutants resistant to a monoclonal antibody

(Wang et al., 1992) and soluble receptor (Saeki et al., 1997) also correlate

with substitutions at this specific residue, illustrating the importance of this

residue in S fusogenicity. For the MERS-CoV, mutations in HR1 have

been identified that are thought to be associated with its adaptive evolution

(Forni et al., 2015). Among these sites, position 1060 is particularly interest-

ing, as it appears to correspond to substitutions found in MHV and IBV that

modify the tropism of these viruses (MHV: E1035D; IBV: L857F; Navas-

Martin et al., 2005; Yamada et al., 2009). Substitution E1035D in HR1 of

MHV was shown to restore the hepatotropism of an otherwise non-

hepatotropic MHV, the latter resulting from mutations in the S1 NTR

and the S1/S2 cleavage site. These studies collectively indicate that mutations

in and close to the HR regions may affect CoV tropism, possibly by affecting

the metastability and consequently fusogenicity of the S protein and/or the

formation of the postfusion six-helix bundle.

6. CONCLUDING REMARKS

It appears that changes in the S protein associated with altered tropism

can be found in several regions of the spike protein. These regions obviously

include the NTR and CTR of S1 that are involved in the interaction with

attachment and/or entry receptors. Substitutions within the S1 RBDs may

convey an altered viral tropism by adaptation of the virus to new or

orthologous entry receptors. In addition, the S protein cleavage sites are

important for host tropism as the processing of these sites by host proteases

will critically affect the removal of the S1-mediated locking of the S2
prefusion conformation by shedding of S1 (S1/S2 cleavage site) and the

release of the fusion peptide(s) (S2
0 cleavage site). Finally, changes in S2 (par-

ticularly in the HR regions) may compensate for yet suboptimal spike bind-

ing to orthologous receptors by which low relative affinity interactions

suffice to induce the required conformational changes of the S protein that

ultimately result in the formation of the postfusion six-helix bundle and

virus-cell fusion.

The observation that the different domains of the S protein all contribute

to the tropism of CoVs is indicative of a coordinated interplay between these
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domains. This interplay has also been inferred from several studies, which

reported changes in one S protein subunit often to be accompanied by adap-

tations in the other subunit (Saeki et al., 1997; Wang et al., 1992). In addi-

tion, the interplay between S1 and S2 has also been shown to be important

for changes in the tropism of the virus as indicated earlier (de Haan et al.,

2006; Navas-Martin et al., 2005). The recently published cryo-EM struc-

tures of CoV spike proteins (Kirchdoerfer et al., 2016; Walls et al., 2016)

now provide structural evidence for the complex interplay between the sub-

units and domains of the S protein.

From all these studies, a picture arises in which the S protein is progres-

sively destabilized through receptor engagement and proteolytic activation.

In this process the S1 subunits serve as a safety pin that stabilizes the fusogenic

S2 trimer. The safety pin is discharged upon interactionwith a specific recep-

tor and processing by host cell proteases and thereby gives way to confor-

mational changes of the instable S2 subunit. Subsequent release of the

fusion peptide may resemble the pulling of the trigger which inevitably

results in fusion of viral and host membranes through interaction of the hep-

tad repeats regions.

Based on the presented data we propose a model in which the ability of a

CoV to cross the host species barrier is critically dependent on the interplay

between the different regions of the S proteins. In this model, the probable

low affinity of the S1 RBD for a novel receptor must be compensated by

sufficiently low S2 metastability, which depends on both proteolytic cleav-

age of the S protein and the S2 interprotomer interactions. These required

S protein characteristics may be generated during naturally occurring

quasispecies variation and may result in the ability of the virus to replicate

in and adapt to a new host.
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