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Abstract

Mutation rate varies greatly between nucleotide sites of the human genome and depends both on the global genomic
location and the local sequence context of a site. In particular, CpG context elevates the mutation rate by an order of
magnitude. Mutations also vary widely in their effect on the molecular function, phenotype, and fitness. Independence of
the probability of occurrence of a new mutation’s effect has been a fundamental premise in genetics. However, highly
mutable contexts may be preserved by negative selection at important sites but destroyed by mutation at sites under no
selection. Thus, there may be a positive correlation between the rate of mutations at a nucleotide site and the magnitude of
their effect on fitness. We studied the impact of CpG context on the rate of human–chimpanzee divergence and on
intrahuman nucleotide diversity at non-synonymous coding sites. We compared nucleotides that occupy identical positions
within codons of identical amino acids and only differ by being within versus outside CpG context. Nucleotides within CpG
context are under a stronger negative selection, as revealed by their lower, proportionally to the mutation rate, rate of
evolution and nucleotide diversity. In particular, the probability of fixation of a non-synonymous transition at a CpG site is
two times lower than at a CpG site. Thus, sites with different mutation rates are not necessarily selectively equivalent. This
suggests that the mutation rate may complement sequence conservation as a characteristic predictive of functional
importance of nucleotide sites.
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Introduction

The functional and phenotypic effects of mutations and,

consequently, the strength of negative selection vary widely among

nucleotide sites in any genome. At the opposite ends of the

continuum, mutations at some sites are effectively neutral, while

mutations at some other sites are lethal. Nucleotide sites can be

subdivided, according to their molecular function, into classes with

different typical strengths of negative selection. Generally, rapidly

evolving segments of intergenic regions and introns, as well as most

of synonymous coding sites, are controlled by only weak selection

or even by no selection at all. Slowly evolving segments of

intergenic regions and introns, as well as UTRs and non-

synonymous coding sites, are under much stronger selection

(e.g., [1–8]). However, even within such functional classes, the

strength of negative selection varies widely among individual sites

(e.g., [9–12]).

The rate of spontaneous mutation is also not uniform across

individual sites [13–15]. The standard deviation of the mutation

rate at a site may be comparable to its mean. Moreover, some rare

hot-spot sites may mutate much more frequently than an average

site. Thus, the mutation rate at a site depends both on its local

sequence context (e.g., [16–19]) and on its global location within

the genome [13–15], although these dependencies are rather

different in different groups of organisms [19,20]. In particular, in

mammals the 59CpG39 context substantially increases the rate of

transversions, and especially transitions [16–19,21].

Mutation and selection are generally thought to be independent

evolutionary forces [22]. In other words, the rate with which a

mutation occurs is routinely assumed to be independent of the

effect of this mutation on fitness. Inferences of the strength of

selection on specific genes and sites within genes usually rely on

this assumption. Although selection for reduced mutability is

stronger at sites where mutations are more deleterious [23], it is

hard to imagine adaptive fine-tuning of mutation rates at the level

of individual nucleotide sites. Thus, one might expect selective

constraint and mutability to vary more or less independently

across individual sites.

However, another phenomenon may lead to a seemingly

counterintuitive association between stronger negative selection

and higher mutation rates. Sites that are under weak or no

selection are free to evolve and to get rid of hypermutable contexts.

In contrast, negative selection will preserve such contexts at

functionally important sites, provided that they confer a higher
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fitness. In particular, non-synonymous [24] and even synonymous

[21,25] coding sites of mammalian genomes are enriched, relative

to what is expected at a neutral mutational equilibrium, by CpG

contexts, leading to a substantially higher mutation rate within

coding exons than within introns.

Here we consider human non-synonymous coding sites and

subdivide them into just two classes – those within and those

outside CpG contexts, because in mammals this context exerts by

far the strongest influence on the mutation rate [19]. Then, we

compare the rates of human-chimpanzee divergence [26] and the

levels of intrahuman polymorphism at coding sites that are within

vs. outside CpG context. We have found that the strength of

negative selection acting at non-synonymous coding sites is

substantially higher within hypermutable CpG contexts.

Results

If identical nucleotides at identical sites within codons of

identical amino acids are under the same selection, regardless on

whether they are located within or outside CpG context, then this

context would equally impact the mutation rate, the rate of

divergence between species, and the level of intraspecies

nucleotide diversity. If, however, negative selection is stronger

within CpG context, this context would elevate the level of

nucleotide diversity and especially the rate of divergence, to a

lesser extent than the mutation rate.

Impact of CpG Context on Mutation Rates
It is well known that in mammals CpG context substantially

increases the mutation rate; however, the exact magnitude of this

effect has not been established with certainty. We used three

sources of information on the impact of CpG context on the rates

of transitions and transversions: 1) direct data on Mendelian

diseases in humans [18], 2) Bayesian Markov Chain Monte Carlo

analysis of evolution of several species of mammals [19], and 3)

parsimony-based analysis of human-chimpanzee-orangutan ge-

nome alignments (Table 1). The third analysis must underestimate

the impact of CpG context on transversion and especially

transition rates, because two nucleotide substitutions, one on the

edge leading to a sister species (human or chimpanzee) and the

other on the edge leading to the outgroup (orangutan), can happen

within a CpG context. Such occurrences will lead to underesti-

mation of the fraction of sites that were within CpG context in the

common ancestor of human and chimpanzee and, thus, of the

fraction of allele substitutions that destroy a CpG context. Indeed,

this underestimation is evident from Table 1. Thus, below we will

use the mean values of the first two estimates and will assume that

in humans CpG context increases the rate of transitions by the

factor of 14.5, and the rate of transversions by the factor of 3.5.

Impact of CpG Context on the Rate of Evolution and
Intraspecies Diversity at Non-Synonymous Sites

We used human-chimpanzee-orangutan alignments of coding

sequences to compare the rates of a particular nucleotide

substitution that causes a particular amino acid replacement

within vs. outside CpG context (CpG vs. �CpG). For example, a

PRL replacement, caused by a CRT transition, can occur within

(CCGRCTG; the site of substitution is boldfaced) or outside (e.g.,

CCCRCTC) CpG context. The common ancestor of humans

and chimpanzees, as revealed by the orangutan outgroup, carried,

at all the loci we studied, TargetPRL CpG = 18,088 of CCG codons,

and TargetPRL�CpG = 185,826 of CCA, CCT, or CCC codons

(Table 2). There were 215 and 284 PRL replacements

(ReplacementsPRL CpG and ReplacementsPRL�CpG), caused by

CRT transitions, within CpG and outside CpG contexts,

respectively. Thus the impact of CpG context on the rate of

PRL replacements in the course of human-chimpanzee diver-

gence is

CpGimpact P?Lð Þ~
Replacements P?L CpGð Þ

�
Target P?L CpGð Þ

Replacements P?L�CpGð Þ
�

Target P?L�CpGð Þ

~7:78:

ð1Þ

This analysis relies on the identification of the human-

chimpanzee ancestral state using orangutan as outgroup. To test

whether possible erroneous identifications affect our results, we

repeated the same analysis using the macaque outgroup, which

must lead to more errors, because macaque is about three times

more distant from the human-chimpanzee last common ancestor

than orangutan. Also, all the analyses were performed only for

human and chimpanzee coding sequences, under the assumption

Table 1. Estimates of the impact of CpG context on the mutation rates of transitions and transversions.

Ratio Kondrashov (2003) Hwang & Green (2004) average (human-chimp)-orangutan

TransitionCpG

Transition�CpG

15.4 13.7 14.5 12.2

TransversionCpG

Transversion�CpG

2.8 4.2 3.5 2.4

The last column contains ratios computed using a ((human-chimp)-orangutan) alignment.
doi:10.1371/journal.pgen.1000281.t001

Author Summary

Mutations occur in some sites in the genome more
frequently than in others. Similarly, mutations in some sites
have greater consequences than in others. The effect of
mutations might not be independent of the frequency
with which mutations occur. Indeed, sites where mutations
happen frequently will be preserved if the effects of these
mutations are severe or will otherwise be allowed to
mutate if there are no consequences for the organism. We
compared both human–chimpanzee differences and
sequence variation among humans in protein coding
genes. We found that highly mutable nucleotide sites,
such as the dinucleotide CpG, are on average more
important and more frequently preserved by natural
selection. Using this information, together with other
features such as sequence conservation, opens a new
perspective to predict the effect of human mutations,
including their potential involvement in diseases.

Hypermutable Sites Are under Stronger Selection
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that the proportion of CpG context within these sequences is at

equilibrium. Estimates of the impact of CpG context on the rates

of evolution obtained in this way were only slightly higher than

estimates obtained using the orangutan outgroup (data not

reported).

For intraspecies nucleotide diversity, the number of SNPs that

involve a particular amino acid change within and outside CpG

context were used in equation (1), instead of the corresponding

numbers of substitutions (Table 2). The direction of an amino acid

change associated with a particular SNP was determined by the

orthologous chimpanzee sequence. We assumed that the ratio of

CpG vs. �CpG target sizes for a particular amino acid

replacement was the same as for human-chimpanzee divergence.

Indeed, the SNPs we used were obtained by resequencing of

,11,000 human loci [27] so that we can expect the nucleotide

composition of this sample to be close to that of all protein-coding

loci. The data on the impacts of CpG context on human-

chimpanzee divergence and on intrahuman diversity are shown in

Table 2 and in Figure 1. Thus, the impact of CpG context on the

rate of divergence, i.e. the average ratio of the rates of divergence

within vs. outsides CpG contexts, was 7.1 for transitions and 2.5

for transversions. The average ratio of values of intrahuman

diversities for non-synonymous SNPs within vs. outsides CpG

contexts was 11.2 for transitions and 2.4 for transversions (Table 3).

If macaque instead of orangutan is used as an outgroup, the

observed impacts of CpG context on the rates of divergence

decline only slightly (6.8 instead of 7.1 for transitions, and 2.1

instead of 2.5 for transversions).

We applied several tests to evaluate the significance of the

difference of the impact of CpG context on non-synonymous

divergence and diversity. This difference is insignificant for

transversions and highly significant for transitions, according to

the x2 test (p = 2.8?10216). However, the x2 test does not stratify

data according to amino acid replacements, which is essential in

our case. We used two approaches to perform stratified analysis of

contingency tables. First, we combined p-values of separate tests

for each amino acid replacement, using Stouffer (p,2.2?10216)

and Fisher (p = 2.7?10216) methods. We also applied Cochran-

Mantel-Haenszel test, the standard test for stratified analysis of

contingency tables (p = 4.6?10216).

Impacts of CpG Context at Synonymous and Non-Coding
Sites

We measured the impacts of CpG context on rates of evolution

and nucleotide diversity at synonymous coding and at non-coding

sites (Table 3). As it was the case for non-synonymous sites, we

assumed parsimony. Thus, the data on rates of evolution at non-

coding sites shown in Table 3 are taken from ((human-

chimpanzee)-orangutan) comparison shown in Table 1.

We can see that the impacts of CpG context on non-coding

human-chimpanzee divergence and intrahuman nucleotide diver-

sity are rather close to the corresponding impacts on the mutation

rate, which is consistent with effective neutrality of most of the

non-coding DNA in humans. The figures in Table 3 are likely to

be slightly underestimated, due to substitutions in the outgroup

lineage.

In contrast to non-coding sites, at synonymous sites the impacts

of CpG context on human-chimpanzee divergence and intrahu-

man nucleotide diversity due to transitions, but not to transver-

sions, are substantially lower than the corresponding impacts on

the mutation rates, although still higher than the corresponding

impacts at non-synonymous sites. This implies that some selection

acts on synonymous transitions within CpG context, and that this

selection is weaker than the corresponding selection at non-

synonymous sites. Several analyses revealed weak selection

favoring Cs and Gs at synonymous sites [25,28].

Discussion

Our results show that negative selection is stronger within CpG

contexts than in less mutable sites at identical codon positions. We

can see that the per nucleotide site rate of transitions, accepted in

the course of human-chimpanzee divergence, is on average 7.1

times higher within CpG contexts than outside CpG contexts

(Table 3). A comparison of this figure with the impact of CpG on

the corresponding mutation rate (Table 1) suggest that a transition

that occurred within CpG context gets fixed in the course of

human-chimpanzee divergence with a probability of 7.1/

14.5 = 0.49 of the probability of fixation of a transition that

occurred outside CpG context. Thus, nucleotides within CpG

context are protected by a stronger selection.

In the case of SNPs, we observed a similar but weaker effect. On

average, non-synonymous SNPs caused by transitions are 11.2 times

more common within CpG context than outside of it. Thus, a non-

synonymous transition mutation that occurred within CpG context

is observed as a SNP with a chance that constitutes only 11.2/

14.5 = 0.77 of the chance of observing a transition that caused the

same amino acid replacement but occurred outside CpG context.

In other words, in the case of transitions, CpG context increases

the level of intrahuman diversity and in particular the rate of non-

synonymous divergence less than proportionally to its impact on the

mutation rate. This demonstrates that negative selection at non-

synonymous sites within CpG context is stronger than at sites outside

it. This seemingly counterintuitive pattern probably has a simple

evolutionary explanation: nucleotide sites that are not under strong

negative selection will eventually lose most of their hypermutable

Figure 1. CpG impact on transitions in amino acid changes. The
effect on human-chimpanzee divergence is shown in blue; the effect on
non-synonymous SNPs in human in red.
doi:10.1371/journal.pgen.1000281.g001

Table 3. Average impacts of CpG context for different types
of sites using orangutan as outgroup.

CpGimpact Type Divergence Diversity

non-synonymous transition 7.1 11.2

transversion 2.5 2.4

synonymous transition 8.6 11.7

transversion 2.1 2.3

non-coding transition 12.2 13.7

transversion 2.4 2.0

doi:10.1371/journal.pgen.1000281.t003
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CpG contexts. Thus, hypermutable contexts must be disproportion-

ally common at sites under strong negative selection.

It is not surprising that a stronger negative selection within CpG

contexts affects the rates of evolution more than it affects

intraspecies diversity. Indeed, a substantial fraction of SNPs that

segregate within a population are nevertheless subject to negative

selection that is strong enough to prevent their fixation [22]. The

large difference between the impacts of CpG context on

polymorphism and divergence suggests that the observed effect is

mostly due to nucleotide sites under weak selection, which affects

divergence more than polymorphism. Such sites are abundant in

human protein coding genes [9–11,29].

Predictably, the impacts of CpG context at mostly selectively

neutral noncoding sites do not differ substantially from its impacts

on the mutation rate. In contrast, coding synonymous sites within

CpG contexts evolve slower and are less diverse within humans

than what would be expected on the basis of the mutation rates

alone. This is not surprising because the impact of CpG context

must be sensitive to even weak selection [25,28]. Indeed, CpG

contexts are greatly underrepresented at purely neutral sites, but

even a rather weak selection is expected to increase their

prevalence substantially, as long as the coefficient of selection is

of the order of the reciprocal of the effective population size or

higher [22]. CpG contexts are much more common within

synonymous sites than within non-coding sites [25].

CpG context exerts a much weaker influence on the rate of

transversions than on the rate of transitions (see Table 1). Thus, it

is not surprising that the effects, which we can easily observe in the

case of transitions, are not visible in the case of transversions. More

data are needed to determine if these effects, however weak, are

still present in the case of transversions.

Our estimates of the impact of CpG context on divergence

(Tables 2 and 3) are probably too low due to substitutions in the

outgroup lineage. However, these estimates depend only slightly

on whether orangutan or macaque is used as an outgroup,

although in the second case the prevalence of multiple substitu-

tions at a site should be much higher. Also, the estimates computed

from only human and chimpanzee genomes assuming equilibrium

of the CpG content are only slightly higher than the estimate

obtained using an outgroup. Further, the estimate of the impact of

CpG context on human-chimpanzee divergence due to transitions

at non-synonymous sites is much lower than the corresponding

estimate for non-coding sites computed using the same outgroup

(Table 3). This indicates that the low impact of CpG contexts not

just an artifact of the assumption of parsimony. Even under the

impossible assumption that every site that is located within CpG

context in either human or chimpanzee sequence was also located

within CpG context in their last common ancestor, the resulting

estimate of the impact of this context on the rate of divergence

equals 12 and is still lower than CpG impact on raw mutation rate.

The analysis of intrahuman diversity relies on the chimpanzee

sequence for determining the identity of ancestral alleles. Misiden-

tification of ancestral alleles would result in an underestimation of the

impact of CpG context because ancestral CpGs would preferentially

evolve in the chimpanzee lineage. To evaluate a possible extent of this

bias we repeated the analysis using major and minor alleles instead of

inferred ancestral and derived alleles. The resulting estimate of the

impact of CpG context on non-synonymous transitions is 11.5, which

is only slightly higher than 11.2 (Table 2).

Negative selection can also be detected in polymorphism data

independently of intraspecies nucleotide diversity through changes

in the distribution of allele frequencies, because such selection

causes an excess of low-frequency alleles. In particular, minor

allele frequencies of non-synonymous SNPs that affect slowly

evolving (conserved) protein sites are reduced [30,31]. The excess

of rare alleles was not statistically significant in the two datasets of

human SNPs used in this study. The effect of weak negative

selection on allele frequency distribution is expected to be much

smaller than on divergence and data on rare SNPs in protein

coding regions are sparse. Thus, the analysis of allele frequency

distribution may lack statistical power.

Our analysis suggests that mutation rates can be used in

computational methods to predict which amino acid replacements

are deleterious [32]: a replacement that occurred at a highly

mutable site is more likely to be deleterious. Currently, prediction

methods rely on the properties of an encoded amino acid

sequence, its conservation between species, and the properties of

the corresponding protein. Our analysis suggests that taking the

DNA-level features of an amino acid replacement into account will

increase the accuracy of prediction of its effect on protein function.

Materials and Methods

To determine the impact of CpG context on mutation rates we

constructed a human-chimpanzee-orangutan alignment for a

,1 Mb piece of orangutan genomic sequence (gi:119380173),

and analyzed it assuming parsimony. To study the impact of CpG

context on the rate of evolution, we constructed human-

chimpanzee-orangutan and human-chimpanzee-macaque align-

ments of coding regions of individual genes by finding the

orthologous macaque gene for each UCSC human-chimpanzee

pair with the by-directional best BLAST hits approach [33]. We

also repeated the analysis on just two sequences assuming

equilibrium CpG content (data not shown). This analysis resulted

in similar estimates.

For the analysis of intrahuman diversity we used a comprehen-

sive and systematic Applera dataset [27]. Chimpanzee nucleotides

corresponding to human SNP positions were identified using the

SNP UCSC genome track [34]. Applera set is gene centric.

Therefore, for the analysis of non-coding diversity, we used

randomly ascertained SNPs from the Perlegen set [35]. We also

verified that coding SNPs from the Perlegen dataset produced

estimates highly similar to those based on the Applera dataset. We

analyzed each population separately and excluded SNPs, which

were fixed in the population and could not be mapped to

chimpanzee nucleotides (<4.6%).

Statistical analysis was carried out using R statistical package

v2.7.0 [36]. p-Values for individual amino acid residue contin-

gency tables were computed by Monte Carlo simulations with the

number of replicates B = 106. To obtain combined p-values we

used Stouffer’s z-scores [37] and Fisher’s sum of logs of p [38]

methods. Cochran-Mantel-Haenszel test of conditional indepen-

dence [39] was utilized to ensure there was no three-way

interaction with the amino acid residue type.
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