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ABSTRACT: In biological systems, proteins can be attracted to
curved or stretched regions of lipid bilayers by sensing hydrophobic
defects in the lipid packing on the membrane surface. Here, we
present an efficient end-state free energy calculation method to
quantify such sensing in molecular dynamics simulations. We
illustrate that lipid packing defect sensing can be defined as the
difference in mechanical work required to stretch a membrane with
and without a peptide bound to the surface. We also demonstrate
that a peptide’s ability to concurrently induce excess leaflet area
(tension) and elastic softeninga property we call the “characteristic
area of sensing” (CHAOS)and lipid packing sensing behavior are
in fact two sides of the same coin. In essence, defect sensing displays
a peptide’s propensity to generate tension. The here-proposed
mechanical pathway is equally accurate yet, computationally, about 40 times less costly than the commonly used alchemical pathway
(thermodynamic integration), allowing for more feasible free energy calculations in atomistic simulations. This enabled us to directly
compare the Martini 2 and 3 coarse-grained and the CHARMM36 atomistic force fields in terms of relative binding free energies for
six representative peptides including the curvature sensor ALPS and two antiviral amphipathic helices (AH). We observed that
Martini 3 qualitatively reproduces experimental trends while producing substantially lower (relative) binding free energies and
shallower membrane insertion depths compared to atomistic simulations. In contrast, Martini 2 tends to overestimate (relative)
binding free energies. Finally, we offer a glimpse into how our end-state-based free energy method can enable the inverse design of
optimal lipid packing defect sensing peptides when used in conjunction with our recently developed evolutionary molecular
dynamics (Evo-MD) method. We argue that these optimized defect sensorsaside from their biomedical and biophysical
relevancecan provide valuable targets for the development of lipid force fields.

1. INTRODUCTION
Lipid bilayers are crucial for maintaining cellular integrity,
structure, and homeostasis. Many processes taking place in, on,
or near these membranes involve proteins that experience a
thermodynamic force that drives the self-organization and
recruitment toward certain bilayer properties such as curvature,
tension, or lipid composition.1−4 This process is called
“sensing”. A key feature that underlies such sensing is lipid
packing defects that occur when membranes are stretched or
bent. Regardless of whether this happens symmetrically (i.e.,
both leaflets experience the same tension) or asymmetrically
(i.e., one leaflet gets stretched more than the other, resulting in
a net positive curvature), the optimal packing of the
hydrophilic lipid head groups gets disturbed, which exposes
hydrophobic defects on the membrane surface. Due to the
surfactant-like nature of amphipathic peptides and protein
motifs, these differences in surface hydrophobicity can give rise
to a difference in the relative binding free energy (membrane
partitioning) and a concomitant sensing force.5,6

Many questions related to lipid packing defects can be
challenging to address in experiments because these methods

lack the required molecular detail. Hence, molecular dynamics
(MD) simulations are an indispensable tool to study such
membrane properties and their effect on protein binding and
sensing. The crucial issue of the reliability of simulations is the
quality of the force field, and many efforts, especially in the last
several years, have been devoted to parametrization and
optimization of the force fields for biomembrane modeling.
For example, so-called “bottom-up” coarse-grained (CG)
models, such as the Martini force field, are parametrized in a
systematic way based on the reproduction of partitioning free
energies between polar and apolar phases of a large number of
chemical compounds.7,8 A main goal of both atomistic and CG
lipid force fields particularly is to accurately reproduce the

Received: March 4, 2022
Published: June 16, 2022

Articlepubs.acs.org/JCTC

© 2022 The Authors. Published by
American Chemical Society

4503
https://doi.org/10.1021/acs.jctc.2c00222

J. Chem. Theory Comput. 2022, 18, 4503−4514

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Niek+van+Hilten"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kai+Steffen+Stroh"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Herre+Jelger+Risselada"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.2c00222&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00222?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00222?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00222?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00222?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00222?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/jctcce/18/7?ref=pdf
https://pubs.acs.org/toc/jctcce/18/7?ref=pdf
https://pubs.acs.org/toc/jctcce/18/7?ref=pdf
https://pubs.acs.org/toc/jctcce/18/7?ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00222?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org/JCTC?ref=pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://acsopenscience.org/open-access/licensing-options/


membrane binding and partitioning of peripheral membrane
proteins. However, a systematic comparison of force fields on
the relative binding free energies, i.e., quantification of
membrane curvature and lipid packing defect sensing, of
whole proteins or even peptides is computationally not
tractable using the present alchemical approaches such as
thermodynamic integration (TI)9 and the Bennett acceptance
ratio (BAR) method.10 Furthermore, (un)binding of peptides
is subject to large hysteresis, which complicates accurate
estimation of binding free energies when using free energy
calculation methods that rely on physical rather than
alchemical reaction coordinates (e.g., umbrella sampling).
Finally, a prevailing need exists to develop methods that enable
efficient and accurate quantification of a peptide’s ability to
sense lipid packing defects because of important pharmaceut-
ical applications such as the design of broad-spectrum antiviral
peptides that selectively target the highly curved lipid envelope
of clinically relevant viruses.11

We recently illustrated how relative binding free energies
due to differences in membrane curvature12 and lipid packing
defects13 can be quantified in CG molecular simulations via
umbrella sampling. With these studies, we also showed that
curvature and lipid packing defect sensing are in fact equivalent
phenomena, implying that a protein’s ability to sense positive
membrane curvature can be alternatively inferred from its
ability to sense packing defects. Lipid packing defect sensing
can be efficiently quantified from the magnitude of a
thermodynamic sorting force that acts on a surface binding
peptide when it is positioned within a spatial gradient of lipid
packing defectsa defect gradient (Figure 1A).13 Since the
sorting force is approximately constant over the whole gradient
(slope in Figure 1B), its magnitude is directly proportional to
the relative free energy of membrane binding. Therefore,
sensing can be quantified by ensemble averaging over only a
single simulation. This approach yields accurate results given
that the spatial gradient zone is smeared out over ∼10 nm or
more. However, the method still features a slow convergence
of the sorting force via ensemble averaging (multiple
microseconds) due to the asymmetric nature of the gradient
in combination with slow orientational and rotational modes of

the peptide when it is bound to the membrane. Furthermore,
computational efficiency cannot be trivially improved via
further reduction of the system size since too strong spatial
gradients in membrane thickness also compromise the
precision of the method. Thus, although the thermodynamic
gradient method provides an elegant and intuitive method for
quantifying lipid packing defect sensing, its slow convergence
limits its application in high-throughput utilities and atomistic
simulations.
Here, we present a highly efficient and accurate end-state

free energy calculation method to directly estimate the relative
free energy of membrane binding, i.e., quantification of defect
and curvature sensing. In contrast to well-established
alchemical pathways, we illustrate that the relative free energy
of binding can be alternatively obtained using a mechanical
pathway, which is equally accurate and computationally much
less expensive. An important advantage of the new approach is
that the corresponding end-state systems are both small (128
lipids) and symmetric, which enables quick and reliable
calculation of the relative binding free energy in CG
simulations and also makes them more feasible to conduct
on the atomistic scale. We compare the performance and
accuracy of this end-state mechanical pathway with the
standard alchemical pathway (TI) by analyzing them for four
known packing defect sensing peptides and two related
negative controls. We also use this new quantification method
to compare lipid packing defect sensing and overall peptide−
membrane interactions within the recent Martini 3 force field8

with the previous version and atomistic simulations.
Importantly, the here-resolved thermodynamic cycle illus-

trates that lipid packing sensing and the induction of
membrane tension are in fact two sides of the same coin.
This implies that defect sensing peptides maximize the
generation of leaflet tension resulting in a strong native
membrane destabilizing propensity. Finally, as the ultimate
demonstration of the method’s high-throughput potential, we
will illustrate how our method can direct the simulated
evolution of defect sensing peptides toward optimal sensing
(inverse design). We argue that these optimal sequences
provide novel and valuable benchmark systems since they

Figure 1. Qauntification of lipid packing defect sensing using the thermodynamic gradient method. Adapted from our previous work.13 (A) Side
view and top view of a flat Martini POPC membrane subject to an external potential that induces tension (thinning) in the middle section (x = 27.5
nm, thickness ≈ 3 nm) and is gradually switched off moving outward (to x = 5 nm, thickness ≈ 4 nm). Peptide model is ALPS. Cyan patches in the
top view indicate lipid packing defects.14 (B) Free energy (F(x)) as a function of the position (x) on the membrane calculated by umbrella

sampling for ALPS across the lipid packing defect gradient. The slope of this curve ( xdF( )
dx

) is a thermodynamic sorting force, which can be directly

used as a measure for lipid packing sensing. Linear behavior is explained by the linear decrease in membrane thickness along the gradient. Owing to
bulk incompressibilty and hookian membrane elasticity, this results in a linear gradient in the surface tension and surface free energy whose spatial
derivative yields a constant sorting force along the gradient.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00222
J. Chem. Theory Comput. 2022, 18, 4503−4514

4504

https://pubs.acs.org/doi/10.1021/acs.jctc.2c00222?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00222?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00222?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00222?fig=fig1&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00222?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


reflect the boundary of a force field’s applicability domain. The
primary aim of force fields is to reproduce physicochemical
driving forcestrends, not just absolutesand therefore, they
must at least reproduce the global physicochemical features of
optimized sequences.

2. THEORY AND METHODS
2.1. Alchemical Calculation of the Relative Binding

Free Energy. Lipid packing defect sensing can be defined as
the differential affinity of a peptide toward a membrane with
defects (ΔFb′, under tension) versus a membrane without
defects (ΔFb, tensionless). Note that we use the nomenclature
ΔF toindicate that the simulations were performed at a
constant area (but not constant volume). In terms of free
energy differences, we can write

ΔΔ = Δ ′ − ΔF F Fsinsen g b b (1)

In membrane-binding experiments, the reference state for ΔFb′
and ΔFb (membrane bound to unbound) is the peptide in
solution, and besides a membrane partitioning term, it would
also contain an energetic cost for (un)folding. However, we
note that the solvation energy (water to vacuum) of a peptide
is independent of the state of the membrane (under tension or
tensionless), which causes these solvation terms to cancel out.
In addition, switching off all peptide−system interactions
renders its ensemble invariant to peptide folding events
elsewhere in the thermodynamic cycle.
ΔFb′ and ΔFb can be calculated using thermodynamic

integration (TI).9 In this commonly used “alchemical” method,
a peptide−membrane bound state (A, with potential energy
VA) is transitioned to the peptide in vacuo (B, with potential
energy VB) by gradually switching off the van der Waals and
Coulomb interactions between the peptide particles and their
surroundings (coupling parameter λ = 0 → λ = 1). By taking
the integral of the ensemble average of the derivative of the
potential energy (V(λ)), the free energy difference between
states A and B can be calculated

∫

∫
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Although TI is an accurate and commonly used method, it is
even when using CG force fieldscomputationally expensive.

To make sure the numerical integration is valid, a smooth λ
λ

∂
∂

V( )

profile is required, which typically takes at least 20 λ states to
simulate. Because decoupling is generally performed separately
for the van der Waals and Coulomb interactions, the number
of simulations increases to 30−40 per system. Moreover, in
problems concerning the difference in binding free energies
between two systems (like our packing defect sensing problem;
ΔΔFsensing = ΔFb′ − ΔFb), this again doubles to at least 60−80
simulations in total.

2.2. Mechanical calculation of the relative binding
free energy. Consistent with the first law of thermodynamics,
the energy difference between two states of a cycle is
independent of the path one takes to get from one to the
other. We can define such a cycle by connecting the two begin
states (peptide bound) and the two end states of the
alchemical pathway (peptide unbound); see Figure 2A. This
realization allows a redefinition of lipid packing defect sensing
as the change in work required to stretch a membrane in the
presence (ΔFs′) and absence (ΔFs) of a surface-bound peptide

ΔΔ = Δ ′ − Δ = Δ ′ − ΔF F F F Fsinsen g b b s s (3)

Thus, a good lipid packing sensor (ΔΔFsensing ≪ 0) minimizes
the work required to stretch the membrane leaflet it adheres to.
Calculating this mechanical pathway is much cheaper

compared to the alchemical pathway (TI) for two reasons.
First, one of the terms, ΔFs, is peptide independent, since it is
simply the work required to stretch a membrane without a
peptide bound to it. This means one only has to calculate it
once (for a given system) and can simply plug in the same
number for any peptide of interest. Second, in elastic theory,
the lateral tension σ(A) in a membrane is linearly related to the
change in membrane area ( −A A

A
0

0
, i.e., relative leaflet strain ϵ)

for small deviations from the equilibrium tensionless area A0
15

σ = ϵ =
−

A K K
A A

A
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0

0 (4)

with KA being the area compressibility modulus. The tension
σ(A) can be directly obtained via ensemble averaging at
constant membrane area using the relation
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Figure 2. (A) Thermodynamic cycle that links the alchemical (ΔFb′ − ΔFb) and the mechanical (ΔFs′ − ΔFs) pathways. Tensionless and stretched
membranes are shown in green and red, respectively. Lipid packing defects in the stretched membranes are depicted by the gray triangles. (B)
Snapshots of the CG systems without tension (left, no relative strain ϵ) and with tension (right, high relative strain ϵ). POPC lipids are shown in
gray with black head groups. Peptide is shown in yellow.
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where Lz is the length of the simulation box along the z
dimension and Px, Py, and Pz are the average pressures in the x,
y, and z dimensions, respectively. These pressures are derived
from the diagonal components of the stress tensor as derived
from the Clausius virial theorem.
Because of the linear relation in eq 4, the free energy

difference (mechanical work) of stretching (ΔFs) can be
reliably approximated by performing MD simulations at merely
two different constant areas A and A0 and by measuring the
resulting surface tensions σ(A) and σ(A0). Applying the
trapezoidal rule yields

∫ σ
σ σ

Δ = = −
+

F A A A
A A

( )dA ( )
( ) ( )

2A

A

s 0
0

0 (6)

This is where the biggest efficiency gain lies for the mechanical
path (two points on a straight line) versus the alchemical path

(integration over >20 points on a complicated λ
λ

∂
∂

V( ) profile).

Now, combining and rearranging eqs 3 and 6 yields
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in which, like mentioned before, the membrane tensions in the
peptide-free systems σ(A) and σ(A0) only have to be measured
once to be used in the calculations for any peptide.
2.3. System Setup. A simulation box containing 128 CG

16:0−18:1 phosphatidylcholine (POPC) lipids was generated
using the insane python script.16 After solvation with 1800
Martini water beads and a steepest descent minimization, the
system was equilibrated with semiisotropic pressure coupling
to obtain tensionless membrane conditions. Next, the area of
the box was increased by steps of 1.4 nm2 and reequilibrated
every time (at constant area). 500 nanosecond production runs
were performed for the resulting 6 membranes, the areas of
which ranged from 42.4 to 49.4 nm2 (Figure 2B). Such a 16.5%
increase in leaflet area corresponds to the effective relative

strain (ϵ = −A A
A

0

0
) in the outer leaflet of a ∼ 25 nm diameter

vesicle (see SI), which is the lower size limit of vesicles found
in nature.
Helical CG peptide models were generated using

PeptideBuilder17 in conjunction with martinize2−Ver-
MoUTH18 and placed 1.5 nm from the membrane center
plane. For systems with charged peptides, counterions were
added to neutralize the system. A steepest descent
minimization with soft-core potentials (0.75 coupling for the
van der Waals interactions) was performed to solve clashes.
Production runs of 1−5 μs were performed, the first 50 ns of
which were discarded from further analyses for equilibration.
For TI, the equilibrated setups for the minimal and maximal

tension membranes were used as the starting points. 37 λ states

were defined to ensure proper λ
λ

∂
∂

V( ) sampling during separate

decoupling of the van der Waals and Coulomb interactions (37
× 2 = 74) to the final in vacuo state. For the two setupslow
and high tensiona total of 74 × 2 = 148 simulations of 500
ns was performed for each peptide. The Langevin stochastic
dynamics (SD) integrator and thermostat were used for these
runs. A soft harmonic distance constraint (kforce = 50 kJ mol−1

nm−2) was used between the centers of mass of the membrane

and the peptide (z dimension only) to prevent peptide−
membrane dissociation in high decoupling states. Finally, free
energy differences were obtained through numerical integra-
tion (eq 2).
For buckled membrane simulations, initial configurations

were generated with the python script insane.16 Each
membrane leaflet is comprised of 767 POPC lipids, which
were put in the x−y plane of a 40 nm × 10 nm × 20 nm
simulation box. A curvature sensing peptide was placed close
to the upper leaflet. The system was solvated with standard
Martini water and a 0.15 M NaCl concentration. Following
steepest-descent energy minimization and initial equilibration
(50 ns NpT), the system was compressed in the x direction by
applying a pressure of 3 bar (Berendsen barostat,19 τp = 12.0
ps, compressibility of 3 × 10−4 bar−1). The system was allowed
to expand in the z direction, while the y dimension was fixed.
From the compression trajectory, a frame close to a
compression of 38% was chosen. Another NpT equilibration
with fixed x and y dimensions (100 ns, Parrinello−Rahman
barostat,20 τp = 12.0 ps, compressibility of 3 × 10−4 bar−1)
followed. To fix the analytical shape of the buckled membrane,
positions of the PO4 beads in the lower leaflet were restrained
with a force constant of 10 kJ mol−1 nm−2. This minimally
influences the upper leaflet dynamics, where the peptide is
located. For subsequent peptides the preequilibrated system
was used, the original peptide was deleted, and a new peptide
was inserted into the free volume. Energy minimization and
NVT equilibration followed. To generate the initial config-
urations for the umbrella sampling, the peptide was pulled
along the x direction of the membrane. Each individual
umbrella sampling run is 1.05 μs long with the first 50 ns for
equilibration. A harmonic potential with a force constant of k =
100 kJ mol−1 nm−2 was used to restrain the peptide to a
defined point along the reaction coordinate. Rotation around
the membrane normal was restrained in the same manner to
keep the peptide aligned with the y axis, i.e., the flat direction
of the membrane.
Atomistic POPC membranes were equilibrated at the same

constant areas as in the CG simulations. Simulation boxes
contained 4985 CHARMM TIP3P water molecules.21,22 The
helical atomistic peptide models were built by feeding the
PeptideBuilder pdb files into CHARMM-GUI.23 The resulting
peptide structures were placed on the membranes following
the same procedure as described for the CG simulations.
Triplicate independent production runs of 1 μs were
performed. The first 500 ns were not included in the analyses
to allow for equilibration.

2.4. Simulation Details. All simulations were performed
with GROMACS 2019.324 except for the simulations on a
buckled membrane, which were done with GROMACS
2021.4. The temperature was kept at a constant 310 K by
the velocity rescaling thermostat25 (τT = 1 ps). Unless stated
otherwise, simulations were performed with fixed x and y
dimensions (constant area), i.e., Berendsen pressure coupling19

was applied only in the z dimension (1 bar reference pressure
with a 4.5 × 10−5 bar−1 compressibility).
Coarse-grained molecular dynamics (CGMD) simulations

were performed with the Martini force field, version 3.0.0,8

unless stated otherwise. A 30 fs time step was used for all CG
simulations except the buckled membrane runs, which were
performed with a 20 fs time step. van der Waals interactions
were calculated with the shifted Verlet cutoff scheme,26 and
reaction-field electrostatics27 describe the coulomb potentials,
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both with a 1.1 nm cutoff. The neighbor list was updated every
20 steps.
Atomistic simulations were done with the February 2021

version of the CHARMM36 force field.22,28 A time step of 2 fs
was used. van der Waals and Coulomb interactions were
calculated using the Verlet scheme26 (with forces switching off
gradually between 1.0 and 1.2 nm) and the potential-shifted
particle mesh Ewald (PME)29 method, respectively, both with
a 1.2 nm cutoff distance. The neighbor list was updated every
10 steps. The LINCS algorithm30 was used to constrain bonds
with hydrogen atoms.

3. RESULTS AND DISCUSSION

To demonstrate how our method works and to validate it
against the well-established TI method, we will focus on the
most broadly studied class of lipid packing sensing protein
motifs: amphipathic α-helices. One side of these peptides
mainly consists of large apolar/aromatic moieties to comple-

ment the hydrophobic lipid packing defects, and the other side
comprises polar and/or positively charged residues to interact
with the solvent and lipid headgroups. We picked six peptides
for our study (Figure 3A), which we will briefly introduce
below (see Table SI1 for details).
First, we will study the ALPS motif that allows curvature

sensing by the ArfGAP1 protein31 and is also found on other
proteins.32−35 Since its discovery, ALPS has served as an
important model peptide in many computational studies on
curvature/lipid packing sensing,36−38 also in our own
group.12,13 Second, we will include an amphipathic helix
(AH) that was derived from the NS5A protein of hepatitis C
virus (HCV) and discovered to sense and rupture vesicles in a
size-dependent manner: small vesicles (including HCV
particles themselves) were more readily ruptured than bigger
ones, and this size range overlaps with the diameter of many
enveloped viruses (50−160 nm).39,40 Indeed, the antiviral
activity of HCV AH was later found for several unrelated

Figure 3. (A) Depictions of the helical peptide models in the Martini 3 model,8 and full-sequence helical wheel representations.43 Yellow:
hydrophobic residues (C, F, I, L, M, V, W, Y). Red: negatively charged residues (D and E). Blue: positively charged residues (K and R). Magenta:
polar residues (H, N, Q, S, and T). Gray: small residues (A and G) and backbone. (B) Surface tension measured at increasing membrane areas

(relative strain ϵ = ×− 100%A A
A

0

0
) with and without surface-bound peptides. (C) Sensing free energy differences at increasing relative strain, as

calculated with eq 7, for different peptides. Dotted line represents the integral over all six points. Solid line represents the end-state method, which
only integrates between the first (ϵ = 0%) and the last (ϵ = 16.5%) point. (D) Characteristic area of sensing (CHAOS parameter, see eq 8) is
constant for different relative surface tension values (Δσ(A) = σ(A0) − σ(A)), thereby illustrating its end-state-invariant nature. Dashed lines
represent the average values for each peptide.
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viruses, including Zika, Dengue, and West Nile viruses.41 Just
like the original work, we will also include the negative control
HCV NH, where three-point mutations nullify the amphipa-
thicity of the peptide, resulting in a loss of antiviral activity.39

Finally, and along the same lines, we will consider an AH
derived from the M2 protein of the influenza virus that showed
antiviral activity against four different influenza strains.42 A
variant with increased amphipathicity (named M2 MH)
showed an 16.4-fold increase in anti-influenza inhibitory effect.
In contrast, the potency is abolished for a variant with low
amphipathicity (named M2 NH), which we will use as a
second negative control.
For simplicity, we opted to perform all simulations with pure

zwitterionic POPC model membranes. However, we empha-
size that our method is in no way restricted to membrane
composition and that it could therefore be utilized to
additionally study the effect of lipid membrane composition
on lipid packing defect sensing.
3.1. Calculating Sensing Free Energies via the

Mechanical Pathway. We performed CGMD simulations
of these peptides adhered to the surface of membranes at
equilibrium (0% relative strain) and at increasing degrees of
stretching (up to 16.5% relative strain) and measured the
resulting change in surface tension σ(A) (Figure 3B).
Consistent with eq 4, we observed near-linear behavior for
small strains both with and without peptides present. It
becomes clear that peptides binding to the surface of a
membrane reduce the surface tension imposed by the fixed
boundary conditions to keep the system at a constant area. In
other words, the adhered peptides reduce the work of
stretching. Also, we can already observe that the inactive
peptides HCV NH and M2 NH cause a much smaller
reduction in this tension than the active curvature sensors.
Now, we can calculate the free energy of sensing (ΔΔFsensing)
by integrating over these curves (eq 7), i.e., we calculate the
area enclosed by the “no peptide” curve (σ(A); black line in

Figure 3B) and the curve for the peptide of interest (σ′(A);
colored line). Since the tension reduction is approximately
constant for different membrane areas, taking this integral over
all 6 points (dotted line in Figure 3C) or only the end states
(0% and 16.5% relative strain; solid line in Figure 3C) yields
the same result, at least within the measurement error. Thus,
only two simulations at the extremes suffice to accurately
calculate ΔΔFsensing. We note that this ΔΔFsensing is calculated
from simulations at constant area. With additional simulations
at constant tension (see SI), we show that the resulting
correction terms that arise from transitioning from constant
area to constant tension ensembles are negligible. Therefore,
we proceeded to use the end-state mechanical calculations at
constant area for all of the following results described in this
paper.

3.2. “CHAOS” Parameter: An End-State-Invariant
Measure for Lipid Packing Sensing Ability. We note
that one can only interpret the ΔΔFsensing relative between
different peptides, since the absolute values depend on the
(arbitrary) choice of the two end states (Figure 3C). We chose
end states with a large difference in tension since this inflates
the value of ΔΔFsensing and therefore enhances the reliability of
peptide ranking, i.e., the relative differences in ΔΔFsensing
overcome the sampling error. In fact, because of a linear
relationship between the free energy and the tension (eq 6),
we can define an end-state-invariant property that we coin the
“characteristic area of sensing” (aptly abbreviated to CHAOS)
since it has the dimension of area per molecule. This CHAOS
parameter is the relative difference in binding free energy (=
sensing) normalized by the difference in surface tension
between the peptide-free reference systems

σ σ σ
=

ΔΔ
Δ

=
ΔΔ

−
F

A

F

A A
CHAOS

( ) ( ) ( )
sin n gsen g se sin

0 (8)

The surface tension of the peptide-free reference systems is
chosen pragmatically because of the smaller sampling error in

Figure 4. (A) Cumulative moving average of ΔΔFsensing for triplicate 5 μs runs. (B) Comparison between our mechanical end-state method
(averages and standard deviations of the three 5 μs runs in A) and free energy calculation via the alchemical pathway (TI). P values were calculated
with the two-tailed Welch’s t test, which showed no statistically significant differences for any of the peptides (p > 0.05). (C) Distance (z) between
the peptide and the bilayer neutral plane (100 ns moving average) for the tensionless runs in A. Absolute values are taken to account for periodic
boundary crossings. Insets show typical conformations for HCV AH (fully membrane bound), HCV NH (partly membrane bound), and M2 NH
(fully unbound).
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pure lipid membrane systems. In the constant tension
ensemble, both systems in fact converge to the same surface
tension, which yields similar magnitudes of the CHAOS
parameter (see SI). Indeed, when we plot the CHAOS
parameter against the range of Δσ’s simulated, we observe an
approximately constant CHAOS value for every peptide
(Figure 3D). The ranking and relative distances between
these values for the different peptides remains fully consistent
with the ΔΔFsensing values, yet they are independent of the
choice of end states.
The CHAOS parameter can be, in part, interpreted as the

area increase upon adhesion of a given peptide to a tensionless
membrane within the corresponding NpT ensemble (see Table
SI2). However, its magnitude will always be slightly bigger
since it is additionally determined by the peptide’s ability to
soften the membrane, i.e., lowering the area compressibilty KA
and thereby reducing the mechanical work of stretching. In
fact, CHAOS is a striking abbreviation since its magnitude
directly reflects the ability of the peptide to disorder the
packing of lipid tails via creation of excess leaflet area
(tension). As per this definition, we speculate that CHAOS
parameters may be directly comparable to experimental values
obtained from liposome binding assays44 and Langmuir−
Blodgett experiments in which the surface tension of a lipid
monolayer at the air−water interface can be measured upon
adhesion of surfactants (e.g., amphipathic peptides).45

3.3. Convergence, Reproducibility, and Comparison
to Conventional Alchemical Pathways. We performed
three independent reruns of 5 μs per simulation to assess the
reproducibility and convergence of our method (Figure 4A).

This showed that after approximately 1 μs, the calculated free
energies of the independent runs converged to the same value
(within the margin of error).
Consistent with thermodynamic theory (eq 3, Figure 2A),

the sensing free energies calculated via the mechanical pathway
between the end states closely match the free energies
calculated by TI (Figure 4B, Figure SI2), with no statistically
significant differences between the two methods for all of the
peptides tested. We stress that while producing the same
results, there is a significant computational speed-up for our
mechanical end-state method compared to TI. Free energy
calculation via the mechanical pathway can be done reliably in
2 μs of simulation (1 μs for each of the two states), whereas TI
required 74 μs. This 37× speed-up is indispensable when
considering high-throughput calculation of the membrane
binding properties of peptides.
In line with the experimental results and the original design

principles, the peptides with mutated hydrophobic faces (HCV
NH and M2 NH) indeed have a compromised sensing ability
compared to the original peptides that were derived from HCV
AH and M2 AH, respectively (see Figure 4B). This reduced
sensing free energy is mainly due to (partial) detachment from
the membrane during our MD simulations (Figure 4C), which
renders them incapable of reducing the membrane surface
tension.

3.4. Transferability between Tension Sensing and
Curvature Sensing. To evaluate the transferability between
lipid packing defect sensing in a flat membrane (tension in
both leaflets) and positive curvature (tension in the outer,
compression in the inner leaflet), we performed umbrella

Figure 5. (A) Setup for umbrella sampling of the peptide−membrane interaction along a buckled membrane. Umbrella potential acts along the
tangent (dashed lines) at select reference points (s). (B) Curvature of the buckled bilayer neutral plane as a function of the x coordinate. Gray area
indicates the sampled region. (C) Sensing free energy as a function of curvature along the buckled membrane. Dotted lines indicate the free energy
values calculated from the end-state mechanical method (Figure 3C) and their corresponding curvatures.
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sampling (US) along a buckled POPC membrane (Figure 5A
and 5B) as described previously.12 The poorly binding HCV
NH and M2 NH peptides were not considered here since good
surface adhesion is a prerequisite in this approach. From this
experiment, we obtained sensing free energy profiles as a
function of membrane curvature (Figure 5C) that we can
directly compare with the free energy values we obtained
through our end-state mechanical method (Figure 3C). We
find that US along the membrane buckle yields a similar
ranking as our end-state free energy calculation method with
flat membranes, with the exception that ALPS outperforms
HCV AH by 0.65 kJ mol−1 on the buckle (Figure 5C).
However, considering the large error in the US method (95%
confidence intervals = 1.57 and 1.34 kJ mol−1, respectively), we
do not consider this difference to be significant. Thus, the
ability of an α-helical peptide to sense leaflet curvature is
indeed directly relatable to its ability to sense lipid packing
defects in a flat membrane.
Furthermore, we can use this membrane buckle to check

whether the degree of stretching we use in our end-state
method realistically represents the membrane curvature that it
should resemble (1/R ≈ 1/12.5 = 0.08 nm−1, see derivation in
SI). We do this by matching the ΔΔFsensing values we obtained
from our end-state method with the free energy profiles from
US over the buckled membrane (Figure 5C), which yields
curvatures ranging from 0.11 to 0.16 nm−1 (dotted lines in
Figure 5C). Since the buckled membrane has a cylindrical
geometry (only curved in one dimension), the mean curvatures
of a corresponding vesicle (curved in two dimensions) should
be reduced by a factor two: from 0.055 to 0.080 nm−1. This
results in a range of vesicle radii of approximately 12.5−18 nm,
which is in line with the estimated vesicle sizes in the tensed
membrane systems based on leaflet strain elastic theory as
derived in the SI.
3.5. Comparing Lipid Force Fields on Sensing Free

Energy and CHAOS Parameters. A major goal in the
parametrization of atomistic and CG lipid force fields is to
reproduce the partitioning free energies of biomolecules
between polar (solvent) and apolar (lipid membrane) phases.
Recently, it was shown that the new Martini 3 model is able to
correctly characterize the general binding behavior of
membrane peripheral proteins.46 In addition, we now have a
unique tool in hand to quantitatively compare force fields on
their ability to reproduce the thermodynamic properties
associated with membrane peripheral protein binding such as
relative binding free energies (lipid packing sensing) and the
concomitant CHAOS parameter. Here, we perform such a

comparison for Martini 3, Martini 2 (version 2.27,47 and
version 2.3P with polarizable water (PW)48 and PME
electrostatics), and the atomistic CHARMM36 force field
(Figure 6A and 6B). For the six peptides we study throughout
this paper, we find that the new Martini 3 model qualitatively
reproduces the general trends derived from experimental
studies: HCV AH outperforms the inactivated mutant HCV
NH,39 and M2 MH is more potent than M2 AH, while the
activity is indeed strongly reduced for M2 NH.42

In contrast, these trends are not captured correctly by the
Martini 2 model, which severely overestimates ΔΔFsensing and
CHAOS values compared to the other force fields. This is
caused by exaggerated peptide−membrane binding (i.e., the
peptides are “too hydrophobic”), as confirmed by the density
plots and insertions depths (see Figure SI3 and Table SI3). We
find that this behavior is improved when using Martini 2 with
PW, especially for peptides with net charge (HCV NH, M2
AH, M2 MH, and M2 NH), for which it more closely matches
the values we obtained with Martini 3 and CHARMM36.
The ΔΔFsensing and CHAOS values calculated from atomistic

simulations with CHARMM36 are within the same range as
the Martini 3 and Martini 2 (with PW) results. However, we
note that measurement errors are considerably larger because
of the slower convergence compared to the CG force fields,
rendering sufficient sampling of (un)binding and peptide
refolding events challenging in practice despite the high
computational efficiency of our method. This was especially
true for M2 MH, which displayed strong membrane binding in
one replica and weak binding or even partial detachment in the
other two, resulting in a large measurement error (see Figure
SI3 and Table SI3).
Finally, we examined the membrane insertion depths of the

peptides in the different force fields and found that this
insertion is markedly shallower in Martini 3 than that in
CHARMM36, i.e., peptides in Martini 3 behave “too
hydrophilic” (see Figure SI3 and Table SI3) despite
qualitatively reproducing the experimental trends. Part of this
discrepancy could be related to the structural plasticity of
peptides in the atomistic simulation, which makes a direct
comparison to CG simulations less straightforward. Never-
theless, the observed systematic and marked reduction in
peptide insertion depths along with an often lower CHAOS
parameter suggests that Martini 3 may have a tendency to
underestimate the membrane binding behavior of proteins
with respect to CHARMM36 even though overall relative
binding free energies seem improved with respect to the
previous Martini versions. One of the main founding principles

Figure 6. Comparison of lipid packing sensing of peptides with the Martini 3 (version 3.0.0), Martini 2 (version 2.2), Martini 2 with polarizable
water (PW, version 2.3P), and atomistic CHARMM36 force fields in terms of sensing free energy (A) and CHAOS parameter (B). Reported values
and error bars are averages and standard deviations of three independent replicas. Martini 3 data is the same as that in Figure 4. Martini 2 and
atomistic runs were 1 μs each.
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of the original Martini model was to reproduce partitioning
free energies of fluid mixtures by reproducing density profiles,
and which determine the insertion depths of molecules. It is
thus somewhat surprising that the membrane insertion depth
of the proteins are in fact less well reproduced in Martini 3
than in the older versions.
3.6. Using “CHAOS Control” To Improve Force Field

Development. In this work, we selected six peptides based on
the fact that they are of biological/pharmaceutical importance
and experimentally well characterized. However, the similarity
in their CHAOS parameters suggests that peptides can have
overlapping physicochemical properties despite having very
different sequences. This raises the question of whether a
physicochemically more diverse set of peptides can be
constructed that more efficiently and strategically enables
both the benchmarking and the parametrization of force fields.
We recently proposed a physics-based inverse design

approach coined evolutionary molecular dynamics (Evo-
MD).49 Evo-MD relies on the principle that (large)
experimental data contributes to solving biophysical problems
independently via the parametrization of bottom-up CG force
fields. Evo-MD features a directed evolution (genetic
algorithm) of peptide sequences that starts with a set
(“population”) of completely random peptide sequences
(“individuals”) and computes the corresponding “fitness”
value for every sequence from one or more MD simulations.
Then, in each generation/iteration, analogous to Darwin’s
“reproduction of the fittest”, the best scoring individuals are
recombined and consequently produce offspring that resemble
their predecessors but are slightly different due to both random
crossovers and infrequent point mutations. By repeating this
cycle (Figure 7A) for several iterations, the fitness of the best
individuals in the population should improve until it converges
to an optimum value. We previously demonstrated the utility
of this concept by resolving the optimal cholesterol sensing
transmembrane domain.49

With the highly efficient mechanical pathway method we
present here, we can now perform a similar optimization for
the lipid packing defect sensing problem, which would be
unfeasible with previous methods, like TI, because of their
computational expense. Figure 7B illustrates the utility of Evo-

MD in generating peptide sequences (with a fixed length of 24
amino acids) with highly diverse sensing free energies. We
emphasize that, in the current work, these results solely serve
as a proof of principle and that details on the sequences of the
resolved optima as well as their experimental validation will be
published in a separate upcoming paper.
An important and fundamental question is whether the

natural and nature-derived peptides that we studied in this
work are optimal for lipid packing defect sensing. Intriguingly,
the evolutionary convergence in Figure 7B suggests that known
curvature sensors in nature (like ALPS and HCV AH) are in
fact far from optimal. A general feature among the optimized
sequences (ΔΔFsensing <−30 kJ mol−1, see Figure 7B) is a
strong enrichment in big aromatic residues (F and W) to
maximize membrane insertion depth, peptide volume, and
consequent tension generation. This shows that our method
successfully finds and amplifies a well-known mechanistic
feature (W/F insertion) that underlies lipid packing defect
sensing by natural peptides.32,37 We argue that the many
evolutionary constraints imposed by nature’s complexity (e.g.,
solubility, protein−protein interactions, trafficking, and many
more) likely hinder the optimization of a single objective. This
argument is in full agreement with the notion that curvature
sensing in nature is a subtle balance between general
membrane binding and specific curvature recognition.34 In
addition, our results suggest thatsince defect sensing also
implies the active induction of leaflet straincurvature sensors
should conserve the structural integrity of the lipid membranes
they adhere to. Consequently, the global optimum of a desired
single objective such as defect or curvature sensing in our
example may thus lie far outside the applicability domain of
data-science-based generative peptide models, i.e., generative
models trained on large data sets of native sequences, because
the training data is too distinct from the theoretical optima.
We argue that directed evolution approaches such as Evo-

MD may offer a valuable benchmark platform for lipid force
fields. First, the primary aim of force fields is to reproduce
physicochemical driving forcestrends rather than abso-
lutesand therefore force fields must at least reproduce the
global physicochemical features of the optimized sequences.
Second, Evo-MD yields sequences over the whole range in

Figure 7. (A) Schematic representation of the basic concept of evolutionary molecular dynamics (Evo-MD). Adapted from 49. Generated peptides
(starting from a population of random sequences) are iteratively ranked on their “fitness” (ΔΔFsensing), as determined by the end-state mechanical
pathway method described in this paper. Best sequences are picked and recombined to produce the next generation, leading to gradual evolution
toward the optimal lipid packing sensing peptides. (B) Within 25 iterations of Evo-MD, we observe convergence at a ΔΔFsensing that far exceeds the
values we see for current state-of-the-art lipid packing defect sensors (e.g., HCV AH, ALPS, and M2 MH).
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relative binding free energy by gradually maximizing the
relevant chemical distinction between the peptides in a well-
spaced manner.
Of course, a main limitation of this approach is that CG

models such as Martini do not predict secondary and tertiary
structures. As most amphipathic peptides fold into an α-helix
upon binding to the membrane surface, we used fixed helical
folding throughout our CG models. To test the influence of
this enforced helicity, we performed additional simulations
with peptides modeled as random coils and found that the way
in which folding affects the CHAOS value strongly differs per
peptide (see SI). We observe that highly scoring peptides
(ALPS, HCV AH, M2 AH, M2 MH, and also the optima
resolved by Evo-MD) lose some activity when remodeled as a
random coil, although never dropping below a baseline
CHAOS value of ∼0.4 nm2. Conversely, we find that the
sensing ability of poorly binding peptides (like HCV NH)
could improve when adopting a fully coiled conformation.
Taken together, we argue that optimization of sensing is most
dominantly determined by the peptide’s general amino acid
composition (i.e., its overall hydrophobicity) and only in the
second instance by peptide structure. This is in line with
similar findings in the context of membrane-binding
antimicrobial peptides,50 although it is important to note
that helical folding in many cases facilitates the optimal
positioning of residues into polar and apolar faces, as
exemplified by the amphipathic peptides studied here. These
findings imply that one can effectively generate sequences with
high CHAOS values and subsequently resolve the structure via
atomistic simulations orif the goal is direct comparison
restrain the structure in both the atomistic and the CG
simulations to, for example, an α-helix. In addition, the Evo-
MD runs can be performed in conjunction with “on the fly”
structure prediction without severe loss of computational
efficiency, since the MD simulation will remain the rate-
limiting step.

4. CONCLUSIONS
We found that a peptide’s ability to sense lipid packing defects
in biological membranes can be redefined as the peptide’s
ability to reduce membrane tension in a leaflet under excess
strain or, equivalently, the peptide’s ability to reduce the
mechanical work required to stretch the membrane (leaflet).
We demonstrated that calculation of such a reduction in
mechanical work offers a highly efficient and accurate route for
the estimation of relative membrane binding free energies. This
resulting quantification of lipid packing sensing ability by the
membrane peripheral protein can be expressed as the sensing
free energy (ΔΔFsensing) or the here-defined characteristic area
of sensing (CHAOS) parameter, which is independent of the
choice of end states. The method only requires knowledge of
the individual pressure components over the course of the
simulation trajectory to calculate the system’s surface tension, a
quantity which virtually all molecular dynamics packages
provide.
We used this novel end-state method to compare the

performance of the new Martini 3 coarse-grained force field
with the previous Martini 2 for biorelevant lipid packing defect
sensing peptides. We observed that Martini 3 most accurately
reproduced the experimental trends, although the relative
binding free energies were generally lower than those
calculated from atomistic simulations. In contrast, Martini 2
severely overestimated peptide−membrane interactions and

consequent packing defect sensing. Finally, since defect sensing
implies both easing and active induction of leaflet strain, we
hypothesize that lipid packing defect and curvature sensors in
nature must be far from optimal since these proteins must
largely conserve the structural integrity of the lipid membranes
they adhere to. We argue that the extrema, i.e., the optimal
sequences, particularly provide valuable benchmarks for force
field development and comparison because their distinct
physicochemical signatures directly reflect how a force field
captures the physicochemical mechanisms of sensing.
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