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Aims: To identify the key differentially expressed genes (DEGs) in islet and investigate their
potential pathway in the molecular process of type 2 diabetes.
Methods: Gene Expression Omnibus (GEO) datasets (GSE20966, GSE25724, GSE38642) of
type 2 diabetes patients and normal controls were downloaded from GEO database. DEGs
were further assessed by enrichment analysis based on the Database for Annotation, Visu-
alization and Integrated Discovery (DAVID) 6.8. Then, by using Search Tool for the Retrieval
Interacting Genes (STRING) 10.0 and gene set enrichment analysis (GSEA), we identified
hub gene and associated pathway. At last, we performed quantitative real-time PCR (qPCR)
to validate the expression of hub gene.
Results: Forty-five DEGs were co-expressed in the three datasets, most of which were
down-regulated. DEGs are mostly involved in cell pathway, response to hormone and bind-
ing. In protein–protein interaction (PPI) network, we identified ATP-citrate lyase (ACLY) as
hub gene. GSEA analysis suggests low expression of ACLY is enriched in glycine serine
and threonine metabolism, drug metabolism cytochrome P450 (CYP) and NOD-like recep-
tor (NLR) signaling pathway. qPCR showed the same expression trend of hub gene ACLY
as in our bioinformatics analysis.
Conclusion: Bioinformatics analysis revealed that ACLY and the pathways involved are pos-
sible target in the molecular mechanism of type 2 diabetes.

Introduction
According to International Diabetes Federation (IDF) reports, there were 425 million diabetic patients
worldwide in 2017, of which type 2 diabetes accounted for more than 90%. It is estimated that in 2045
the number of people with diabetes will increase to 629 million [1]. Diabetes often leads to cardiovascular
complications, which have a serious impact on the patient’s life and quality of life, and also cause a heavy
social burden. The pathophysiological mechanism of type 2 diabetes is still not very clear at present. It is
currently believed that type 2 diabetes is mainly caused by genetic factors and the environmental influence
[2,3]. There have been many basic researches on the pathogenesis of diabetes. Type 2 diabetes related diag-
nosis and treatment have progressed year by year recently, but the incidence of diabetes is still increasing
[4]. One of the reasons may be that most studies were performed on cells and animals but not humans
and were not targeted at a particular genetic event. The genetic cause accounts for a part of the etiology
in type 2 diabetes. To prevent and reduce the complications of type 2 diabetes, it is especially important
to clarify the pathophysiological mechanism at genetic level.

At present, with the wide use and development of high-throughput sequencing, bioinformatics anal-
ysis is of great advantage for understanding the pathophysiological mechanism of type 2 diabetes on
the genetic basis. Many bioinformatics datasets in Gene Expression Omnibus (GEO) database (https:
//www.ncbi.nlm.nih.gov/geo/) have been applied in mining the pathogenesis of type 2 diabetes. A research
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revealed that the methylation status of key genes participate in the pathogenesis of diabetic nephropathy [5]. Studies
have explored mRNA expression profiles in the skeletal muscle, retina and peripheral blood of type 2 diabetes in
GEO [6–8]. Islet is an important organ involved in the type 2 diabetes, and studies have demonstrated previously
bioinformatics analysis in islet GEO datasets. However, no study was designed to integrate all the islet datasets in
GEO. In the present study, we integrated all the three islet datasets of human type 2 diabetes datasets in GEO, using R
software packages and bioinformatics analysis to explore molecular mechanism of the pathogenesis in diabetic islet.

Materials and methods
Datasets
GEO Datasets database was selected for our study. We used the key words ‘diabetes mellitus, type 2’[MeSH
Terms] OR type 2 diabetes [All Fields]) AND (‘gds’[Filter] AND ‘human’[Organism] AND ‘Expression profiling
by array’[Filter]). Next, we screened these datasets according to the following inclusion criteria: (i) islet tissues; (ii)
normal islets used as controls. The gene expression datasets of GSE20966, GSE25724 and GSE38642 were included.
The platform for GSE20966 is GPL1352, [U133 X3P] Affymetrix Human X3P Array, which includes ten samples
of β-cells obtained from normal pancreases and ten samples of pancreases β-cells obtained from two diabetic sub-
jects. The platform for GSE25724 is GPL96, [HG-U133A] Affymetrix Human Genome U133A Array, which includes
seven normal pancreatic islets samples and six type 2 diabetes pancreatic islets samples. The platform for GSE38642
is GPL6244, [HuGene-1 0-st] Affymetrix Human Gene 1.0 ST Array [transcript (gene) version], which includes 54
normal pancreatic islets samples and 9 type 2 diabetes pancreatic islets samples. MINiML formatted family file(s)
were downloaded.

Screening of differentially expressed genes
The downloaded platform and MINiML files were transformed by R language software 3.4.4. The probe name in
the MINiML files was converted into gene symbol by the R package and saved as a TXT file. Then, three datasets
were standardized by quantiles. Gene differential analysis was conducted using the limma R package. We considered
differentially expressed genes (DEGs) as fold change (FC) > 1.2 and P-value <0.05. Heatmaps were generated by a
web tool ClustVis [9].

DEGs pathway encrichment analyses
On the basis of the DEGs from the three datasets, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) annotations were performed using the Database for Annotation, Visualization and Integrated Discovery
(DAVID) 6.8 (https://david.ncifcrf.gov/). GO analysis is a widely useful bioinformatics tool to investigate the annota-
tion of gene and proteins. It can be used to integrate annotation data and provide tools access to all the data provided
by the project. KEGG is able to integrate currently known protein interaction network information. The pathways
of KEGG mainly include: metabolism, genetic information processing, environmental information related processes,
cell physiological processes and drug research. DAVID can perform biological analyses of genes. It is a comprehensive
online program for interpretating biological functional annotations. A P-value of <0.05 was identified as significant
difference.

Protein–protein interaction program analysis
Search Tool for the Retrieval Interacting Genes (STRING) 10.0 (http://string-db.org/) is an online software of inter-
actions of genes and proteins. Cytoscape 3.6.0 is an open-source tool for network visualization of genes and proteins.
Protein–protein interaction (PPI) of the DEGs were constructed from the STRING database and were visualized by
Cytoscape. Venn diagrams were performed to integrate the top 100 genes from the three GEO datasets by the website
Venny (http://bioinfogp.cnb.csic.es/tools/venny/index.html). The cut-off criteria were a combined score <0.15 and
a node degree of ≥10 for screening hub genes. The Molecular Complex Detection (MCODE; version 1.31) app in
Cytoscape was used to analyze PPI network modules. BINGO (The Biological Networks Gene Ontology tool; version
3.03) plugin in Cytoscape was conducted to the GO network of hub genes from the PPI network.

Gene set enrichment analysis
We selected hub gene for further Gene Set Enrichment Analysis (GSEA). GSEA is a free chip data analysis tool. It
is based on the existing gene sets. GSEA performs biological information from another view. It can further improve
our understanding of relevant biological events. The associations between hub gene and previously defined gene
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sets were analyzed. The biologically defined gene sets were obtained from the Molecular Signatures Database v5.2
(http://software.broadinstitute.org/gsea/msigdb/index.jsp). We considered normal P-value <0.05.

In vitro glucotoxicity model
Mouse islet β cell line βTC6 cell was purchased from Shanghai Institutes for Biological Sciences, CAS (Shanghai,
China). The cells were cultured in DMEM (Gibco) containing 10% (vol./vol.) FBS (PAN) at a condition of 5% CO2 at
37◦C. The experiment was continued when the cell growth reached 70–80% confluence. The experimental cells were
6–8 passage cells. Cells were divided into two groups: normal group and glucotoxicity model group. Normal group
was cultured at a concentration of 5.5 mM glucose. Glucotoxicity model group was first cultured at 5.5 mM glucose
for 24 h and then incubated with 25 mM glucose for 72 h [10].

Quantitative real-time PCR
We selected key gene for validation using quantitative real-time PCR (qPCR). Total RNA from the cells was extracted
with Quick-RNA™ Microprep Kit (Zymo, California, U.S.A.). cDNA synthesis was carried out using PrimeScript™
RT Reagent Kit with gDNA Eraser (TaKaRa) according to the manufacturer’s protocol. qPCR was performed with TB
Green Premix ExTaq II (Tli RNaseH Plus) (TaKaRa) and analyzed with LightCycler® 96 Instrument (Roche, Switzer-
land). The ��Ct method was used to calculate relative changes in mRNA and β-actin was used as the internal stan-
dard [11]. Mouse genes and primers: ATP-citrate lyase (ACLY), forward, 5′-AGGAAGTGCCACCTCCAACAGT-3′,
reverse, 5′-CGCTCATCACAGATGCTGGTCA-3′;β-actin, forward, 5′-GCCACCAGTTCGCCATGGAT-3′, reverse,
5′-GCTTTGCACATGCCGGAGC-3′.

Statistical analysis
Statistical analysis was performed on SPSS 15.0 software. Data are expressed as mean +− S.D. Student’s t test was used
to evaluate the statistical significance of difference in two groups. P-value less than 0.05 was considered as significant.

Results
Identification of DEGs between DM and normal islet tissues
The three datasets were standardized and the results are shown in Figure 1.

Then, we deleted duplicated genes and values lacking specific gene symbols. A total of 2536 DEGs were obtained
in GSE20966. Among these DEGs, 1243 genes were up-regulated and 1293 genes down-regulated. Additionally,
5148 DEGs were obtained from GSE25724; there were 2992 up-regulated genes and 2156 down-regulated genes.
In GSE38642, 932 DEGs were obtained. Among them, 413 were up-regulated and 519 were down-regulated. The
DEGs from each dataset are shown in Figure 2. We used Euclidean distance to perform clustering. The top 100 DEGs
performed by heatmap are shown in Figure 3.

Integration of DEGs
DEGs from the three datasets were selected for Venn diagram. The intersection of the three datasets is shown in Figure
4. A total of 45 DEGs were co-expressed in the three datasets. Among them, APOBEC, FKBP2, GRHL2, ITGA3,
PID1, PTGES, S100A14, S100A6, SAMSN1 and THBS2 were up-regulated; while ABAT, α/β hydrolase domain
10 (ABHD10), ACLY, ARG2, ARHGEF9, ATRNL1, BEX4, CCL21, CLGN, CTNNA2, DHRS2, EDN3, ENTPD3,
GRAMD3, HADH, HLF, IAPP, KAT2B, KCNJ6, MAK16, MPP1, NBEA, NKX2-2, NOC3L, NR0B1, NRCAM,
RHOBTB3, RRAGD, SEMA5A, SLC2A2, SORL1, SRD5A1, TGFBR3, TPD52 and TRIM37 were down-regulated.

GO biological process analysis and KEGG pathway enrichment
GO analysis of genes include molecular function, biological processes and cell composition. In our study, GO analy-
sis was used to perform the functional process of the DEGs. The co-expressed DEGs were carried out by the DAVID
database. A P-value <0.05 was defined to identify up- and down-regulated genes in GO functional enrichments. The
results are shown in Figure 5. GO biological process analysis found that DEGs were mainly enriched in protein lo-
calization, response to follicle stimulating hormone (FSH), response to prostaglandin E, axonogenesis and cell–cell
signaling. In the cell composition part, the DEGs were involved in perinuclear region of cytoplasm, mitochondrial
matrix, nuclear envelope lumen and chemokine receptor binding. In the molecular function section, the genes partici-
pated in chemokine receptor binding. The results suggested that DEGs were mostly involved in cell pathway, response
to hormone and binding.
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Figure 1. Standardization of gene expression

(A) Standardization of GSE20966, (B) standardization of GSE25724, (C) standardization of GSE38642. The blue bar represents the

data before normalization, and the red bar represents the data after normalization.

We also performed our KEGG pathway analysis. With DAVID mentioned previously, DEGs were enriched in Ma-
turity onset diabetes of the young (MODY) (P<0.001). The result indicated that MODY and type 2 diabetes share
some same molecular pathway.

PPI network integration
We used the STRING database (https://string-db.org) to investigate PPI networks, including 10 up-regulated genes
and 35 down-regulated genes. A PPI network of DEGs was performed as shown in Figure 6. As mentioned before,
we identified ACLY as hub gene (node degree of ≥10) .

A significant module containing four nodes and six edges was constructed by MCODE. Nodes were dehydro-
genase/reductase 2 (DHRS2), ABHD10, HADH, ACLY. All genes in the module were down-regulated. Then, we
performed BINGO in the Cytoscape to further investigate the possible pathway of this module. Results are shown in
Figure 7. The GO biological process, cell composition and molecular function were generated by BINGO. In biological
process category, the top five processes by which the genes significantly enriched were lipid metabolic process, small
molecule catabolic process, ATP catabolic process, citrate metabolic process and myeloid dendritic cell differentia-
tion. In cell composition category, the genes were involved in stereocilium, stereocilium bundle, cortical cytoskeleton,
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Figure 2. Volcano plots of DEGs between type 2 diabetes and normal control

(A) GSE20966, (B) GSE25724 and (C) GSE38642. Data points in red represent up-regulated and green represent down-regulated

genes. Genes without any significant difference are in black. The differences are set as |FC| > 1.2 and corrected P-value <0.05.

microvillus and cell cortex part. In molecular function category, the genes were involved in guanylate kinase activity,
WW domain binding, nucleotide kinase activity, phosphotransferase activity, phosphate group as acceptor, nucle-
obase, nucleoside, nucleotide kinase activity, microtubule motor activity and motor activity.

Hub gene GSEA analysis
To further clarify the possible mechanism of action of related genes in diabetes, we performed GSEA analysis on hub
gene ACLY. According to the median of the gene expression value, we divided the samples into high expression group
and low expression group. As shown in the Figure 8A–C, GSEA analysis suggests low expression of ACLY is enriched
in glycine serine and threonine metabolism, drug metabolism cytochrome P450 (CYP) (GSE20966) and NOD-like
receptor (NLR) signaling pathway (GSE38642) .
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Figure 3. Heatmap of the top 100DEGs

Heatmap of DEGs identified in (A) GSE20966, (B) GSE25724 and (C) GSE38642. Genes up-regulated are in red. Genes down-reg-

ulated are in blue. Genes without any significant difference are in white. The differences are set as |FC| > 1.2 and corrected P-value

<0.05.

The validation of hub gene expression
We performed qPCR in mouse glucotoxicity model in vitro to further verify the expression of hub gene. As illus-
trated in Figure 8D, compared with normal group, the transcription level of ACLY in glucotoxicity model group was
significantly decreased (P<0.05), which is consistent with our bioinformatics analysis results above.

Discussion
At present, the diagnosis and treatment of type 2 diabetes is far from satisfactory, and the incidence of this disease is
still rising. Research on the pathogenesis and biomarkers of type 2 diabetes is still necessary. Exploring the molecular
level dysfunction of islet cells of type 2 diabetes can provide effective treatment and more predictive and diagnostic
biomarkers. For example, Jia et al. [12] identified marker genes for childhood-onset type 2 diabetes from one GEO
dataset by performing DEGs, weighted co-expression network analysis (WGCNA), GO and KEGG enrichment, PPI
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Figure 4. Venn diagram of common DEGs from the three datasets

Forty-five DEGs were identified as common DEGs.

network, diseases and transcription factors (TFs) related to critical genes analysis. Shao et al. [13] identified that the
glucocorticoid was central in the pathogenesis of type 2 diabetes from three GEO datasets by integrated method in-
cluding DEGs screen, gene functional enrichment, PPI network analyses, drug–gene interactions and genetic associ-
ation of DEGs. Ni et al. [14] identified key genes in the diabetic wounds from one GEO dataset using a bioinformatics
approach incorporating DEG screen, PPI network and phylogenetic analysis. Chen et al. [15] used the gene expression
profiles from GEO datasets and identified candidate genes for type 2 diabetes and obesity by screening of genes, GO
and pathway analysis. Here, we integrated three datasets from GEO and got 45 DEGs, the vast majority of which were
down-regulated. The top 20 were SLC2A2, ARHGEF9, EDN3, RRAGD, MAK16, RHOBTB3, HADH, TRIM37,
CLGN, CTNNA2, ACLY, ABHD10, ATRNL1, ENTPD3, GRAMD3, CCL21, TGFBR3, NBEA, IAPP. Ten genes
were up-regulated, and they were APOBEC2, FKBP2, GRHL2, ITGA3, PID1, PTGES, S100A14, S100A6, SAMSN1
and THBS2. Subsequently, we performed GO and KEGG functional enrichment on these DEGs. In addition, PPI were
performed on DEGs. We investigated the module analysis of the PPI by MCODE and BINGO in Cytoscape. One of
the hub gene was selected for further GSEA analysis. By performing with GO analysis, the DEGs mainly partici-
pated in protein localization, response to FSH, response to prostaglandin E and cell–cell signaling. These biological
progresses are important processes involved in the pathophysiological mechanism of type 2 diabetes. A Hong Kong
osteoporosis study showed that high-serum FSH was negatively correlated with diabetes [16]. Another showed that
FSH enhances gluconeogenesis via CRTC2 and is correlated with fasting hyperglycemia [17]. Recent research sug-
gested that prostaglandin E2 (PGE2) receptor EP3 is involved in water reabsorption then leads to abnormal renal
function and polyuria in a mouse model of diabetes [18]. Neuman et al. [19] found that Eicosapentaenoic acid (EPA)
treatment can enhance formation of PGE3 and reduce IL-11β expression in islet and improve β-cell function. KEGG
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Figure 5. Functional analysis in GO

(A) Biological process in common DEGs. (B) Molecular function in common DEGs.

pathway analysis revealed that DEGs are associated with the MODY. Mutation in gene level can cause MODY. TFs
such as HNF4α (MODY1), HNF1α (MODY3), PDX1 (MODY4), HNF1β (MODY5) and NEUROD1 (MODY6) are
often affected by this mutation. Mutations of TF lead to pancreatic islet cell metabolic abnormalities [20]. The results
indicated that type 2 diabetes and MODY have some common molecular pathway.

We mapped a PPI program of DEGs. Then, MCODE and BINGO in the Cytoscape were performed. The genes
in the MCODE were DHRS2, ABHD10, HADH, ACLY. ACLY is the hub gene. ACLY is a key molecule in celluar
lipid production. It can convert cytosol into acetyl-CoA, which is essential for fatty acid synthesis. Depletion of ACLY
protected cancer cells from hypoxia-induced apoptosis through modulating ETV4 via α-ketoglutarate. ACLY is not
only involved in cancer cell signaling pathway, but also participates in the metabolism process of diabetes. Evidence
indicated that ACLY could be inhibited by exogenous lipids and caused islet cell apoptosis and endoplasmic reticulum
(ER) stress [21]. ACLY has been associated with a glucose-to-acetate metabolic switch [22]. Overall, ACLY in islet
plays a key part in the molecular level of type 2 diabetes and maybe a potential target for diabetes.

The other three genes were DHRS2, ABHD10 and HADH. HADH encodes short chain 3-hydroxyacyl-CoA de-
hydrogenase (SCHAD). SCHAD is important for β-oxidation of fatty acids when there is no glucose. Mutation of
HADH can lead to increased pancreatic β-cells insulin secretion and contribute to blood glucose. As a result, this
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Figure 6. PPI network of common DEGs

The balls represent the gene nodes, the connecting lines represent the interactions.

change can lead to leucine-induced hypoglycemia [23,24]. Although HADH plays an important part in HH, the
molecular mechanisms in type 2 diabetes is still unknown currently and remains to be studied. DHRS2 belongs
to the short-chain dehydrogenase/reductase family. It participates in many metabolic processes such as process in
steroids, prostaglandins and xenobiotics [25]. ADHRS2 has been studied to be associated with esophageal squamous
cell carcinoma and gastric carcinogenesis [26]. Currently, there have been no reports about the function of DHRS2 in
type 2 diabetes. Further study about the relation between ADHRS2 and diabetes needs to be conducted. A study has
reported that human ABHD10 is closely related to probenecid acyl glucuronidation in liver [27]. There is currently
no report whether ABHD10 is involved in diabetes. Further work can be performed to investigate the potential role
of ABHD10 in type 2 diabetes.

In biological process category performed by BINGO, the top five process the genes significantly enriched were lipid
metabolic process, small molecule catabolic process, ATP catabolic process, citrate metabolic process and myeloid
dendritic cell differentiation. These processes are also involved in type 2 diabetes. This is consistent with our previous
metabolic processes involved in the genes of the module.
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Figure 7. Functional enrichment by BINGO

(A) Biological process of identified module by BINGO. (B) Cell composition of identified module by BINGO. (C) Molecular function

of identified module by BINGO.

As mentioned before, we identified ACLY as hub gene and performed GSEA to deeply understand the molecular
mechanism of ACLY in type 2 diabetes. GSEA analysis suggested low expression of ACLY correlated with glycine
serine and threonine metabolism, drug metabolism CYP and NLR signaling pathway. Notably, these pathways are
associated with the metabolic processes in type 2 diabetes.

Human glycine comes from glucose, betaine and threonine. Diabetes patients have lower serum glycine than
healthy people. Serum glycine increases after improvement of insulin resistance [28]. In a study, hypoglycinemia
predicts the risk of developing type 2 diabetes and elevated glycine level is correlated with a reduced risk of develop-
ing type 2 diabetes. At the same time, higher dietary glycine intake was associated with a reduced risk of pre-diabetes
[29].
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Figure 8. ACLY expression was associated with metabolic process and was validated by qPCR

(A,B) GSEA analysis of low expression of ACLY in GSE20966. (C) GSEA analysis of low expression of ACLY in GSE38642. (D) ACLY

mRNA levels in glucotoxicity model and normal group (n=5). Data are presented as mean +− S.D. *P<0.05 in glucotoxicity model

vs normal group by Student’s t test.

CYP enzymes are involved in the metabolism of drugs and xenobiotics. The CYP enzyme is the main catalyst
for drug biotransformation reactions and is active in many chemical materials [30]. A study showed that combined
therapy with insulin and aspartame in diabetic rats induced CYP2E1 in the brain, which could have toxicological
effects [31]. Another study in India indicated the variable distribution of CYP2C8 and CYP2C9 allelic polymorphisms
in people with diabetes [32]. Study showed that ER stress is involved in molecular process of type 2 diabetes. Inhibition
of CYP4A inhibits hepatic ER stress. As a result, liver apoptosis and insulin resistance are reduced [33]. This study
indicates a new relationship between CYP enzymes and type 2 diabetes.

NLRs are a group of pattern recognition receptors (PRRs) located inside the cell and are important for sensing
pathogen and inflammation. NOD1 and NOD2 are well-characterized NLRs in the NOD signalosome. They can
drive NF-κB signal pathway and lead to release of a series of cytokines. Intracelluar NLRs can further form inflam-
masomes with other molecules [34]. NLRP inflammasomes are well studied in type 2 diabetes. A study suggested
that hyperglycemia can lead to activation of NLRP1 inflammasome and then contribute to neuron inflammation
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[35]. Another study indicated that decrease in NLRP3 expression in adipose tissue is associated with reduction in
inflammation and improvement of insulin-sensitivity in type 2 diabetes with obese patients [36]. More and more
studies showed that NLRP3 inflammasome plays a pivotal part in diabetic cardiovascular complications and diabetic
retinopathy [37,38].

To further validate the importance of these key genes we have explored, we performed qPCR of hub gene ACLY in
vitro. We found that the relative transcription level of ACLY showed the same expression trend as in our bioinformat-
ics analysis. These genes, particularly ACLY, have had few researches on their effects on islet function in type 2 dia-
betes. Through our research, we thought that ACLY may affect islet β-cells through several pathways such as glycine
serine and threonine metabolism, drug metabolism CYP and NLR signaling pathway. Whether these co-expressed
genes affect the function of type 2 diabetes islet β-cells through the above pathways or other pathways provides a
possible way of exploring the pathogenesis of type 2 diabetes. With further studies, these key genes may be expected
to become new diagnostic and therapeutic biomarkers for type 2 diabetes.

There are some advantages in our research. First, to the best of our knowledge, our research is the first study to
integrate all datasets related to human islets of type 2 diabetes in the GEO database for bioinformatics analysis. Second,
the present study truly reflects the genetic-level changes in pancreatic β-cells during the pathophysiological process
of type 2 diabetes and can provide possible target molecules for further research. Third, the methods of this research
are easy to learn and can provide some ideas for disease data mining.

Because the sample size of the three datasets is not very large, and some pathogenic genes may not be significantly
differentially expressed, the cut-off values we selected in the present study are relatively loose. Further experimental
studies are needed to confirm the identified genes and pathways. With more uploaded GEO datasets, the develop-
ment of related technologies and the improvement of algorithms, bioinformatics analysis will further promote the
development of diabetes molecular pathogenesis and therapeutic research.

Conclusion
For the first time, our study obtained 45 DEGs by integrating three sets of human diabetes islet datasets in GEO.
Through PPI and GSEA, our study found that DHRS2, ABHD10, HADH and ACLY function together in type 2
diabetes. We identified the hub gene ACLY and the pathways involved. The present study provided useful information
for further exploration of the pathogenesis of type 2 diabetes. In the future, more datasets are needed to be integrated
to reduce the bias of the biometric analysis process. Further experiments in vitro and in vivo are needed to validate
the role of these screened genes and pathways in the progression of type 2 diabetes.
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