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Abstract
A central challenge in infection medicine is to determine the structure and function of host–pathogen protein–protein interac-
tions to understand how these interactions facilitate bacterial adhesion, dissemination and survival. In this review, we focus 
on proteomics, electron cryo-microscopy and structural modeling to showcase instances where affinity-purification (AP) and 
cross-linking (XL) mass spectrometry (MS) has advanced our understanding of host–pathogen interactions. We highlight 
cases where XL-MS in combination with structural modeling has provided insight into the quaternary structure of interspe-
cies protein complexes. We further exemplify how electron cryo-tomography has been used to visualize bacterial–human 
interactions during attachment and infection. Lastly, we discuss how AP-MS, XL-MS and electron cryo-microscopy and 
-tomography together with structural modeling approaches can be used in future studies to broaden our knowledge regarding 
the function, dynamics and evolution of such interactions. This knowledge will be of relevance for future drug and vaccine 
development programs.

Keywords  Host–pathogen interaction · Proteomics · Affinity-purification mass spectrometry · Cross-linking mass 
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Introduction

Infectious diseases are a serious health problem aggravated 
by the current spread of pathogens and their vectors to new 
niches. Concomitantly, the emergence of novel, zoonotic 
pathogens is rapidly increasing as well as the bacterial resist-
ance to antibiotics [1, 2]. In fact, several of the major health 
organizations including the World Health Organization 

(WHO) have identified infectious diseases and the increas-
ing resistance to antibiotics as a foremost global concern 
[3]. The increasing bacterial resistance to antibiotics threat-
ens to make some infections untreatable and poses a major 
threat to modern health care as several medical procedures 
are dependent on effective antibiotics. Actions are needed to 
promote the understanding of the molecular mechanisms by 
which pathogens cause disease and how they modulate their 
host’s cellular machinery to escape immune surveillance. 
Equally important is the development of new treatment alter-
natives to antibiotics [4].

During an infection, a bacterial pathogen circumvents 
host’s immune defenses via highly evolved effector proteins 
or virulence factors that can hijack and re-wire molecular 
host systems. At the same time, host proteins such as immu-
noglobulins, proteins of the complement system and antimi-
crobial proteins together with cells from the host’s adaptive 
and innate immune system, bind to bacterial surfaces and 
effector proteins to neutralize bacteria and prevent infection. 
This dynamic interplay between host and pathogen partly 
depends on the formation of host–pathogen protein–pro-
tein interactions (HP-PPIs) [5, 6]. Typically, HP-PPIs are 
dynamic and are under strong evolutionary pressure [7] to 
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a point where the diversity can inundate the host immune 
system [8, 9]. Structural characterization of HP-PPIs has 
the potential to advance our understanding of the molecular 
mechanisms of infection as well as to provide new targets 
for drug and vaccine development [10, 11]. Integrative struc-
tural biology  combining information from several comple-
mentary approaches within structural biology and biological 
mass spectrometry has the potential to improve the charac-
terization of HP-PPIs (see “INFO BOX 1”) [12].

Info box 1: Integrative structural biology
Integrative structural biology refers to the determination of structural 

model of a protein or protein complex using a variety of differ-
ent structural methods, typically X-ray crystallography, nuclear 
magnetic resonance spectrometry (NMR), single-particle electron 
cryo-microscopy (cryoEM) and small-angle X-ray scattering [12, 
13]. Traditionally, this has meant the fitting of high-resolution crys-
tal structures into nanometer resolution cryoEM maps to generate 
an atomic model for a larger protein complex. Recent technological 
and computational developments are pushing these boundaries, and 
current methods such as chromatographic co-purification of protein 
complexes, cross-linking and hydrogen–deuterium exchange 
mass spectrometry, light scattering, mutagenesis and molecular 
modeling are adding valuable information for data interpretation 
[12, 14]. The individual pieces of data gathered using the different 
methods provide valuable restraints for the determination of the 
conformation(s), position and orientation of the components. The 
simultaneous use of such restraints can significantly improve the 
accuracy, precision and completeness of a given protein complex 
model [12].

Successful integrative structural biology approaches for 
the characterization of HP-PPI networks typically requires 
multi-tiered information. For example, large-scale map-
ping of binary interspecies protein–protein interactions 
is important to outline the degree of interconnectivity 
between proteins within a network. Conversely, generation 
of multiple HP-PPI networks between different species 
will support comparative studies to promote generalized 
conclusions about pathogen-specific mechanisms [15–17] 
and common themes of interaction between different 
pathogen types [6, 18–21]. Such information will clarify 
whether particular bacterial proteins bind to more than one 
human protein to form larger host–pathogen protein–pro-
tein complexes (HP-PPC); or if certain human proteins 
are frequently targeted by several proteins from one or 
many bacterial pathogens [16]. Another important aspect 
is the knowledge of the protein–protein binding site to, for 
example, differentiate between direct and indirect protein 

interactions. In this context, highly resolved information of 
protein binding interfaces across species-specific HP-PPI 
networks has the potential to uncover underlying evolu-
tionary conserved interaction patterns that can be further 
exploited for the development of new therapeutic strategies 
[22]. Lastly, structural information of the individual pro-
tein components as well as intact interspecies protein com-
plexes is required to determine the structural–functional 
relationship of the interactions. The recent development 
and application of several mass spectrometry (MS)-based 
protein interaction analysis strategies [23] together with 
the ‘resolution revolution’ of cryoEM [24–26] offers new 
possibilities to map, characterize and functionally annotate 
HP-PPI networks. In this review, we highlight some recent 
technological developments in affinity-purification (AP) 
and cross-linking (XL) mass spectrometry (MS) applied 
together with electron cryo-tomography (cryoET) to dem-
onstrate how these approaches have provided novel and 
distinct information of bacteria–human HP-PPI networks 
(Fig. 1). We also propose how the increasing maturity of 
AP-MS, XL-MS, single-particle cryoEM and cryoET is 
likely to advance integrative structural biology and mod-
eling approaches.

Affinity‑purification mass spectrometry

AP-MS is an increasingly important technique to explore 
HP-PPIs based on affinity-tagged bacterial or human pro-
teins coupled to a solid matrix to capture interacting pro-
teins (Fig. 2 and “INFO BOX 2”). AP-MS enables the 
identification and quantification of multiple proteins that 
are enriched during the affinity purification. This technique 
generates information on interspecies protein–protein 
interactions and on occasion the dynamics of such inter-
actions. In the broadest application, the entire proteome 
of a given pathogen can be analyzed—most often that of a 
virus—by expressing every protein as individual recom-
binant, affinity-tagged protein to probe proteome-wide 
interspecies HP-PPI [27]. Different versions of AP-MS 
typically rely on different data acquisition schemas and 
different strategies to filter out false interactions to visual-
ize the resulting interaction network as highlighted in the 
examples below.
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Fig. 1   Overview of integra-
tive proteomics, electron 
cryo-microscopy and struc-
tural modeling approaches in 
bacteria–human protein–protein 
interactions; HP-PPI host–path-
ogen protein–protein interac-
tion, HP-PPC host–pathogen 
protein–protein complex, 
cryoEM electron cryo-micros-
copy
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Fig. 2   Schematic overview of the affinity-purification mass spectrom-
etry (AP-MS) and cross-linking mass spectrometry (XL-MS) work-
flows. Interacting prey proteins (e.g., host proteins) to a given bait 
(e.g., bacterial protein) can be identified from a variety of biological 
mixtures, such as infected cells, host-cell lysates, plasma or saliva 
via AP-MS (top panel) or XL-MS (bottom panel). a In the AP-MS 
workflow, interacting prey proteins are enriched from the biological 
sample to an affinity-tagged bait protein attached to a solid affinity 
matrix; whereas in XL-MS, interacting prey proteins can be identi-
fied as associated to the bait via adding a suitable cross-linker to the 
sample and identifying cross-linked bait–prey peptides further down 
the workflow. b For the mass spectrometric identification of interact-

ing proteins via either the AP-MS or the XL-MS workflow, all pro-
teins present in either sample are digested to peptides via dedicated 
enzymes, prior to c mass spectrometric analysis of the samples via 
liquid chromatography tandem mass spectrometry (LC–MS/MS). 
In the XL-MS samples, a typical signature feature for a cross-linked 
peptide is an observable mass-over-charge (m/z) shift in the eluting 
peptides arising from isotopic variants of the cross-linker molecule. 
d Bioinformatic analysis of the acquired spectra allows for the iden-
tification of (novel) HP-PPIs and together with molecular modeling 
for the identification and structural determination of the HP-PPI sub-
complexes and their interaction interfaces
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Info box 2: Affinity-purification mass spectrometry (AP-MS)
Affinity-purification mass spectrometry (AP-MS) is based on the 

principle of enriching proteins (preys) or other biomolecules from 
a complex biological mixture using a ligand (the bait) coupled to a 
solid matrix via an affinity-tag (Fig. 2). The bait and the biological 
sample are mixed for the prey proteins to interact and bind to the 
bait; whereas non-interacting, unbound proteins are washed away. 
The bait–prey complexes are subsequently released from the solid 
matrix, enzymatically digested and processed for MS analysis [17, 
28]. The affinity-tagged proteins are often expressed as recombinant 
proteins [17, 28, 29], but in case of intraspecies PPI analysis, they 
can equally be expressed by the recombinant cells being investi-
gated [30–32]. Common affinity-tags used include the Strep- [17] 
or StrepII-tag [28, 29] and the FLAG-tag [33]. For a comprehen-
sive review of possible tags, see Dunham et al. [34]. The captured 
prey proteins can be identified using various mass spectrometry 
acquisition methods such as data dependent acquisition (DDA) or 
more recently data independent acquisition (DIA) and sequential 
window acquisition of all theoretical mass spectra (SWATH-MS). 
DDA is based on the principle where the most abundant peaks in 
MS1 spectra within in a fixed time frame are selected to be frag-
mented to give rise to MS2 spectra. DIA and SWATH-MS are quite 
interlinked where the user defines a set range of m/z and allows 
the system to pick peaks within this set range separated by a fixed 
m/z value to be fragmented. Common data filtering algorithms for 
distinguishing contaminating proteins from true-positive interactors 
include, for instance, SAINT [35], ComPASS [36] and MiST [37].

In recent work, Happonen et al. generated a quantita-
tive interaction map between the Streptococcus pyogenes 
bacterium and human proteins [28]. The map is composed 
of over 220 high-confidence HP-PPI between streptococ-
cal virulence factors and human plasma and saliva proteins. 
The results demonstrated that S. pyogenes forms a highly 
interconnected HP-PPI network with human proteins, which 
can dynamically change in different bacterial–host micro-
environments. Furthermore, the use of different S. pyo-
genes serotypes and their isogenic mutants revealed that the 
M1-protein, the main surface-attached virulence factor of 
S. pyogenes, interacts with many human proteins forming 
a large HP-PPC. These efforts provide relevant information 
for future vaccine development programs for S. pyogenes 
by identifying the localization of opsonizing antibodies to 
specific regions of the M1-protein. In another paper, Penn 
et al. performed an AP-MS study to identify protein interac-
tions formed between secreted Mycobacterium tuberculosis 
(Mtb) proteins and proteins from human macrophages [29]. 
The study generated a global map of 187 high-confidence 
HP-PPI from 34 secreted Mtb proteins. This enabled the 
identification of a specific interaction between the probable 
conserved lipoprotein LpqN (a secreted Mtb virulence fac-
tor) and the ubiquitin ligase CBL. The identification of the 
interaction between CBL and LpqN infers a host defense 
mechanism limiting the growth of Mtb in macrophages. In 
a third study, Mirrashidi et al. [17] used inclusion membrane 
proteins (Inc) from Chlamydia trachomatis to generate an 
extensive HP-PPI network composed of 354 high-confidence 

lnc–human interactions. The study identified several proteins 
and pathways known to be modulated during infection and 
revealed cellular processes possibly modulated by C. tra-
chomatis. Importantly, several of these HP-PPIs were found 
to be conserved also in viruses, such as HIV [17, 27].

These above examples highlight how AP-MS coupled 
with appropriate bioinformatics data analysis strategies can 
determine interspecies PPIs, provide evidence that several of 
the characterized HP-PPI networks are highly interconnected 
and that certain bacterial proteins can bind to several human 
proteins to potentially form larger inter-species protein com-
plexes [16, 17, 28]. One of the challenges with large-scale 
AP-MS experiments is to filter out biological meaningful 
interactions from proteins that bind in an unspecific manner 
to the bait or the affinity matrix. It can be anticipated, how-
ever, that the generation of additional HP-PPI networks from 
other species will grant access to ‘‘gold-standard’’ datasets 
of known host–pathogen interactions that can be used to 
optimize a score threshold for removal of false protein inter-
actions. In this context, novel quantitative MS-based strate-
gies have already shown to be beneficial for discriminating 
between true and false interactions and has furthermore 
provided new opportunities to reliably quantify temporal 
changes of protein interaction networks [38].

Cross‑linking mass spectrometry (XL‑MS)

Understanding the quaternary structure of molecular 
complexes at a proteome level and close to in vivo condi-
tions holds the potential of improving our understanding 
of HP-PPIs. Additionally, information regarding protein 
interaction sites and direct and indirect protein binding 
within HP-PPIs provides critically important information 
to establish the organization and topology of the HP-PPI 
networks and the arising HP-PPCs [28, 39]. Cross-linking 
mass spectrometry (XL-MS) provides valuable informa-
tion about the structural characteristics of a protein or 
protein complex (Fig. 2, and “INFO BOX 3”). The reac-
tive sides of the cross-linker reagents are separated by a 
fixed distance. Thus, identification of cross-linked peptides 
provides information of the physical proximity of protein 
secondary structure elements, subunits and domains. 
This distance can then be used for molecular modelling of 
protein complexes [39–41]. Recent improvements in the 
chemical cross-linking reagents, mass spectrometers and 
database search algorithms [42] have improved the analy-
sis of cross-linked peptides in complex biological samples 
such as cell lysates [43]. Advanced XL-MS techniques 
could also play an important role in integrative structural 
biology [14] as highlighted in the examples below.
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Info box 3: Cross-linking mass spectrometry (XL-MS)
Cross-linking mass spectrometry (XL-MS) provides evidence of 

proteins interacting with each other by covalently linking MS 
detectable amino acid pairs together [44] (Fig. 2). Commonly used 
cross-linkers can either be homo-bifunctional linking two identical 
amino acids together or hetero-bifunctional linking two differ-
ent amino acids together. Different cross-linkers have different 
lengths of cross-linker spacer arms between the reactive groups. 
In the simplest case, the cross-linker is added to the biological 
mixture containing the proteins of interest, allowed to react with the 
proteins, with subsequent enzymatic digestion of the cross-linked 
proteins to peptides followed by MS analysis (Fig. 2). Importantly, 
cross-linking can equally well be applied to AP-MS samples during 
the experimental setup, cross-linking bait and prey proteins. As in 
the case of AP-MS (see “INFO BOX 2”), different MS acquisition 
techniques can also be used to acquire information on cross-linked 
peptide pairs. Current state-of-the-art data analysis pipelines and 
software for XL-MS data analysis (recently reviewed by Yu and 
Huang [46]), include the TX-MS pipeline [39], the MeroX [47] and 
Mass Spec Studio (https​://www.msstu​dio.ca/) software.

In a study by Schweppe et al. [48], cross-linking Acine-
tobacter baumannii cells with human lung epithelial cells 
led to the first large-scale HP-PPI analysis for A. baumannii. 
Biotin-aspartate proline-PIR n-hydroxyphthalimide (BDP-
NHP) was used to crosslink A. baumannii with human cells, 
followed by tryptic digestion of the cross-linked proteins 
and subsequent MS analysis. This cross-linking experiment 
using human lung epithelial cells identified the outer mem-
brane protein A (OmpA) as a virulence factor. OmpA was 
found to bind to a desmosomal protein providing evidence 
for a novel mechanism of how A. baumannii enables epithe-
lial intrusion and cell invasion. In more recent work, Hauri 
et al. developed a novel XL-MS workflow termed targeted 
chemical cross-linking (TX-MS). TX-MS relies on a com-
bination of chemical cross-linking, high-resolution mass 
spectrometry and high-accuracy protein structure modeling 
[39]. TX-MS was used to construct a high-resolution inter-
species quaternary model of the S. pyogenes M1–human 
protein complex identified in a previous AP-MS study [28], 
as discussed briefly above. The model explains how the 
repeat regions of the streptococcal M1-protein bind to sev-
eral plasma proteins along its length to prevent phagocytosis, 
inhibit complement activation and to secure nutrients [49]. 
At the same time, the model also explains how S. pyogenes 
masks its conserved and vulnerable surface epitopes in the 
binding interfaces with human proteins [50].

The above instances demonstrate that XL-MS is a 
promising technique that promotes the analysis of HP-
PPI networks and elucidates the arising protein complex 
structures. Addition of cross-linkers to proteins stabilizes 
their interactions in native conditions, thus providing valu-
able information on their dynamics and flexible regions. 
Moreover, covalent bond formation between interacting 

proteins leads to capture of weak or transient interactions 
thereby reducing non-specific background [43, 45]. The 
work using TX-MS revealed that the full structure of the 
M1-protein is engaged in protein interactions, as TX-MS 
could confidently locate protein binding interfaces within 
the repeat regions [39]. Interestingly, the model also pro-
posed that some of the plasma proteins are interacting with 
other M1-attached human plasma proteins. This observa-
tion demonstrates that TX-MS has the capability to deter-
mine protein interaction site and the ability to distinguish 
between direct and indirect protein binding [39]. A highly 
interesting prospect of additional XL-MS studies is the 
comparative HP-PPI network protein binding site analysis 
across species. Such a comparative study could uncover 
underlying evolutionary conserved interaction patterns 
[22]. Still, it is clear that additional work is required to 
further address the quadratic expansion of the computa-
tional search space and the unequal fragmentation effi-
ciency of two cross-linked peptides, which typically makes 
it difficult to unambiguously identify the XL-peptides in 
complex samples. These developments would allow to 
more routinely integrate XL-MS workflows in integrative 
structural biology approaches.

Cryo‑electron microscopy to study bacteria–
human interactions

As detailed above, AP-MS and XL-MS can provide 
detailed information of global HP-PPIs, their composi-
tion, dynamic regulation, overall topology and specific 
protein–protein interaction sites. However, even when 
combined with structural modeling, XL-MS and AP-MS 
are unable to provide high-quality, atomic resolution struc-
tural information of the individual proteins in a complex or 
the structure of the complete HP-PPC. For studies where 
high-resolution structural information is required, XL-MS 
can be combined with single-particle cryoEM (see “INFO 
BOX 4”) as described for several large, multicomponent 
human protein complexes as recently reviewed [41, 51]. To 
date, the majority of studies on HP-PPCs applying either 
single-particle cryoEM or cryoET have been performed 
mostly on virus–host PPCs and PPIs—such as interac-
tions with host receptors [52–55]. Such studies show the 
potential for equal ones on bacteria–human interspecies 
PPCs targeting structures at the host–pathogen interface. 
For bacteria–human HP-PPIs, the examples on electron 
cryo-microscopy only include cryoET, which, regardless 
of being a powerful visualization technique, does not pro-
vide atomic resolution detail on the PPI interface.

https://www.msstudio.ca/
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Info box 4: Single-particle electron cryo-microscopy and electron 
cryo-tomography

In single-particle electron cryo-microscopy (cryoEM), the purified 
protein or protein complex is preserved in vitreous water on sample 
grids allowing for their native structural state to be maintained [26]. 
Imaging of such samples is performed under cryogenic tempera-
tures to protect the specimen from radiation damage. Here, the 
assumption is that the particles studied obtain random orienta-
tions on the sample grid. During imaging, tens of thousands up 
to million(s) of two-dimensional (2D) projections of individual 
particles are collected [56, 57]. These 2D projections are aligned 
and averaged to generate a three-dimensional (3D) reconstruction 
of the protein or protein complex using dedicated image-processing 
algorithms [58, 59]. In cases where the 3D structure reaches atomic 
resolution, the amino acid sequence can be built into the 3D map 
to generate a 3D model of the protein or protein complex. Single-
particle cryoEM is typically applied for macromolecular complexes 
ranging in size from below 100 kDa (such as hemoglobin [60]) to 
MDa (such as intact viruses [61]).

In contrast, electron cryo-tomography (cryoET) allows for the three-
dimensional visualization of intact cells and cellular structures. 
The sample(s) studied (intact cells, larger viruses) is preserved 
in vitreous water on special sample grids allowing for its native 
structural state to be maintained, much like in single-particle 
cryoEM. However, during imaging, the sample is rotated within 
the microscope by tilting the grid along one; sometimes two axes, 
and a ‘tilt-series’ of two-dimensional (2D) projections are acquired 
and then used for the calculation of a three-dimensional (3D) 
reconstruction or tomogram [62]. Due to this imaging technique 
and the lack of single-particle averaging for a higher signal–noise 
ratio, the achievable resolution is limited. The resolution is further 
limited by the thickness of the sample, as the electron beam typi-
cally can only penetrate 500 nm into the sample [62]. This means 
in practice that only prokaryotes can be imaged in toto, whereas 
other cells must be thinned down [63]. Mammalian cells and tissues 
are often sliced into thinner sections via cryo-sectioning or focused 
ion beam milling before visualization [25, 64]. The resolution of 
certain symmetric and repetitive features in the tomogram—such 
as smaller cellular components or viral surface proteins—can be 
increased by sub-tomogram averaging [65, 66]. Here, these features 
are processed as individual protein(s) much like as in single-particle 
cryoEM, where 2D projections of individual particles are collected, 
aligned and averaged to generate a 3D reconstruction of the protein 
or protein complex, with the distinction that in sub-tomogram 
averaging, the particles are represented by 3D volumes rather than 
2D projections.

Much of current state-of-the art work in imagining 
interactions between bacteria and human via cryoET have 
been done on Listeria monocytogenes [67] and the intra-
cellular Chlamydia trachomatis [66, 68, 69]. For example, 
Nans et al. [68] cultivated human cells directly on sam-
ple grids, infected them with C. trachomatis elementary 
bodies (EBs) released naturally from co-cultured infected 
cells and visualized them by cryoET. In this way, a sys-
tem was developed to visualize snapshots of Chlamydial 
EBs under physiological conditions during early stage cell 
entry, including the type III secretion system (T3SS) nee-
dles in direct contact with the host plasma membrane [68]. 
Nans et al. also determined the structure of the T3SS in 

a host-free environment and in contact with host plasma 
membrane followed by sub-tomogram averaging, discern-
ing several conformational differences between these two 
states. Nans et al., thus, revealed that the T3SS acts like 
a ‘molecular syringe’ during effector protein release into 
the host-cell cytoplasm [66]. Jasnin et al. used the same 
approach by cultivating epithelial kidney cells directly on 
the sample grids, infecting them with L. monocytogenes 
and visualizing the infected cells by cryoET, followed by 
tomogram interpretation by an automatic segmentation 
algorithm developed specifically for the tracking of actin 
filaments [70]. The work by Jasnin et al. proposed a model 
of actin nucleation and comet tail assembly on the bacte-
rial surface with the bacterial ActA and the human Arp2/3 
[71] being the key players, leading to simultaneous polym-
erization of multiple tangential actin filaments [67, 72].

Although cryoET is an important visualization tech-
nique as demonstrated above, it does not provide molecu-
lar level detail of the HP-PPIs or HP-PPCs. Sub-tomogram 
averaging of frequent protein–protein contacts during 
infection could alleviate this gap in knowledge, much as 
has been done for the C. trachomatis T3SS needle syringe-
like movement when injecting effector proteins into the 
host cytoplasm [66] or in combination with quantitative 
proteomics [65]. There is still considerable amount of 
detailed knowledge in infection medicine to be derived 
from such experiments by exploring new bacteria–human 
host–pathogen systems.

Structural modeling approaches

The successful integration of biological mass spectrometry 
with cryoEM and cryoET will be strongly dependent on 
novel structural molecular modeling approaches. Struc-
tural molecular modeling has changed in recent years by 
the introduction of low-resolution modeling techniques 
and fragment-based movers. These techniques use seg-
ments of known protein structures to ensure that perturba-
tions to the model simulation adhere to biochemical con-
straints that determines the three-dimensional structure of 
the protein [71] (see “INFO BOX 5”). This revolution and 
the increase of understanding it provides have supported 
the design of enzymes [73], the creation of new protein 
topologies [74] and the design of self-assembling pro-
teins [75]. Protein–protein docking and flexible-backbone 
protein–protein docking can now be carried out routinely 
as long as experimental structures or high-quality homol-
ogy models exist [76]. Additionally, molecular modeling 
in conjunction with XL-MS has allowed us to provide 
detailed structures of bacteria–human HP-PPCs [39].
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Info box 5: Molecular modeling
The first step in modeling the structure of a protein is de novo (ab 

initio) modeling of the structure from the amino acid sequence 
without prior knowledge about the spatial arrangement of the 
amino acids [77]. This approach predicts a protein’s folding based 
on physical/chemical principles without making use of explicit 
homolog or template structures in contrast to template-based 
algorithms. Some successful de novo approaches according to the 
thirteen Critical Assessment of Techniques for Protein Structure 
Prediction (CASP13) include MULTICOM [78], SWISS-MODEL 
[79], QUARK [80], and Rosetta [81].

Predicting the structure of a protein can also be addressed by com-
parative modeling approaches when there is a suitable template or 
homologous structure that can be used to guide the process. Com-
parative modeling approaches mainly align the sequence of two (or 
more) proteins and use the template structure(s) for the similar parts 
and try to model the gaps by de novo modeling or other fragment-
based approaches. In this category, some of the popular softwares 
are RosettaCM [82], Modeler [83], HHpred [84], and I-TASSER 
[85].

In addition to the aforementioned methods, models or low-resolution 
experimental data from NMR or X-ray crystallography can be 
improved and refined by several computational techniques such as 
loop-modeling approaches like next-generation KIC (NGK) [86], 
and DaReUS-Loop [87, 88] or experimental data-based protocols of 
Rosetta such as RosettaES [89], CS-Rosetta [90], and RosettaNMR 
[91].

Future directions—towards an integrative 
approach in bacteria–human interactions

With current state-of-the-art instrumentation, the constantly 
improving data-processing algorithms and bioinformatics 
tools—particularly in MS and electron microscopy—there 
is a vast possibility of combining quantitative and struc-
tural mass spectrometry with advanced structural biology. 
Such methods could encompass AP-MS, XL-MS, hydro-
gen–deuterium exchange mass spectrometry (HDX-MS), 
native mass spectrometry, single-particle cryoEM, X-ray 
crystallography, NMR, small angle X-ray and neutron scat-
tering methods, together with cellular visualization meth-
ods (foremost cryoET but also, e.g., correlative light and 
electron microscopy). As mentioned earlier, such integrative 
studies would advance our understanding in pathogenesis, 
yet a lot remains to be done with respect to applying such 
approaches in medical microbiology. Current studies have 
combined electron cryo-microscopy, XL-MS and structural 
modeling to a large extent to understand intra-species, i.e., 
human–human protein complexes [40, 92–97].

In this review, we have showcased different techniques 
involved in understanding different tiers in HP-PPI. Inte-
grative approaches involving AP-MS, XL-MS, cryoEM and 
structural modelling could provide combined knowledge 
and valuable insights into the process of infection. AP-MS 

identifies interacting protein pairs; however, it fails to iden-
tify the interacting peptides and domains between proteins. 
AP-MS coupled with XL-MS would not only identify inter-
acting proteins, but also stabilize transient interactions and 
identify amino acid pairs between the interacting proteins. 
Complementing AP-MS and XL-MS with single-particle 
cryoEM would provide additional structural information 
on the complete HP-PPC. Both XL-MS and single-particle 
cryoEM require small sample amounts and both can be 
applied to heterogeneous samples. For larger protein com-
plexes, where the local resolution in cryoEM maps can vary 
considerably with usually highly defined core regions and 
more poorly resolved densities towards the edges, XL-MS 
can help in resolving the structure of these edges by provid-
ing the needed distance constraints between proteins or their 
domains [51]. However, whereas it is difficult to determine 
via XL-MS whether a cross-link between peptides arises 
from a more or less populated protein (complex) conforma-
tion, this information can be determined via single-particle 
cryoEM by classification particles and derived volumes dur-
ing data processing [51, 98]. Other limitations of XL-MS 
relate to possible unequal fragmentation efficiency of two 
cross-linked peptides and identification of sparse networks 
of cross-linked distance constraints. Incorporating struc-
tural modeling approaches such as de novo modeling, com-
parative modeling, and protein–protein docking will play 
an important role in overcoming these limitations. TX-MS 
[39] as mentioned above is a successful example of such 
combination, as it overcomes the aforementioned limitations 
and enables the structural modeling of large macromolecular 
assemblies with dense networks of distance constraints. The 
usefulness of XL-MS to structural, proteome-wide studies 
will further be pushed by recent developments in cross-link-
ers [43] and structural modeling and docking approaches 
[14, 39, 43]. It can further be anticipated that integrative 
structural approaches in medical microbiology will be 
beneficial for the design of novel therapeutic approaches. 
For example, the emerging field of structure-based design 
of vaccines—also referred to as structural vaccinology—
has recently started to deliver new vaccine antigens [99]. 
Structural vaccinology aims at optimizing protective B-cell 
epitopes using a combination of X-ray, electron microscopy, 
mass spectrometry and computational approaches [100]. 
Pioneering studies have shown that HP-PPI between human 
proteins and bacterial proteins influences protective antibody 
responses [101, 102], which is of importance for rational 
design of cross-protective antigens [103]. Furthermore, effi-
cient physical and structural epitope mapping abilities using 
for example XL-MS, HDX-MS, X-ray crystallography and 
more recently cryoEM for large antigens provides essential 
information for antigen engineering to guide vaccine design 
and optimization [100]. Such information in combination 
with human B-cell repertoire sequence analysis represents 
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a promising way forward for investigations regarding the 
structural basis for epitope immunodominance and the use 
of such information in vaccine design [99]. Further techno-
logical developments in this area will enable us to enhance 
our understanding of the structural basis for HP-PPI and 
immunogenicity to further improve vaccine efficiency and 
potentially other targeted treatment strategies [104].

Concluding remarks

In this review, our focus is on demonstrating how AP-MS, 
XL-MS, cryoET and molecular modeling have been suc-
cessfully used to address the organization and dynamics of 
HP-PPI networks and the structure of HP-PPCs. Incorporat-
ing integrative structural biology more broadly in infection 
medicine research would increase our understanding of how 
the diverse HP-PPIs facilitate bacterial adhesion, dissemina-
tion and survival within the host. These efforts could also 
have a future impact on drug development programs to inter-
fere with the interaction and assembly of these HP-PPCs as 
well as for vaccine development strategies to combat these 
infections.
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