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PURPOSE. Defects in neural crest development are a major contributing factor in corneal
dysgenesis, but little is known about the genetic landscape during corneal development. The
purpose of this study was to provide a detailed transcriptome profile and evaluate changes in
gene expression during mouse corneal development.

METHODS. RNA sequencing was used to uncover the transcriptomic profile of periocular
mesenchyme (pNC) isolated at embryonic day (E) 10.5 and corneas isolated at E14.5 and
E16.5. The spatiotemporal expression of several differentially expressed genes was validated
by in situ hybridization.

RESULTS. Analysis of the whole-transcriptome profile between pNC and embryonic corneas
identified 3815 unique differentially expressed genes. Pathway analysis revealed an
enrichment of differentially expressed genes involved in signal transduction (retinoic acid,
transforming growth factor-b, and Wnt pathways) and transcriptional regulation.

CONCLUSIONS. Our analyses, for the first time, identify a large number of differentially expressed
genes during progressive stages of mouse corneal development. Our data provide a
comprehensive transcriptomic profile of the developing cornea. Combined, these data serve
as a valuable resource for the identification of novel regulatory networks crucial for the
advancement of studies in congenital defects, stem cell therapy, bioengineering, and adult
corneal diseases.

Keywords: periocular neural crest, corneal development, corneal stroma, corneal endothelial
cells, corneal epithelium

Corneal development is a complex morphogenetic process
that involves coordinated development of three distinct

cellular layers, namely the epithelium, stroma, and endotheli-
um, into a transparent tissue essential for vision. The formation
of these distinct layers is interdependent and also governed by
inductive signals from the surrounding ocular tissues that
ensure proper cell migration, proliferation, and differentia-
tion.1,2 The epithelium is derived from the ocular surface
ectoderm, whereas the stromal keratocytes and endothelium
are generated from the periocular mesenchyme that largely
consists of a multipotent embryonic cell population, the neural
crest.3–5 Four major events occur during mouse corneal
development: (1) migration of periocular neural crest cells
(pNC) into the presumptive corneal region, (2) differentiation
of pNC into keratocytes and endothelium, (3) synthesis of
stromal extracellular matrix (ECM) and formation of tight
junctions and active pump function in the endothelium, and (4)
maturation of the surface ectoderm into stratified corneal
epithelium.3,5–7 Misregulation of the molecular cues that
promote these events results in various forms of anterior
segment dysgenesis.8–10

Major signaling pathways including retinoic acid (RA),
transforming growth factor beta (TGFb), and Wnt play critical
roles during corneal development. RA is secreted by the optic
cup and epithelium into the periocular mesenchyme, where it
induces Foxc1 and Pitx2.11 This leads to activation of

downstream effectors, such as Tfap2B and vascular endothelial
growth factor, that are required for regulating cell fate and
establishing angiogenic privilege.12,13 Mutations in the RA
pathway leads to congenital anterior dysgenesis linked to
Axenfeld-Rieger syndrome or Peters anomaly, characterized by
corneal opacity and glaucoma.14,15 TGFb is expressed by the
lens epithelium,16 and it is required for pNC migration and
differentiation into corneal endothelium.16–18 Although it is
hypothesized that the maturation of corneal layers is interde-
pendent, the effect of RA and TGFb on epithelial maturation is
not well studied. The Wnt and Notch signaling pathways are
localized in the corneal epithelium where they regulate cell
proliferation and stratification.19,20 Cross-talk between these
signaling pathways regulates the expression of transcription
factors, which play critical roles in imparting cellular identity
and function,21 but the mechanisms involved are not well
understood.

In this study, we used high-throughput RNA sequencing
(RNA-Seq) to establish a transcriptome profile and analyze the
changes in gene expression during mouse corneal develop-
ment. We analyzed the downstream targets of RA, TGFb, and
Wnt signaling pathways and examined their combined effect on
genes involved in modulating key processes, including ECM
homeostasis, cell junctions, cell cycle, and neural vascular
patterning. Our transcriptome data provide the first progressive
expression signature that profiles the genetic landscape of the
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developing cornea. These findings increase our understanding
of the fundamental molecular mechanisms that direct corneal
development. In addition, this study identifies several novel
genes that may play critical roles during corneal development,
which may serve as potential targets for stem cell studies,
bioengineering, and advancement of new corneal therapies.

MATERIALS AND METHODS

Animals

Only wild-type C57/B6 mouse embryos were used for this
study. All animal procedures were performed in accordance
with the ARVO Statement for the Use of Animals in Ophthalmic
and Vision Research and were approved by the Institutional
Animal Care and Use Committee at Rice University. Timed
pregnant mice were obtained from Jackson Laboratory, and
embryos were collected at embryonic day (E) 10.5, E14.5, and
E16.5 for tissue isolation and histology.

Dissection of Periocular Mesenchyme and
Embryonic Corneas

To obtain pNC, anterior eyes were dissected from E10.5
embryos, incubated in dispase (1.5 mg/ml; Worthington
Biochemical, Lakewood, NJ, USA) at 378C for 5 minutes, and
then rinsed in Ringer’s solution.The ectoderm/lens vesicles and
optic cups were removed and discarded, and pNCs from 26
eyes were pooled into each sample. E14.5 corneas were
dissected from surrounding ocular mesenchyme and pooled
into 18 corneas per sample. Similarly, E16.5 corneas were
dissected at the limbal region and pooled into 12 corneas per
sample. Biological triplicates of tissues from each time point
were immediately immersed in Trizol reagent (Life Technolo-
gies Corp., Grand Island, NY, USA) and flash frozen in liquid
nitrogen.

RNA Sequencing

RNA isolated from a total of nine samples was used for library
preparation and sequenced on an Illumina HiSeq 4000
instrument at BGI Genomic Services, United States. Samples
were qualified and quantified using an Agilent 2100 bioana-
lyzer and Step One Plus real-time PCR system. Each sample was
assessed for quality by filtering out reads with adaptors, reads
that contained a high percentage of unknown bases (>10%), or
bases with low sequencing quality (Q < 5).22 The following
reads were mapped to reference genes by Bowtie 223 and to
the Genome Reference Consortium Mouse Build 38 with
Hierarchical Indexing for Spliced Alignment of Transcripts24

(Supplementary Table S1). The average mapping with the
reference gene was 77.71%, and the genome mapping ratio
was 91.47%. Reads were quantified using RNA-Seq by
Expectation Maximization25 and normalized to fragments per
kilobase of transcript per million (FPKM) to calculate gene
expression levels. Aligned genes with no reads at a particular
developmental stage were assigned a FPKM value of 0.01 for
differential analysis. Screening of differentially expressed genes
(DEGs) was performed through the NOISeq method26 by using
the criteria of fold change of ‡1 and divergent probability of
‡0.8 (Supplementary Fig. S1). Deeper analysis into specific
pathways followed stricter criteria. Based on log base 2 values,
a threshold was set at 2.32 (FPKM ¼ 5). Genes with all values
below this threshold were considered not expressed. To
reduce the uncertainty of low values, negative values were
normalized to a base of 0 (FPKM ¼ 1). Heatmaps were
generated using log base 2 values with relative row scaling.

Data Access

All sequencing data have been deposited in the NCBI’s Gene
Expression Omnibus database (https://www.ncbi.nlm.nih.gov/
geo/browse/, in the public domain) under the accession
number GSE121044.

In Situ Hybridization

Section in situ hybridization was performed as previously
described.27 In brief, mouse heads were isolated and fixed in
Carnoy’s fixative at 48C overnight. Tissues were embedded in
paraffin and sectioned at 8 to 10 lm. Digoxigenin-labeled
riboprobes were generated by in vitro transcription with
Superscript III. Brightfield images were captured using a Zeiss
Axiocam mounted on AxioImager2 microscope (Zeiss, Ober-
kochen, Baden-Württemberg, Germany).

RESULTS

Characterization of the Transcriptomes of pNC and
Embryonic Corneas

To investigate the transcriptomic profile during corneal
development, we performed high-throughput RNA-Seq on
pNC isolated at E10.5 and embryonic corneas isolated at
E14.5 and E16.5 (Fig. 1A). These time points were selected to
capture pNC migration into the corneal region (E10.5),
differentiation of corneal epithelium and pNC-derived mesen-
chyme (E14.5), and postformation of the three cellular layers of
the cornea (E16.5).

RNA-Seq analysis generated an average of 23,029,819 raw
reads. Alignment of reads identified transcripts for 19,391
unique genes, of which reads for 17,038 were detected at all 3
developmental stages (Fig. 1B). Categorizing the transcripts
using the NOISeq method revealed 3815 unique DEGs. A total
of 1479 genes were differentially expressed between E10.5 and
E14.5, of which 536 were downregulated and 943 were
upregulated (Fig. 1C). Analysis between E10.5 and E16.5
yielded 3617 DEGs, of which 1922 were downregulated and
1696 were upregulated. We also compared E14.5 and E16.5,
which showed that 783 genes were differentially expressed, of
which 402 were downregulated and 381 were upregulated.
Overall, there was a high number of DEGs between E10.5 and
E16.5, which substantially decreased between E10.5 and E14.5,
and E14.5 and E16.5 (Fig. 1C). This is supported by hierarchical
clustering that indicates higher similarity in transcriptome
between E14.5 and E16.5 compared to E10.5 and E14.5 or
E10.5 and E16.5 (Supplementary Fig. S1). Further analyses
show that 506 genes were enriched only at E10.5, 71 at E14.5,
and 355 at E16.5.

To associate the DEGs to functional roles, we analyzed their
distribution by using pathway enrichment analysis based on
the KEGG database (Fig. 1D). Several key pathways and
processes were significantly enriched, including focal adhe-
sions, ECM-receptor interactions, proteoglycans, and cell
adhesion molecules. These pathways and cell processes are
important in mediating pNC migration, cell proliferation,
matrix assembly, and modulating barrier functions.

Regulation of Neural Crest Cell (NCC) Markers
During Corneal Development

To determine whether genes that are important for establishing
NCC identity continue to play a role during corneal develop-
ment, we analyzed the expression of 46 candidate genes
involved in NCC specification, delamination, and early
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migration.28,29 Based on our threshold value of FPKM of 5, we

found that out of the 46 genes, 33 (72%) re-expressed in the

pNC, 23 (50%) in the E14.5 corneas, and 18 (39%) in the E16.5

corneas (Fig. 2A). Classification of the 46 NCC genes based on

differential regulation (Fig. 2B), revealed that 18 (39%) of

genes, including Alx1, Alx4, Pax3, Pax7, Zic1, Zic2, Sox9, and

Sox10, are enriched in the pNC. Eleven (24%) genes, including

Zeb1, Zeb2, Snai2, Lmo4, and Twist1, maintained nondiffer-

ential expression. Four (9%) genes (Tfap2A, Tfap2B, Erg, and

Cdh6) are upregulated in the cornea, whereas the remaining

13 (28%) genes, including Axud1, Foxd3, Gbx2, and Rxrg, are

not expressed (Supplementary Table S2). To validate our data,

we analyzed the spatiotemporal expression of Alx1, Alx4,

Snai2, and Tfap2B by in situ hybridization. Alx1 is expressed

in the pNC at E10.5, but it is not detected in the corneas at

E14.5 and E16.5 (Fig. 2C). Alx4 is expressed in the pNC at

E10.5 and stroma at E14.5 but absent in the cornea at E16.5

(Fig. 2D). Snai2 is broadly expressed at all time points and

shows strong localization to the corneal epithelium and

endothelium at E16.5 (Fig. 2E). Tfap2b is initially expressed

FIGURE 1. RNA sequencing analysis of the pNC and embryonic corneal cells. (A) Hematoxylin and eosin staining of mouse embryonic eyes, with
highlighted regions within the dotted lines showing the tissue dissected for RNA preparation at E10.5, E14.5, and E16.5. (B) Venn diagram depicts
total number of genes categorized between the three stages. (C) Bar plot showing number of differentially regulated genes detected between E10.5
and E14.5, E10.5 and E16.5, and E14.5 and E16.5. (D) Pathway enrichment analysis of DEGs at E10.5 vs. E14.5. Circle size correlates with number of
genes and the Rich factor is a representation of the degree of enrichment based on ratio of DEG/non-DEG within the pathway. Scale bars: 50 lm
(E10.5 and E14.5) or 100 lm (E16.5). ec, ectoderm; L, lens; oc, optic cup; ep, epithelium; st, stroma; en, endothelium; ey, eyelid.
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in a few pNC cells and ocular ectoderm at E10.5, but it is
strongly expressed in the corneal stroma and endothelium at
E14.5 and E16.5 (Fig. 2F).

Regulation of RA Signaling During Corneal
Development

We investigated changes to the RA signaling components and
found that genes important for metabolism and signaling are
differentially regulated (Fig. 3A; Supplementary Table S3).30–32

Prometabolic genes, such as Stra6, Raldh1, and Raldh2,33 are
not significantly changed between E10.5 and E14.5, but they
are downregulated at E16.5. In contrast, Adh1 and Adh7 are
upregulated at E16.5. Dhrs3, a metabolic inhibitor that
converts retinal back into retinol,33 is upregulated at E14.5.
Raldh3 is constitutively expressed at high levels, but its
expression is localized to the corneal epithelium.34 The RA-
degrading enzyme Cyp26a1

35 is upregulated at E14.5. Crabp2,
which translocates RA from the cytoplasm into the nucleus,30

is downregulated, whereas Crabp1 and Fabp5 are downreg-

ulated at E14.5 but upregulated at E16.5. A majority of the
nuclear receptors, including Rara, Rarg, Rxra, Rxrb, Nr1h2,
and Ppard, are constitutively expressed, but Rarb, Nr2f1, and
Nr2f2 are downregulated (Fig. 3B; Supplementary Table S3).
Corresponding with these changes, several RA-responsive
transcription factors (Sall2, Arnt2, Hes6, and Pitx2)36–39 are
downregulated at E16.5 (Fig. 3B). RA-induced genes (Egr1 and
Btdbd11)40,41 are also substantially decreased at E16.5 (Fig. 3B;
Supplementary Table S3). To identify the corneal regions in
which RA signaling is regulated, we examined the expression
profiles of an RA inhibitor, Cyp26a1, a nuclear receptor, Nr2f2,
and a downstream gene, Egr1 (Figs. 3C–E). Our data show that
Cyp26a1 is broadly expressed at all time points, with strong
localization in the corneal epithelium at E14.5 and E16.5 (Fig.
3C). Nr2f2 is strongly expressed in the pNC at E10.5 and
maintained at low levels in the stroma, but it is localized in the
corneal epithelium at E14.5 and E16.5 (Fig. 3D). Egr1 is not
detectable in the pNC and cornea at E16.5, but it is transiently
expressed in the presumptive corneal endothelium at E14.5
(Fig. 3D).

FIGURE 2. Expression of NCC genes during corneal development. (A) Schematic describes the number of expressed genes at each developmental
stage based on threshold value. (B) Heatmap shows relative expression of the transcripts in the pNC, E14.5, and E16.5 corneas. Relative color ranges
from white to red based on low (L) or high (H) expression. In addition to the criteria described in the methods, values below threshold were
normalized to a log base 2 value of 0. Downregulated genes are highlighted in green, not significantly DEGs in blue, upregulated genes in red, and
genes below threshold are not shown (see Supplementary Table S2). (C–F) Validation of the expression patterns of Alx1, Alx4, Snai2, and Tfap2b.

Black arrows represent regions of enriched expression. Scale bar: 50 lm. co, Cornea; *C-myc expression at E16.5 is excluded.
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Regulation of TGFb Signaling During Corneal
Development

To examine the mechanisms by which TGFb signaling regulates
corneal development, we investigated the transcription profile
of its ligands and downstream genes (Fig. 4A; Supplementary
Table S4).42,43 Our data show that TGFb2 is strongly expressed
at E10.5 and E14.5 but downregulated at E16.5, and TGFb3 is
upregulated at E14.5 and E16.5. Interestingly, TGFbR2 is
upregulated at E14.5 and E16.5, but its associated receptor
TGFbR1

42 is downregulated. In addition, multiple inhibitors
(Bambi, Strap, Smad7, Tgif, and Evi1) and an activator (Msg1)
of TGFb signaling through Smad2/3 regulation are downregu-
lated. Overall, a large number of DEGs favors enrichment of the
TGFb pathway. Accordingly, genes repressed by the TGFb
pathway (Cdk2, Cdk4, C-myc, Id2, and Id3) are downregulated,
and TGFb-induced genes (Rbl2, Aebp1, and Creb3l1) are
upregulated. The observed differential regulation aligns with
TGFb function in cell cycle regulation, differentiation, and ECM
synthesis.44–49 We also observed that several TGFb-induced
epithelial-mesenchymal transition genes, including Hey1 and
Prrx2,50,51 were downregulated, possibly due to regulation
through other pathways.

To analyze how TGFb regulates corneal development, we
examined the expression of downstream targets Hmga2,52

nuclear repressor c-Ski,53 and mediator of collagen synthesis
Creb3l1

48 (Figs. 4C–E). The observed expression patterns are
consistent with our dataset and show that Hmga2 is initially
ubiquitously expressed at E10.5 and E14.5, but it localizes to
the corneal epithelium at E16.5 (Fig. 4C). c-Ski is constitutively
expressed in the pNC and cornea (Fig. 4D). Creb3l1 is not
expressed at E10.5, but it was strongly expressed in the
corneal stroma and endothelium at E14.5 and E16.5 (Fig. 4E).
In addition to the changes observed in the canonical TGFb
signaling, we discovered differential regulation of other
members of the TGFb superfamily. Bmp4, Bmp5, Acvr2b,
and Gdf11 are all downregulated, whereas Bmp1, Bmp3,
Avcr2a, and Gdf10 are upregulated (Fig. 4B).

Regulation of the Wnt Signaling During Corneal

Development

Next, we investigated the mechanisms by which the Wnt
pathway is modulated during corneal development (Fig.
5A).54,55 Our data reveal that several Wnt genes (Wnt2, Wnt2b,

FIGURE 3. Differential regulation of the RA signaling pathway. (A) Schematic depicts whether components of the RA pathway are upregulated
(red), downregulated (green), or not significantly differentially expressed (black). Genes that were upregulated and then downregulated, or vice
versa, are represented by blue and orange, respectively. (B) Heatmap summarizes the relative expression of the DEGs. (C–E) Validation of the
expression patterns of Nr2f2, Egr1, and Cyp26a1. Black arrows represent regions of enriched expression. Scale bar: 50 lm.
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Wnt3, Wnt3a, Wnt4, Wnt5a, Wnt6, Wnt7b, Wnt9b, Wnt10a,
Wnt10b, Wnt11, and Wnt16) are upregulated (Fig. 5B).
However, Frizzled receptors are either upregulated (Fzd6 and
Fzd10) or downregulated at E14.5 (Fzd3 and Fzd4) and E16.5
(Fzd1 and Fzd2) (Fig. 5B; Supplementary Table S5). This is
consistent with previous reports56 and further identifies the
novel expression of Wnt ligands and receptors. We found that
many inducers of canonical activity, including Prrx2, HMG
family, Bambi, Strap, Sox11, Frat2, Pclaf, and Ezh2 are
downregulated, whereas the repressors Wif1, Dkk1, Dkk2,
Dkk3, Notum, Ndrg1, Nfat5, and Sox6 are upregulated (Figs.
5A, 5B). Spatiotemporal analysis confirmed the expression of
candidate Wnt modulators. The Wnt activator Mta1

57 is
localized in the periocular mesenchyme and all cellular layers
of the cornea (Fig. 5C), whereas the Wnt activator Sox11

58 is
initially strongly expressed in the pNC at E10.5, but it is not
detectable at E14.5 and E16.5 (Fig. 5D). The upregulated Wnt
inhibitor Ndrg1

59,60 is not detectable in the pNC at E10.5, but
it is later localized to the corneal epithelium at E16.5 (Fig. 5E).

Next, we analyzed how Wnt downstream genes are
modulated. Our data revealed that several downstream targets,
particularly those related to proliferation (C-myc, N-myc,
Ccnd1, and Birc5) were downregulated (Figs. 5A, 5B).
However, we also identified upregulation of a few genes that

are activated by the canonical pathway (Wisp1 and Irx3). Our
data also indicate that genes involved in the Wnt/planar cell
polarity (PCP) and Wnt/Ca2þ pathways were upregulated
(Gpc4, Pk3, Plcb4, Camk2, and Prkcb).

Crosstalk Between Signaling Pathways Is Critical
for Corneal Development

To examine how the cross talk between RA, TGFb, and Wnt
signaling pathways regulates corneal development, we ana-
lyzed the differential expression of their downstream tran-
scription factors. Out of 1755 transcription factors, we found a
total of 1118 genes expressed above the threshold. Of these
genes, 143 were upregulated, 218 were downregulated, and
757 were not differentially expressed (Fig. 6A). Next, we
annotated their association with the signaling pathways based
on published data. From those upregulated genes, 62 are
associated with RA signaling, 65 with TGFb signaling, 74 with
Wnt signaling, and the data are insufficient for 40. From those
downregulated genes, 69 are associated with RA signaling, 92
with TGFb signaling, 106 with Wnt signaling, and the data are
insufficient for 82. The top 20 upregulated and downregulated
transcription factors are summarized in Table 1 and are in a full
list in Supplementary Table S6. Several transcription factors,

FIGURE 4. Differential regulation of the TGFb signaling pathway. (A) Schematic depicts whether components of the TGFb pathway are upregulated
(red), downregulated (green), or not significantly differentially expressed (black). (B) Heatmap summarizes the relative expression of the DEGs. (C–
E) Validation of the expression patterns of Hmga2, C-ski, and Creb3l1. Black arrows represent regions of enriched expression. Scale bar: 50 lm.
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such as Pax6 or Foxc2, are involved in more than one pathway,

indicating potential cross talk during corneal development.

The net regulatory effect of the above transcription factors

determines corneal morphogenesis. This includes formation of

the collagen ultrastructure, proliferation and differentiation of

the cellular layers, and neurovascular patterning.5,6,61 There-

fore, we analyzed the expression of critical components of

corneal development, including genes for the ECM, matrix

FIGURE 5. Differential regulation of the Wnt signaling pathway. (A) Schematic depicts whether components of the Wnt pathway are upregulated
(red), downregulated (green), or not significantly differentially expressed (black). (B) Heatmap summarizes the relative expression of the DEGs. (C–
E) Validation of the expression patterns of Mta1, Sox11, and Ndrg1. Black arrows represent regions of enriched expression. Scale bar: 50 lm. AA,
ambiguously associated.

FIGURE 6. Categorization of differentially expressed transcription factors into the RA, TGFb, and Wnt signaling pathways. (A) Allocation of
transcription factors from a total pool of 1755 (compiled from Riken’s mouse database and self-annotated). (B, C) Venn diagrams showing overlap
between differentially expressed transcription factors. Values outside the circles represent the genes that are not well characterized or not studied
within the relevant pathways.
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remodeling proteins, ECM receptors, cell junction proteins,
epithelial development, cell cycle, and neurovascular pattern-
ing. The top DEGs are reported in Tables 2 to 5 and full lists are
in Supplementary Tables S7 to S14. Our data indicate that the
majority of the ECM and matrix remodeling proteins, including
collagens, laminins, and thrombospondins, are upregulated
and expressed at high levels (Table 2, Supplementary Tables
S7–S9), indicating that a large number of components
contribute to establishing the ultrastructure. We also observed
downregulated genes, such as Vtn, Emilin2, and Nid2, that
may play critical roles during early corneal development. In
addition, several extracellular matrix receptors are upregulated
(Itga11, Itga3, ItgaV, Itgb4, Dag1, Ddr1, and Cd44) or
downregulated (Itga4, Itga8, and Itga9) (Table 2). Although
not differentially expressed, transcripts for Itga5, Itga6, Itgb1,
and Itgb5 are detected at high levels (Supplementary Table
S10), and they may form heterodimers with differentially
expressed integrins.62 Expression of cell junction genes, such

as Gja1, Tjp1, and Ocln, are similarly enriched (Table 2,
Supplementary Table S11). This is accompanied by the
expression of genes involved in differentiation of the corneal
epithelium, including Pax6, Klf4, and Klf5,63–66 as well as
epithelial structural genes, such as Krt5, Krt12, Krt14, and
Krt15

67 (Table 3, Supplementary Table S12).
Our data also show a high number of cell cycle genes are

downregulated and cell cycle inhibitors are upregulated (Table
4, Supplementary Table S13), suggesting an overall reduction
in cell proliferation. We also observed that genes involved in
angiogenesis and axon guidance were differentially regulated
(Table 5, Supplementary Table S14) and have potential roles in
establishing the neurovascular patterns that lead to high
innervation and corneal avascularity.

We validated the spatiotemporal expression of several genes
identified in our data. Fbln2, which encodes an ECM
glycoprotein,68 is expressed at low levels in the pNC at
E10.5, strongly expressed in the corneal mesenchyme at E14.5,
and sparsely expressed in the stroma and endothelium at E16.5
(Fig. 7A). Serpinh1, which is involved in collagen biosynthe-
sis,69 is expressed in the pNC at E10.5 and maintained in the
corneal mesenchyme at E14.5 and in the stroma and
endothelium at E16.5 (Fig. 7B). Cell junction protein Emp1

70

shows broad expression at all time points but is enriched in the
epithelium at E16.5 (Fig. 7C). Antiangiogenic protein Pedf

71 is
also broadly expressed at all time points but shows strong
localization to the posterior stroma and endothelium at E16.5
(Fig. 7D).

DISCUSSION

Corneal development occurs during a critical period when the
adjacent presumptive lens and retinal tissues undergo mor-
phogenic changes and gene expression.5,72 These changes in
the ocular environment play a crucial role in directing
differentiation of both the NCC- and ectoderm-derived corneal
progenitors.34,72 In this study, we provide the first detailed
analysis of the transcriptome profiles of corneal cells during
development. We have identified genes that are enriched at
E10.5, E14.5, and E16.5, which may respectively be involved in
pNC migration and proliferation, differentiation of the corneal
layers, and organization of the ECM and cell-cell junctions. We
link these data to genes involved in key signaling pathways and
transcriptional regulation of cell behavior.

NCC contribution to the corneal endothelium and stromal
keratocytes comprises the largest proportion of the cornea.5

Due to their dynamic and multipotential characteristics, NCCs
are primed to respond to new signals from surrounding
environments during their migration from the neural tube and
aggregation into the periocular region.73 A majority of the
candidate NCC genes are expressed in the periocular
mesenchyme at E10.5, which could be important for mainte-
nance of multipotency, which is required for subsequent
differentiation into various ocular tissues, including the cornea,
iris, and the orbital bones and cartilage.74,75 Consistent with
this observation, our data revealed progressive downregulation
of the NCC genes, such as Sox9 and Sox10, which are involved
in chondrogenesis and neural differentiation, respectively.76,77

The NCC genes that were expressed in the cornea, such as
Snai2 and Twist1, may either maintain their roles or take on
different functions during differentiation. Twist1 is involved in
craniofacial development and is an inhibitor of Sox9 and
Sox10,78–80 suggesting a potential role in inhibiting these genes
in the cornea.81

Snai2 is sustained in the adult corneal
epithelium during wound healing by TGFb and plays a role in
epithelial-mesenchymal transition,82 cell proliferation, migra-

TABLE 1. Top Differentially Expressed Transcription Factors

Symbol 14.5/10.5 16.5/10.5 16.5/14.5 RA TGFb Wnt

Upregulated (Log2)

Fosl2 4.86 6.46 1.59 [ [

Klf5 3.84 5.78 1.94 [ [ [

Ahr 4.93 5.26 0.33 [ [ [

Pax6 3.85 4.77 0.92 [ [ [

Pou3f3 4.62 4.73 0.12

Creb3l1 3.50 4.71 1.22 [

Rab25 2.77 4.71 1.94 [ [ [

Bcl6 3.14 4.61 1.47 [ [ [

Hlf 3.06 4.53 1.47 [

Ankrd3 3.15 4.08 0.93 [

Ehf 1.11 4.07 2.96 [

Nupr1 2.17 4.03 1.86 [ [ [

Otx1 3.93 3.61 �0.32 [

Trp73 2.76 3.92 1.16 [ [

Erg 3.92 3.72 �0.20 [ [ [

Nr3c1 3.35 3.90 0.54

Ptrf 2.69 3.73 1.04 [

Tcfap2b 3.72 2.83 �0.89 [ [ [

Cebpa 2.93 3.70 0.77 [ [ [

Irx4 3.62 3.36 �0.26 [

Downregulated (Log2)

Six2 �6.10 �6.06 0.04 [ [ [

Msx1 �2.91 �5.88 �2.96 [ [ [

Cart1 �5.81 �5.81 0.00 [

Foxl2os �5.01 �5.42 �0.41

Foxl2 �5.17 �5.22 �0.05 [ [

Foxd1 �5.14 �5.14 0.00 [ [ [

Foxc2 �2.85 �4.93 �2.07 [ [ [

Hmga2 �2.78 �4.93 �2.14 [ [

Ebf3 �4.24 �4.88 �0.64

Six1 �4.86 �4.86 0.00 [ [

Gli �1.60 �4.80 �3.20 [ [

Barx1 �4.51 �4.51 0.00 [

Asb4 �3.41 �4.17 �0.77

Foxd2 �3.52 �4.11 �0.59 [

Zic2 �4.02 �4.02 0.00 [ [ [

Alx4 �2.03 �4.01 �1.98 [ [ [

Foxf2 �3.49 �3.95 �0.46 [ [ [

Alx3 �2.03 �3.91 �1.88 [ [

Arid3b �3.01 �3.91 �0.90 [

Foxp2 �3.50 �3.89 �0.39 [ [

Checkmarks indicate potential association with signaling pathways
based on published data.
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tion, and differentiation,83 but its function in the corneal
endothelium and stroma remain unclear.

RA signaling is a major factor during organogenesis of
various tissues, including the central nervous system, ear, gut,
heart, and the eye.84 RA signals in the periocular mesenchyme
and presumptive cornea are either autocrine or derived from
the ectoderm, optic cup, or lens.72,85 Our data indicate that
both pNC and embryonic corneas have the potential for retinol
uptake and RA metabolism, but these processes are strictly
regulated. We observed that Raldh3, which is expressed in the
corneal epithelium,34 may be the major source of RA synthesis
at E16.5. All cellular RA binding proteins were significantly
downregulated at E14.5. This, coupled with elevated expres-
sion of Cyp26a1, suggests a decrease in RA-mediated signaling.
Differential expression of modulators of RA signaling is crucial
for proper development of various tissues and organs.35

Cyp26a1 mutant mice exhibit patterning defects in limbs
and the central nervous system due to an elevation of RA
signaling.86 Strong expression of Cyp26a1 in the corneal
epithelium suggests its involvement in moderating the RA

signaling to levels that permit cell differentiation. Upregulation
of RA metabolizing enzymes Adh1 and Adh7, along with
Crabp1 and Fabp5, may represent increased signaling through
alternative pathways. Crabp1-RA interaction activates Erk1/2,
which triggers a signaling cascade that regulates cell cycle and
promotes differentiation.87,88

TGFb signaling has been implicated in driving cell migration
and differentiation and formation of the collagen ultrastructure
during corneal development.17,89 Our data show elevated
TGFb2 transcripts concomitant with the formation of the
corneal endothelium,5 followed by its rapid downregulation.
Combined with the previous observation that the corneal
endothelium is absent in TGFb2 knockout mice,18 our data
suggest that high levels of TGFb2 are required for its formation.
We also observed upregulation of TGFb3, which stimulates
matrix assembly in vitro.90,91 Upregulation of TGFbR2 is in line
with its function as the primary facilitator of TGFb signaling.
TGFbR2 mutants recapitulate TGFb2 knockout mice pheno-
types.89 In addition, they are unable to phosphorylate Smad2,
misexpress Foxc1 and Pitx2, and display abnormal keratocyte

TABLE 2. Top Differentially Expressed ECM and Junction-Associated Genes

Upregulated (Log2) Downregulated (Log2)

Symbol 14.5/10.5 16.5/10.5 16.5/14.5 Symbol 14.5/10.5 16.5/10.5 16.5/14.5

ECM-core matrisome (no collagen)

Kera 8.43 10.25 1.81 Smoc1 �3.64 �3.64 0.00

Dcn 7.41 8.54 1.12 Tgfbi �3.23 �0.99 2.25

Matn4 7.68 8.27 0.59 Vtn �3.11 �3.11 0.00

Thbs4 2.38 6.06 3.68 Igfbp3 �0.25 �2.79 �2.53

Podn 5.18 6.04 0.86 Mmrn2 �0.88 �2.73 �1.85

Papln 1.72 5.98 4.26 Hapln1 �0.77 �2.66 �1.90

Thbs2 4.09 5.95 1.86 Mmrn1 �2.53 �2.61 �0.08

Smoc2 4.78 5.29 0.51 Emilin2 �0.64 �2.52 �1.89

Lum 4.34 4.99 0.65 Vcan �1.51 �2.51 �1.00

Bgn 3.21 4.14 0.94 Nid2 �0.70 �2.10 �1.40

Matrix remodeling proteins

Serpinb3a 3.11 6.08 2.96 Adamts19 �2.48 �2.97 �0.50

Adam33 4.99 6.06 1.07 Adamts15 �1.63 �2.91 �1.27

Ctsk 4.84 5.72 0.88 Elane* 2.72 0.00 �2.72

Ctsh 4.52 5.71 1.19 Serpine2 �1.29 �2.24 �0.95

Serpinb5 1.03 4.89 3.86 Adamts9 �2.20 �0.69 1.52

Capn1 1.90 3.26 1.37 Adam11 �1.21 �1.94 �0.73

Adamts18* 3.03 1.51 �1.51 Adam19 1.08 �0.65 �1.73

Elane* 2.72 0.00 �2.72 Adamts1 �1.31 �1.58 �0.28

Adamts12 2.45 2.66 0.21 Adamts6 �0.04 �1.53 �1.49

Adamts2 1.18 2.52 1.34 Adamts18* 3.03 1.51 �1.51

Cell-ECM receptors

Itgb4 5.94 7.36 1.42 Itga9 �1.58 �3.45 �1.87

Cd44 1.25 3.35 2.10 Itga8 �2.25 �3.30 �1.05

Ddr1 2.31 2.89 0.59 Itga4 �1.26 �1.69 �0.43

Itga11 2.53 2.72 0.19

Sdc2 2.68 2.00 �0.68

Junction proteins

Dsp 4.94 6.33 1.39 Cdh5 �1.23 �4.74 �3.51

Dsc2 4.64 5.98 1.34 Cldn11 �2.53 �4.34 �1.80

Cldn1 3.48 5.11 1.63 Cldn5 �1.84 �4.32 �2.48

Dsc3 4.97 4.27 �0.70 Cldn6 �0.65 �2.52 �1.86

Dsg1a 2.60 4.90 2.30 Cdh2 �0.94 �2.44 �1.50

Esrp2 3.54 4.66 1.12 Gjc1 �1.03 �1.69 �0.66

Gjb2 4.19 4.64 0.45 Cdh24 �0.29 �1.26 �0.97

Emp1 3.65 4.53 0.88 Jam3 �0.67 �1.17 �0.50

Dsg2 3.55 4.06 0.50

Cldn3 2.38 3.79 1.41

Collagens are represented in a separate table (see Supplementary Table S8).
* These genes are upregulated and then downregulated.
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differentiation and collagen synthesis.89 Canonically, TGFb
interacts with TGFbR2 to recruit and phosphorylate TGFbR1,
which activates Smad2/3 signaling.42,92 Although the down-
regulation of the interacting partner TGFbR1 was unexpected,
TGFbR2 can also form a complex with TGFbR3, which has
higher specificity for TGFb2.93,94 Combined with the down-
regulation of Smad2/3 inhibitors, this indicates an increased
activity of TGFb signaling. Along with the induction of
lumican and keratocan,18 TGFb signaling may mark the
transition from highly proliferative pNC toward induced

differentiation. Our data also show upregulation of Aebp1

and Creb3l1, which are important for collagen synthesis.47,48

These genes may cooperate with other sources of collagen
synthesis and maturation, such as Bmp3 and Bmp1.95,96

The Wnt/b-catenin pathway is required for the proper
development of the cornea.19,97,98 During mouse corneal
development, Wnt ligands are expressed throughout the
presumptive epithelium.56 Increased expression of Wntless

and Porc indicate that Wnt signaling may also exert paracrine
effects to the stroma. This is supported by reports of
expression of Fzd receptors and activation of Wnt signaling
in the stromal mesenchyme and corneal endothelium.56,99

Although Wnt ligands were uniformly upregulated, there was a
clear distinction in the differential expression of Fzd. Fzd4 and
Fzd10 are associated with the Wnt/b-catenin pathway,
whereas Fzd3 and Fzd6 are involved in the Wnt/PCP
pathway.100–103

Fzd4 is required for retinal angiogenesis and
implicated in corneal neovascularization.104,105

Fzd3 is in-

TABLE 3. Top Differentially Expressed Epithelial-Associated Genes

Symbol

Log2

14.5/10.5* 16.5/10.5* 16.5/14.5

Keratins

Krt12 6.50 10.92 4.42

Krt6a 5.15 10.33 5.18

Krt13 3.17 10.00 6.83

Krt15 6.58 9.71 3.13

Krt5 7.36 9.34 1.99

Krt14 5.45 7.99 2.54

Krt19 5.10 6.65 1.55

Krt1 3.39 4.14 0.75

Krt7 2.93 3.67 0.74

Krt8 1.24 2.08 0.84

Other epithelial genes

Klf5 4.22 6.15 1.94

S100a6 4.26 6.06 1.79

Pax6 3.85 4.77 0.92

Apoj 3.60 4.75 1.15

Emp1 3.65 4.53 0.88

Cdh1 2.57 3.13 0.57

Glut1 0.76 1.75 0.99

Cdh3 1.69 1.33 �0.36

Tfap2a 1.60 1.58 �0.02

Gja1 1.58 1.32 �0.26

* Surface ectoderm is not included in E10.5 samples.

TABLE 4. Top Differentially Expressed Cell Cycle-Associated Genes

Symbol

Log2

14.5/10.5 16.5/10.5 16.5/14.5

Ccnd1 �3.41 �4.29 �0.88

Lin28b �3.68 �3.68 0.00

Lin28a �3.41 �3.41 0.00

Cdc6 �1.29 �3.32 �2.04

Mcm10 �1.41 �3.31 �1.90

Mcm5 �1.32 �3.16 �1.83

Ccne1 �1.91 �2.94 �1.03

P21 �0.35 2.50 2.84

Cdc45 �1.09 �2.83 �1.74

Mcm7 �1.41 �2.70 �1.29

Gins1 �0.85 �2.57 �1.73

Mcm3 �1.17 �2.54 �1.36

Dbf4 �0.97 �2.40 �1.43

E2f2 �1.06 �2.37 �1.31

Mcm2 �0.87 �2.33 �1.46

Mcm4 �0.90 �2.23 �1.33

Cdk1 �0.78 �2.14 �1.35

Cdc25c �0.51 �2.07 �1.56

Mcm6 �0.87 �2.06 �1.19

Skp2 �0.97 �2.01 �1.04

Upregulated gene is highlighted in bold.

TABLE 5. Top DEGs Associated With Angiogenesis and Axon Guidance

Symbol 14.5/10.5 16.5/10.5 16.5/14.5 A AG AA

Upregulated (Log2)

Thbs4 2.38 6.06 3.68 [

Thbs2 4.09 5.95 1.86 [

Pax6 3.85 4.77 0.92 [ [

Wnt4 4.13 4.55 0.42 [

Ntn4 3.74 4.46 0.71 [ [

Sema3C 2.92 3.84 0.91 [ [

Sema5A 3.38 3.62 0.24 [ [

Egfr 3.46 3.03 �0.43 [ [

Plxdc2 2.16 3.13 0.97 [

Ngf 2.84 3.09 0.24 [ [

Ntf5 2.74 2.50 �0.24 [ [

Epha1 2.45 2.70 0.25 [ [

Ntn1 2.11 2.45 0.35 [ [

Hif3a 2.33 �3.02 �5.35 [ [

Sema3F 1.70 2.23 0.53 [ [

Vcam1 1.52 2.19 0.67 [

L1cam �0.74 1.34 2.08 [ [

Erbb3 0.96 2.01 1.06 [ [

Efna5 1.76 1.93 0.17 [ [

Wnt5a 0.47 1.85 1.38 [ [ [

Downregulated (Log2)

Rnh1 0.66 �6.02 �6.68 [

Hif1a �0.24 �5.60 �5.37 [ [

Hyou1 �0.71 �5.49 �4.77 [

Hif3a 2.33 �3.02 �5.35 [ [

Cadh5 �1.23 �4.74 �3.51 [

Tie1 �1.10 �4.21 �3.11 [ [

Ebf1 �3.74 �3.74 0.00 [

Gata3 �3.55 �3.55 0.00 [ [

Hig2 0.27 �3.27 �3.54 [

Cxcl12 �0.80 �3.52 �2.72 [ [

Gata2 �3.11 �3.26 �0.15 [

Tie2 �2.56 �3.19 �0.64 [ [

Robo4 �1.18 �3.00 �1.82 [ [

Efnb3 �0.99 �2.18 �1.19 [ [

Ang 0.42 �1.62 �2.03 [ [

Efna2 �1.12 �1.92 �0.81 [ [

Vegfc �1.76 �1.78 �0.02 [

Plxa4 1.52 �0.26 �1.78 [ [

Tgfb2 0.74 �0.81 �1.55 [ [

Plxd1 �0.65 �1.48 �0.83 [ [ [

Checkmarks indicate potential association with pathways based on
published data. A, angiogenesis; AG, axonguidance; AA, antiangiogenic.
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volved in neural crest induction and migration.106–108 Reduced
expression of Fzd4 and Fzd3 and upregulation of Fzd10 and
Fzd6 may be required for corneal cell differentiation and
avascularity.100–103,109–111 Despite upregulation of Wnt ligands
and receptors, our data suggest that Wnt/b-catenin signaling is
inhibited at multiple levels. This complements previous
observations that active Wnt/b-catenin signaling is absent in
the corneal epithelium at E14.5 and E16.5, and it is
progressively reduced in the stroma until postnatal day 3.99

This downregulation is critical for proper development of the
cornea.19,97,98 In contrast, our data suggest that noncanonical
Wnt pathways are upregulated. The Wnt/PCP and Wnt/Ca
pathways have been studied during the formation of the eye
field and retinogenesis,112 but their roles in the cornea are not
clear. Our data indicate an increase in the components of the
Wnt/PCP pathway, including Wnt4 , Wnt5a , and
Fzd6.100,113,114 In adults, the Wnt/PCP pathway is important
for corneal homeostasis and also guides directional migration
of epithelial cells during wound healing.110 Wnt/PCP signaling
is also involved in cell differentiation, collagen orientation, cell
alignment, and axon guidance,115–117 all of which are required
for proper corneal development.

Our data suggest multiple novel connections between the
RA, TGFb, and Wnt signaling pathways. It is well established that
the RA induction of Pitx2 suppresses Wnt signaling through
upregulation of Dkk2,97,118 and we also observe this pattern. In
addition, misregulation of either Wnt or TGFb greatly impacts
Pitx2 levels, suggesting that the different pathways interact for
proper signaling control.89,97 Potential crosstalk is observed in
the upregulation of genes associated with RA signaling (Sox6

and Hic1), which suppress Wnt signaling.119–123 The Wnt
activating genes (Prrx2 and Hmga2) are upregulated by
TGFb,51,52 and we observed that Hmga2 localizes to the corneal
epithelium where Wnt expression is dominant.56

Strap activates
Wnt but represses TGFb,124,125 and its downregulation may play
an important role in balancing these pathways. Our data indicate

that the reduction in proliferation occurs at E14.5 and
progresses during corneal development. It is likely the RA and
TGFb pathways modulate the cell proliferation promoted by
Wnt signaling, which may occur through regulation of Lin28, C-

myc, Id2, and Id3.45,97,126–129 Proper regulation of Wnt
signaling is crucial, as gain of function in epithelial b-catenin
and DKK mutants show increased proliferation, impaired
differentiation, and reduced ECM in the epithelium and
stroma.97,98,130,131 This arrangement may change in the postna-
tal cornea as the epithelium undergoes stratification.7 Verifica-
tion of these associations during corneal development will
require additional studies.

The expression of ECM proteins is abundant and critical for
the coordinated fibrillogenesis of the cornea. The absence of
either collagens or regulatory proteoglycans causes dysfunc-
tional fibrillogenesis and corneal opacity.10,132 Our results
confirm a high expression of transcripts and upregulation of
well-known corneal ECM proteins, including decorin, lumican,
keratocan, and collagen I. Interestingly, several of the
downregulated genes (Vtn, Vcan, Has2, and Tgfbi) are
involved in neural crest induction and migration.133–137 Several
matricellular genes are upregulated at E14.5 and downregulat-
ed at E16.5 (Fbln2, Spp1, and Ecm1), suggesting that they are
required for cell migration, differentiation, or the initial
organization of the corneal ECM. Upregulation of matrix
remodeling genes from the cathepsin, matrix metalloprotei-
nase, and a disintegrin and metalloproteinase families may be
required for cellular positioning and collagen alignment, which
are crucial for establishing a lattice structure and transparen-
cy.138–140 Genes that regulate cell junctions follow a similar
trajectory and may be important for intercellular communica-
tions and establishing the epithelial and endothelial barrier.141

This coincides with genes that regulate epithelial differentia-
tion and elevation of epithelial markers, suggesting that the
maturation and function of the epithelium develop simulta-
neously.142,143 Interestingly, our data indicate that epithelial
genes, such as Emp1, Gsto1, Gsta4, and Glut1, are also
expressed in the pNC. This could indicate the epithelial origin
of the pNC or a functional role in the mesenchyme. Some
epithelial genes, such as Slurp1 and Psca, are not expressed at
E14.5 and E16.5, indicating that they are required at later
stages of corneal development and are involved in mainte-
nance of the epithelial layer.144–146

Cross talk between the ECM and resident cells is mediated
through cellular receptors, mostly composed of integrins.
Itga3b1 and Itga11b1 are required for collagen deposition and
matrix assembly.147,148 ItgaVb1 and ItgaVb5 may affect neural
guidance149 or interact with latent TGFb, which may affect
ECM assembly.150,151 Itga4b1, Itga8b1, and Itga9b1 are
receptors for fibronectin, and they mediate cell adhesion and
migration.152–155 Their downregulation implies reduced motil-
ity. Upregulation of Ddr1, which is regulated by collagen, may
provide a feedback mechanism to retain high activity of matrix
remodeling genes.156,157 Our data show that both Agrin and its
receptor Dag1 are upregulated in the cornea.158 Misregulation
of either Agrin or Dag1 causes similar corneal defects,
suggesting they may interact during corneal develop-
ment.158–161

Angiogenesis and neurogenesis are two closely related
processes that require intricate orchestration of signals to
generate a highly innervated yet avascular cornea. Our
previous studies indicated that these two processes are
separated during early corneal development.162,163 Our data
reveal that multiple factors common to neurovascular pattern-
ing were highly expressed or upregulated concomitantly with
antiangiogenic factors. This includes the class 3 semaphorins
(Sema3A, Sema3C, and Sema3F) that we studied.162–166 We also
observed upregulation of an extremely potent antiangiogenic

FIGURE 7. Spatiotemporal expression of genes involved in corneal
morphogenesis. (A) Fbln2 is expressed at low levels at E10.5 and E16.5
and is enriched throughout the stroma at E16.5. (B) Serpinh1 is
expressed in the pNC, stroma, and epithelium. At E10.5 it is enriched
in the temporal mesenchyme, at E14.5 enriched in the anterior stroma,
and E16.5 enriched in the endothelium. (C) Emp1 is expressed in all
stages and layers, and enriched in the epithelium at E16.5. (D) Pedf is
expressed in all stages and layers and enriched in the posterior cornea
at E16.5. Black arrows represent regions of enriched expression. Scale

bar: 50 lm.
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factor, Pedf, and its receptor Plxdc2.167 Pedf protects against
neovascularization in disease and wound healing in the retina
and cornea,71,168–170 and it is likely to play a similar role during
corneal development.

CONCLUSIONS

Here, we report the first transcriptome analysis of the early
development of the mouse cornea. Our data identify a large
number of differentially regulated genes during corneal
development. We describe the genetic landscape of corneal
morphogenesis and provide novel insights of how cross talk
between the RA, Wnt, and TGFb pathways regulates transcrip-
tion factors involved in cell migration, proliferation, and
differentiation. This data will serve as a valuable resource for
identifying novel genes essential for corneal development and
potential targets for corneal therapies.
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