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Abstract: Using a one-step thermal reduction and non-covalent chemical functionalization process,
PEGylated reduced nanographene oxide (rGOn-PEG) was produced from nanographene oxide (GOn)
and characterized in terms of particle size, dispersion stability, chemistry, and photothermal properties,
in view of its use for photothermal therapy (PTT) of non-melanoma skin cancer. GOn infrared
spectrum presented more intense bands assigned to oxygen containing functional groups than
observed for rGOn-PEG. GOn C/O ratio decreased more than 50% comparing with rGOn-PEG and
nitrogen was present in the latter (N at % = 20.6) due to introduction of PEG-NH2. Thermogravimetric
analysis allowed estimating the amount of PEG in rGOn-PEG to be of about 56.1%. Simultaneous
reduction and PEGylation increased the lateral dimensions from 287 ± 139 nm to 521 ± 397 nm,
as observed by transmission electron microscopy and dynamic light scattering. rGOn-PEG exhibited
≈13-fold higher absorbance in the near-infrared radiation (NIR) region, as compared to unmodified
GOn. Low power (150 mW cm−2) NIR irradiation using LEDs resulted in rGOn-PEG heating up
to 47 ◦C, which is within the mild PTT temperature range. PEGylation strongly enhanced the
dispersibility of rGOn in physiological media (phosphate buffered saline, fetal bovine serum, and cell
culture medium) and also improved the biocompatibility of rGOn-PEG, in comparison to GOn
(25–250 µg mL−1). After a single NIR LED irradiation treatment of 30 min, a decrease of ≈38% in
A-431 cells viability was observed for rGOn-PEG (250 µg mL−1). Together, our results demonstrate the
potential of irradiating rGOn-PEG using lower energy, cheaper, smaller, and safer LEDs, as alternative
to high power lasers, for NIR mild hyperthermia therapy of cancer, namely non-melanoma skin cancer.
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1. Introduction

Non-melanoma skin cancer (NMSC) has been reported as one of the most common types of cancer
worldwide, with an estimation of over 3 million diagnoses each year in the USA [1]. Despite including
different malignancies, basal cell and squamous cell carcinomas are the most frequent types of
NMSC [1–3]. Depending on disease risk level, surgical excision or radiotherapy are the standard
treatment options. Severe cases of high-risk primary, recurrent, or metastatic NMSC frequently
require multimodal therapy [1,3–5]. However, functional and cosmetic outcomes are still variable,
requiring novel treatment strategies.

Photothermal therapy (PTT) is being increasingly explored as an alternative non-invasive cancer
treatment. It relies on tumor irradiation with a near-infrared (NIR) laser, either topically or interstitially
through an optical fiber, leading to light energy conversion into heat, ultimately resulting in tumor
ablation [6]. Two different mechanisms can be broadly identified. Particularly, hyperthermia results
from mild temperature increases leading to the activation of cellular apoptotic pathways, whereas tumor
ablation is achieved with rapid temperature increases (> 50 ◦C) [7]. Nanomaterials hold potential as
photothermal absorbers to enhance PTT selectivity within the target tumor tissue toward achieving
therapeutic temperatures (> 41 ◦C) using less total light energy, minimizing damage to the healthy
surrounding tissue [6].

Over the past decade, graphene-based materials (GBM) have been widely explored for
a huge number of applications, including energy, aerospace, biomedicine, and health [8–15].
Recently, GBM emerged as potential PTT-based cancer therapy platforms owing to their high
NIR absorption [16–18]. Similarly to graphene-based materials, other 2D nanomaterials are being
increasingly explored for PTT cancer treatment, including black phosphorus (BP) and transition metal
dichalcogenides (TMDs), among others [17]. However, BP is highly sensitive to water and oxygen [19]
and frequently requires the combination with gold nanoparticles to achieve NIR photothermal
transduction efficiency [20,21]. In turn, TMDs are gaining interest, but low-yield and low-quality
exfoliation methods still pose enormous challenges to their application in biomedicine [22,23].

Graphene oxide (GO) has been receiving increased attention in the field of biomedicine due to
its surface chemistry with abundant oxygen reactive functional groups that enables a wide range
of chemical modifications and bioconjugation approaches [13,24–26]. We have previously shown
that oxidation of graphene nanoplatelets resulted in enhanced in vitro biocompatibility of these 2D
nanomaterials when cultured with human dermal fibroblasts at concentrations up to 100 µg mL−1 [27].
However, while improving water dispersibility and biocompatibility, oxidation of graphene into
GO results in diminished electronical and optical conductivity [24,28]. Chemical, thermal, and
electro/photochemical reduction methods are widely investigated to restore the aromatic structure
of graphene and obtain reduced GO with high NIR absorption capacity and biocompatibility
for applications in human health [13]. Over the years, green reduction combined with chemical
functionalization methods using biocompatible polymers, such as polyethylene glycol (PEG), to act as
surfactants have been reported [29–34]. Such methods yield NIR-absorbing photothermal agents that
can strongly absorb NIR light and convert it into cytotoxic temperature increases for local hyperthermia.

In the present work, we envisioned to develop a graphene-based PTT agent to be explored for
low power NIR-induced photohyperthermia therapy with prospective application in the treatment
of NMSC. To achieve this goal, key requisites were considered: (1) a nano-sized material to enhance
skin permeation and retention [35,36]; (2) strong NIR absorption capacity to enable low power
NIR-triggered hyperthermia; and (3) biocompatibility in the absence of NIR irradiation. Building up
on a previously described protocol for single step thermal reduction and PEGylation of graphene
oxide [37], we prepared non-covalently functionalized nanosized reduced graphene oxide (rGOn-PEG)
and characterized in detail the impact of this process on the physicochemical properties of developed
materials through multiple complementary techniques. Herein, we obtained a stable dispersion of
rGOn-PEG through a ‘water-only’ reduction protocol. This study enabled us to identify the main
chemical features and quantify the chemical modification obtained through such a green and facile
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method. We further explored the developed material as a NIR-absorbing agent for PTT treatment
using low power NIR light source to achieve a hyperthermia effect, envisioning application in the
treatment of superficial non-melanoma skin cancers, which constitutes a novel approach.

2. Materials and Methods

2.1. Synthesis of Nanographene Oxide (GOn)

Graphene oxide was prepared from graphite powder (size ≤ 20 µm, Sigma Aldrich, St. Louis, MO,
USA) by oxidation using the modified Hummer’s method, as described before [27,38]. Briefly, a mixture
of 320 mL of sulfuric acid (H2SO4, VWR, Darmstadt, Germany) and 80 mL of phosphoric acid (H3PO4,
Chem-Lab, Zedelgem, Belgium) was added to 8 g of graphite while stirring, and the solution was cooled
using an ice bath. Then, 48 g of potassium permanganate (KMnO4, JMGS, Odivelas, Portugal) were
added gradually and the solution was heated to 35 ◦C and stirred for 2 h. Subsequently, 1200 mL of H2O
were slowly added under stirring and with temperature control using an ice bath. Finally, hydrogen
peroxide (H2O2, VWR, Darmstadt, Germany) was added to stop the reaction. After overnight resting,
the solution was decanted to separate the solid phase from the acidic solution, centrifuged at 4000 rpm
for 20 min, and redispersed in distilled water. The process was repeated until achieving a neutral
pH in the supernatant. In order to produce smaller GO flakes, the pellet recovered in the previous
step was re-dispersed in distilled water and placed in an ultrasonic bath (Ovan ATM40-3LCD) for 4 h.
The sonication was followed by a centrifugation step at 13,000 rpm for 30 min, allowing the separation
of two different phases. The upper phase corresponds to nanographene oxide (GOn) particles and was
recovered for further use.

2.2. One-Step Reduction and PEGylation of GOn

Reduced nanographene oxide (rGOn) was produced and functionalized through a single step
process, as previously described [37]. For this purpose, 10 mL of GOn (500 µg mL−1) were mixed
with 50 mg of poly(ethylene glycol) bis(amine) (PEG-NH2, average Mn = 3350, Sigma, St. Louis, MO,
USA). The mixture was then homogenized using an ultrasonic bath (Ovan ATM40-3LCD) for 10 min.
Finally, the mixture was left in a water bath for 24 h at 90 ◦C. In order to remove unstable aggregates
and excess PEG-NH2, rGOn-PEG was washed four times with deionized water and centrifuged at
13,000 rpm for 10 min. After the washing step, the pellet was redispersed in water to obtain purified
rGOn-PEG suspensions. As controls, GOn dispersions incubated with PEG were maintained at room
temperature for 24 h; and rGOn was prepared following the same thermal reduction protocol in the
absence of PEG.

2.3. Physicochemical Characterization of Graphene-Based Materials

2.3.1. Transmission Electron Microscopy

Morphology and lateral dimensions of GOn and rGOn-PEG dispersions were analyzed by
transmission electron microscopy (TEM, JEOL JEM 1400 TEM, Tokyo, Japan). Aqueous dispersions
were prepared at a concentration of 50 µg mL−1. For each sample, 10 µL were deposited on a carbon
coated TEM grid and allowed to sediment for 1 min, followed by excess material removal by capillarity
using filter paper. Nanomaterial lateral dimensions were measured on several TEM images using
ImageJ software. Results are presented as frequency distribution of lateral dimensions from over 100
or 25 particles for GOn or rGOn-PEG, respectively.

2.3.2. Dynamic Light Scattering

Particle size distributions for GOn and rGOn-PEG were determined by dynamic light scattering
(DLS, LS230 particle size analyzer, Beckman Coulter, Brea, CA, USA). The materials were dispersed in
water at a concentration of 100 µg mL−1 prior to the measurements. Data were collected performing
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two scans of 60 s, including polarization intensity differential scattering and using Fraunhofer’s
model. This model assumes spherical shape for particles in suspension. This evaluation of size
distributions does not correspond to precise estimations of particle size and must be considered as
relative evaluations of deagglomeration of the different materials in water [27].

2.3.3. Zeta Potential Measurements

Prior to zeta potential measurements, GOn and rGOn-PEG dispersions were prepared at a
concentration of 50 µg mL−1 and pH 7.4. Zeta potentials of aqueous dispersions were determined
using a Zetasizer Nano-ZS (Malvern Instruments, Worcestershire, UK) in a disposable Zetasizer cuvette
(Malvern Instruments, Worcestershire, UK). Each measurement was performed in triplicate at room
temperature and results are reported as mean and standard deviation.

2.3.4. UV/Visible Spectroscopy

Absorption spectra of GOn and rGOn-PEG were acquired using a Lambda 35 UV/vis spectrometer
(Perkin-Elmer, Waltham, MA, USA). Samples were transferred to a 160 µL quartz cuvette (Hellma
Analytics, Analytica Munich, Germany) with 10 mm light path length and spectra were recorded in
the range of 200–850 nm. Measurements were performed at room temperature by averaging three
scans with baseline correction based on water as a blank control.

2.3.5. Fourier Transform Infrared (FTIR) Spectroscopy

Infrared spectra of GOn and rGOn-PEG dehydrated samples were recorded using a VERTEX
70 FTIR spectrometer (Bruker, Karlsruhe, Germany) in transmittance mode at room temperature.
Samples were measured in ATR mode, with a A225/Q PLATINUM ATR Diamond crystal with single
reflection accessory. Spectra were recorded by averaging 64 scans at a resolution of 4 cm−1 over the
wavenumber range between 4000 and 400 cm−1.

2.3.6. X-ray Photoelectron Spectroscopy

X-ray photoelectron spectroscopy (XPS) analysis was performed at CEMUP (Centro de Materiais
da Universidade do Porto, Porto, Portugal) using a Kratos Axis Ultra HSA for data acquisition.
For analysis, a monochromator Al X-ray source operating at 15 kV (90 W) was used. Survey XPS
spectra were acquired with pass energy of 80 eV, 1 eV step size and 200 ms dwell time. High resolution
C1s XPS spectra were acquired with pass energy of 40 eV, 0.1 eV step size, and 1000 ms dwell time.
Spectra were processed using CasaXPS software (Casa Software Ltd., Teignmouth, UK). The effect
of the electric charge was corrected by calibrating all samples to the reference of the carbon peak
(284.6 eV).

2.3.7. Thermogravimetric Analysis

Thermogravimetric analysis (TGA) (Netzsh STA 449 F3 Jupiter, Selb, Germany) was used for
comparison of different materials weigh loss under a constant temperature increase. Sample amounts
ranged from 4 to 4.5 mg. The thermograms were recorded between 30 and 1000 ◦C at a heating rate of
10 ◦C min−1 under nitrogen flow. Results are presented as percentage (%) of weight loss.

2.4. Photothermal Properties of rGOn-PEG

To evaluate the light-to-heat conversion ability of GOn and rGOn-PEG, 150 µL of GOn, and
rGOn-PEG dispersions at different concentrations in a range between 25 and 250 µg mL−1 and water
(used as control) were placed in a 48-well plate. All samples were irradiated with a LED-based source
with a peak emission around 810 nm (NIR region) and irradiance of 150 mW cm−2. The light-induced
temperature change on the samples was monitored during 30 min of irradiation, using a type K
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thermocouple placed centered and half-height in the suspension. Three replicates were used per
condition and results are presented as mean and standard deviation of absolute temperature.

2.5. In Vitro Studies

2.5.1. Cell Culture

Biological studies were performed using A-431 human epidermoid carcinoma cells (ATCC,
CRL-1555). Cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM, ATCC) supplemented
with 10% (v/v) fetal bovine serum (Alfagene, Carcavelos, Portugal) and 1% (v/v) penicillin/streptomycin
(Biowest, Pays De La Loire, France). Cells were maintained in a humidified atmosphere with 5%
CO2/95% air at 37 ◦C.

2.5.2. Cytotoxicity Assays

The effect of GOn and rGOn-PEG on cell viability was evaluated using different concentrations
in a range between 25 and 250 µg mL−1. Cells were seeded in 48-well plates at a density of 4 × 104

cells/well, incubated at 37 ◦C and 5% CO2. Upon sub-confluence (24 h), culture medium was replaced
by GOn or rGOn-PEG dispersions in a final volume of 150 µL/well (in complete DMEM) and cells
were incubated with the materials for 24 h. Then, cell viability was quantified by resazurin assay.
Briefly, material dispersions were removed, cells were washed with PBS and incubated in 10% (v/v)
resazurin reagent (Sigma-Aldrich, St. Louis, MO, USA) in culture medium at 37 ◦C and 5% CO2 for 4 h.
The fluorescence (λex/em = 530/590 nm) of the supernatant was measured using a micro-plate reader
spectrophotometer (Synergy Mx, Bio-Tek Instruments, Winooski, VT, USA). Negative and positive
controls for cell viability decrease were performed by incubating A-431 cells with complete DMEM
and 10% (v/v) dimethyl sulfoxide (DMSO) in complete DMEM, respectively. Data for each sample
were normalized to the negative control and results are presented as % of control. All assays were
performed in triplicate with six replicates for each condition tested.

2.5.3. Photothermal Irradiation Assays

To evaluate the combined effect of GBM and NIR irradiation, A-431 cells were seeded and incubated
with rGOn-PEG dispersions at increasing concentrations (25–250 µg mL−1), as described above.
After 24 h of incubation with rGOn-PEG, cells were irradiated for 30 min using a LED-based source
with peak emission around 810 nm (NIR region) and irradiance of 150 mW cm−2. Immediately after
irradiation, the medium containing rGOn-PEG dispersions was removed, cells were washed with
PBS, and resazurin assay was performed as described above. For this purpose, negative and
positive controls were performed using irradiated A-431 cells with complete DMEM and 10% (v/v)
dimethyl sulfoxide (DMSO) in complete DMEM, respectively. To compare the effects of increasing
concentrations of rGOn-PEG in the presence (LED on) or absence (LED off) of NIR irradiation, results are
presented as mean relative fluorescence units (RFU) and standard deviation. To compare the effects
of NIR irradiation, a negative control in the absence of materials was considered for normalization.
Additionally, GOn dispersions at the same concentration were included in NIR irradiation assays as
non-absorbing materials for comparison. All assays were performed in triplicate with six replicates for
each condition tested.

2.6. Statistical Analyses

Statistical analyses were performed using GraphPad Prism software (version 8.4.2, San Diego,
CA, USA). One-way and two-way analysis of variance (ANOVA) with Tukey tests for multiple
comparisons were performed. Differences between experimental groups were considered significant
with a confidence interval of 95%, whenever p < 0.05.
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3. Results

3.1. GBM Morphological Properties, Particle Size, and Stability

Graphene oxide (GO) was prepared from graphite using a modified Hummer’s method, followed
by ultrasonication to obtain nanosized GO (GOn). GOn was then reduced and non-covalently
PEGylated through a one-step procedure, as previously reported [37]. For this purpose, GOn was
mixed with PEG-NH2 for 24 h under thermally reducing conditions. Figure 1 shows as-prepared
GBM dispersions. GOn presented its typical appearance, as a brownish stable aqueous dispersion.
Conjugation of GOn and PEG in aqueous solution at room temperature similarly resulted in a dark
brown dispersion (GOn/PEG), as no reducing conditions were present. During thermal reduction of
GOn, in absence of PEG, the dispersion progressively changed its color, evidencing the formation of a
black precipitate (rGOn). In opposition, non-covalent functionalization of rGOn with PEG (rGOn-PEG)
during thermal reduction resulted in a stable aqueous dispersion.
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Figure 1. Images of as-prepared GBM dispersions (500 µg mL−1) in glass vials for stability evaluation.
From left to right: GOn dispersion; GOn/PEG (GOn mixed with PEG without thermal treatment);
rGOn dispersion (after thermal treatment without PEG functionalization); rGOn-PEG (simultaneously
reduced and non-covalently PEGylated).

The morphology of GBM nanosheets was studied using transmission electron microscopy (TEM).
Figure 2A shows TEM images of few-hundred-nanometer GOn and rGOn-PEG nanosheets. TEM results
are in agreement with previously observed good aqueous dispersibility of GOn and rGOn-PEG, as no
agglomerates were observed. Lateral dimensions were determined from TEM image analysis and
frequency distribution histograms are shown in Figure 2B. GOn nanosheets were obtained with
an average size of 287 nm (minimum and maximum values of 99 nm and 848 nm, respectively,
Figure 2A,B). A larger size distribution was observed for rGOn-PEG, which exhibited an average
size of 521 nm (minimum and maximum values of 162 nm and 2028 nm, respectively, Figure 2A,B).
Similarly, particle size determinations by DLS revealed that GOn nanosheets were constituted by
considerably smaller particle sizes than rGOn-PEG (Figure 2C, Figure S1). Figure S1 presents the
volume distribution of GOn and rGOn-PEG particle size, whereas Figure 2C corresponds to box plot
representations of the same results. For GOn, there were two subpopulations with peaks averaging
around 93 nm and 195 nm (Figure S1). From both peaks, the determined average for GOn in general
was of 135 nm, while the median was of 120 nm (Figure 2C). The minimum particle size was of
48 nm and the maximum size of 284 nm (Figure 2C, Figure S1). For rGOn-PEG, there were four
subpopulations with peaks average at around 64 nm, 214 nm, 545 nm, and 2423 nm (Figure S1).
From these peaks, the average was determined to be of 928 nm, while the median value corresponded
to 413 nm (Figure 2C). The minimum particle size for rGOn-PEG was of 40 nm, whereas the maximum
size was of 3206 nm (Figure 2C, Figure S1).
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Figure 2. Morphological properties of GOn and rGOn-PEG. (A) Representative TEM images of GOn
(left) and rGOn-PEG (right) aqueous dispersions and (B) respective distribution of particle size and
mean and standard deviation, as determined from TEM images. Scale bar, 200 nm. (C) Box plot of
particle size distributions in volume percentage of GOn and rGOn-PEG dispersed in water at an initial
concentration of 250 µg mL−1 and determined by light scattering using a Coulter counter.

Both GOn and rGOn-PEG exhibited comparable colloidal stability in aqueous dispersions,
according to zeta (ζ)-potential measurements (Table 1). GOn displayed a greater negative surface charge
(−25.1 ± 0.8 mV) than rGOn-PEG (−10.2 ± 0.3 mV). This suggests the existence of positive amino-ended
branches, resulting in a reduced negative electrostatic charge for non-covalently PEGylated rGOn
when compared with GOn [33].

Table 1. Surface charge of GOn and rGOn-PEG aqueous dispersions at an initial concentration of
50 µg mL−1 and pH 7.4 (n = 3)

GBM Surface Charge (mV)

GOn −25.1 ± 0.8
rGOn-PEG −10.2 ± 0.3

3.2. Chemical Characterization of GOn and rGOn-PEG Nanosheets

Fourier transform infrared (FTIR) spectra were obtained to confirm the presence of oxygen
functionalities on the surface of GOn, as well as its reduction and functionalization into rGOn-PEG
(Figure 3). FTIR spectroscopy revealed a broad band in the wavenumber range of 3000 cm−1 and
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3600 cm−1 for GOn, corresponding to O−H stretching vibrations, which are attributed to adsorbed water
molecules, hydroxyl, and carboxyl groups [39]. A sharp peak at around 1725 cm−1, which is assigned
to C=O stretching vibrations, demonstrated the presence of carbonyl and carboxyl groups [30,39].
An absorption band at ≈1616 cm−1 appears owing to the stretching of cyclic alkene (C=C) from
unoxidized graphitic domain [30,40,41]. Additionally, the presence of ethers is evidenced by the
appearance of strong absorption bands at around 1160 cm−1 and 1040 cm−1, which are assigned
to C−O stretching vibrations, and through epoxides exhibiting C−O bending vibrations at around
878 cm−1 [39].
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Figure 3. FTIR spectra of GOn and rGOn-PEG. Infrared spectra of GOn (black line) and rGOn-PEG
(grey line) describe the contribution of several surface functionalities.

The reduction of GOn was demonstrated in FTIR spectra by a decrease on the intensity of peaks
corresponding to the oxygen containing functionalities [41], as compared to the intensities of the
peaks of graphene oxide (Figure 3). An absorption band at ≈1590 cm−1 appears, which is assigned
to C=C stretching vibrations, supporting the restoration of π−π structure of the graphitic domain
upon reduction. One significant feature from rGOn-PEG IR spectrum is the presence of a strong
absorption band at 2876 cm−1 and another peak at 1395 cm−1. These two bands can be assigned to
C−H vibrations, attributed to –CH2– or –C–H groups, strongly supporting the adsorption of PEG
molecules onto rGOn-PEG [33]. Additionally, the vibrational C−O stretching at 1248 cm−1 corresponds
to primary alcohols from PEG molecules. The absorption band at 1055 cm−1 could be attributed to
C−O−C stretching, which is assigned to ether groups of PEG [33].

Thermogravimetric analysis (TGA) was used to analyze the functionalization degree and thermal
stability of GOn and rGOn-PEG. Thermograms for GOn and rGOn-PEG are shown in Figure 4,
displaying the weight loss during the heating. The data reveals two main weight loss steps at
temperatures above 100 ◦C for the two materials. The first weight loss occurred between 145 ◦C
and 225 ◦C for GOn, and between 170 ◦C and 370 ◦C for rGOn-PEG. Thermal decomposition during
this first step was quantified. It corresponds to the loss of oxygen-containing functional groups,
namely carboxyl and epoxy [39]. rGOn-PEG exhibited a lower weight loss when compared with
GOn (15.1% and 43.5%, respectively), which suggests fewer oxygen-containing groups are present
following reduction and PEGylation [42]. The second weight loss occurred between 225 ◦C and
630 ◦C for GOn and 370 ◦C and 425 ◦C for rGOn-PEG. In the case of GOn, the weight loss (14.3%)
corresponds to the combustion of carbon skeleton and more stable functionalities like carbonyls and
residual hydroxyls [43]. The rGOn-PEG substantial weight loss (56.1%) at 425 ◦C is attributed to the
presence of PEG, as at this step pyrolysis of its ether groups occurs [42]. The total percentage weight
loss was of 57.8% for GOn and 71.2% for rGOn-PEG. TGA was also performed for non-PEGylated
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thermally reduced rGOn (Figure S2), which suggests that PEGylation increased the extent of thermal
reduction reaction.Polymers 2020, 12, x FOR PEER REVIEW 9 of 19 
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Figure 4. Thermal decomposition of GOn and rGOn-PEG. TGA curves and weight loss values for GOn
(black line) and rGOn-PEG (grey line).

X-ray photoelectron spectroscopy (XPS) analyses were performed to characterize the oxidation
degree and chemical functional groups at the surface of GOn and rGOn-PEG (Figure 5).

GOn presented a C at % of 62.1 and a O at % of 32.0 (Figure S3), which demonstrates a successful
oxidation and introduction of oxygen functionalities at its surface. Analysis of C1s spectra of GOn
revealed two large peaks, which could be further deconvoluted in five peaks (Figure 5A,B). The first
binding energy value was attributed to C−C and C=C (284.5 eV, C1s at % = 45.5) due to the formation
of sp2 and sp3 hybridizations of carbon in the graphitic backbone. Single bonds of carbon and oxygen
(C−O) in hydroxyls are responsible for the second binding energy value (286.7 eV, C1s at % = 44.9).
This is the most prevalent carbon bond with oxygen. Carbonyl groups are also present in the form
of double bonds between carbon and oxygen (C=O, 287.5 eV, C1s at % = 4.2%). The occurrence of
carboxyls is responsible for the multiple bonds between carbon and oxygen (O=C−O, 288.5 eV, C1s at
% = 4.5). Finally, it is possible to observe the π–π* bond due to the presence of delocalized π electrons
in the graphene lattice (290.7 eV, C1s at % = 0.93) [39,44].

Regarding the analysis of O1s spectra of GOn, one peak was observed, which could be deconvoluted
in three peaks (Figure 5A,C). The first binding energy value was attributed to C=O due to carbonyl
groups (531 eV, O1s at % = 3.1), C−O bonds from hydroxyls are responsible for the second binding
energy (532.3 eV, O1s at % = 92.4) and the third peak can be attributed to carboxyls (O=C−O) (533.3 eV,
O1s at % = 4.5) [39,45]. The relative abundance of chemical bonds found in both C1s and O1s spectra
are in accordance and the analysis of the deconvoluted spectra showed that GOn was well oxidized
due to the presence of carbon atoms in functional groups (hydroxyl, carbonyl, and carboxyl) with C−O
bonds dominating the surface chemistry (Figure 5A).
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Figure 5. XPS analysis of GOn and rGOn-PEG. (A) Atomic composition of GOn and content of C 1s and
O 1s chemical functional groups resulting from spectra fitting; (B,C) Deconvolution of high-resolution
(B) C 1s and (C) O 1s XPS spectra for GOn. (D) Atomic composition of rGOn-PEG and content of C 1s
and O 1s chemical groups resulting from spectra fitting; (E,F) Deconvolution of high-resolution (E) C 1s
and (F) O 1s XPS spectra for rGOn-PEG.

rGOn-PEG presented a C at % of 63.5%, an O at % of 15.9%, and a N at % of 20.6% (Figure S3).
These results demonstrated a decrease of the oxygen content comparing with GOn and the presence
of N, resulting from the amine-terminated groups from PEG-NH2. Analysis of C1s and O1s
spectra was also performed (Figure 5D–F). Similarly to GOn, C1s spectra was deconvoluted in
five peaks. However, different relative abundances in oxygen containing functionalities were found
(Figure 5E). The C−C and C=C bond (284.6 eV) continued to largely exist, accounting for 46.1% of
carbon bonds (Figure 5D,E). C−O bond (286.4 eV), the most abundant oxygen functionality in GOn,
decreased significantly to 16.9% after chemical modification into rGOn-PEG (Figure 5D). The impact of
reduction on surface chemistry was also shown by a large increase of C=O bond (287.2 eV) to 18.4% and
through the development of a strong peak of O=C−O bond (288.8 eV) with 17.3% of the carbon bonds
in rGOn-PEG. In terms of π–π* bond (290 eV), the results indicate a possible restoration of aromatic
structure in rGOn-PEG with an increase from 0.9% in GOn to 1.4% in rGOn-PEG [46,47]. In the case of
O1s spectra, it was deconvoluted in three peaks (Figure 5F). An increase of C=O (533 eV, O1s at % = 6.2)
and O=C−O bonds (530.5 eV, O1s at % =17.4) was observed, while there was a decrease on the content
of C−O bonds (531.5 eV, O1s at % =76.4). These results corroborate those obtained for the C1s spectra.
Also, C/O ratio for GOn and rGOn-PEG was of 1.9 and 4, respectively, indicating that rGOn-PEG was
successfully reduced. XPS spectra were also obtained for non-PEGylated thermally reduced rGOn
(Figure S4), showing a lower extent of reduction in comparison to rGOn-PEG. Successful PEG-NH2

surface adsorption in rGOn-PEG was confirmed by the presence of a N at % of 20.62 (deconvoluted
N1s spectra, Figure S5).



Polymers 2020, 12, 1840 11 of 19

3.3. Optical Properties and Photothermal Effect

To assess the potential of the developed materials to be used for photothermal therapy, namely in
terms of NIR absorption capacity, the optical properties of both GOn and rGOn-PEG were determined
by UV/vis spectroscopy (Figure 6A). Absorbance measurements showed an absorbance peak at
λmax = 230 nm for GOn, which is assigned to π–π* electronic transitions in sp2 clusters, and a shoulder
peak at 300 nm, which is attributed to n–π* transitions of free electron pairs in oxygen atoms in
C=O bonds from carbonyl and carboxyl groups [39]. A red shift of λmax to 263 nm was observed
for rGOn-PEG. Additionally, rGOn-PEG exhibited ≈13-fold increment over GOn in NIR absorbance
(at 810 nm, Figure 6A inset). These results also support that thermal reduction and non-covalent
PEGylation strongly reduced GOn.
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Figure 6. NIR absorption capacity of GBM. (A) UV/vis absorption curves of GOn and rGOn-PEG.
The inset shows a zoom-in view of the curves in the NIR range from 750 nm to 850 nm. (B) Photothermal
heating curves of water (dashed line, blue), and GOn (black) and rGOn-PEG (grey) aqueous dispersions
at a concentration of 250 µg mL−1 in water. (C) Concentration-dependent effect on photothermal
heating curves for rGOn-PEG.

To further investigate the ability of these nanomaterials to convert NIR light energy into thermal
energy, heat generation upon NIR irradiation was evaluated for rGOn-PEG, GOn and water only as
control. As seen in Figure 6B, upon 30 min of NIR irradiation, GOn remained at 34 ◦C, comparable to
water. rGOn-PEG displayed concentration-dependent photothermal heating (Figure 6C). In comparison
with GOn, aqueous solutions containing 250 µg mL−1 of rGOn-PEG showed a higher temperature
increase (≈42 ◦C and ≈47 ◦C, after 10 and 30 min of NIR irradiation, respectively).

3.4. In Vitro Biocompatibility of GBM Dispersions

To evaluate the biological effect of GOn and rGOn-PEG alone, A-431 cells were used as in vitro
model of human skin carcinoma (Figure 7A). Firstly, the dispersibility of GOn and rGOn-PEG in
different physiological solutions (PBS, FBS, and complete culture medium) was macroscopically
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monitored and no precipitates were observed in any of the dispersions up to the highest concentration
tested (250 µg mL−1, Figure 7B). Then, cells were incubated with increasing concentrations of developed
GBM for 24 h followed by cell viability assessment through resazurin assay (Figure 7A). As control,
A-431 cells were cultured in the absence of any material. Increasing concentrations of GOn and
rGOn-PEG (25, 50, 100, 125, 150, and 250 µg mL−1) did not affect cell viability, as compared to
controls (Figure 7C). Nonetheless, a tendency for a reduction in cell viability was observed for higher
concentrations of GOn (150 and 250 µg mL−1, p < 0.05). In opposition, rGOn-PEG elicited viability
levels above those of control condition. Altogether, these results showed that both GOn and rGOn-PEG
do not induce harmful effects on A-431 cells at the concentrations tested, but PEGylation might improve
in vitro biocompatibility of these 2D nanomaterials.Polymers 2020, 12, x FOR PEER REVIEW 12 of 19 
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431 cells incubated with 250 μg mL−1 of rGOn-PEG induced an approximate 38% decrease of cell 
viability (p < 0.05, Figure 8D). These results suggest a potential PTT effect of rGOn-PEG upon low-
power (150 mW cm−2) NIR irradiation. As control, no PTT effect was observed for cells incubated with 
250 μg mL−1 of GOn upon NIR irradiation (Figure 8D). 

Figure 7. GBM biocompatibility. (A) Experimental set-up. One day (24 h) after seeding, human skin
carcinoma cells (A-431) were treated with different concentrations of GOn and rGOn-PEG and incubated
for an additional 24-h period, prior to resazurin assay. (B) GOn and rGOn-PEG (250 µg mL−1) in
water and physiological solutions. (C) Cellular viability determined using resazurin assay. Results are
normalized with respect to values of the control without GBM. Statistically significant differences are
shown as * p < 0.05, *** p < 0.001, **** p < 0.0001. Dashed line represents 100% cell viability of the
control without GBM.

3.5. In Vitro Photothermal Effect of rGOn-PEG

To determine the cytotoxicity of GOn and rGOn-PEG under NIR irradiation, A-431 cells were
incubated with GBM dispersions as described above and then irradiated with a 810 nm LED source for
30 min, followed by cell viability assay (Figure 8A). Increasing concentrations of rGOn-PEG induced
a significant decrease in cell viability upon NIR irradiation. Particularly, A-431 cells incubated with
> 100 µg mL−1 of rGOn-PEG showed significantly lower values in the resazurin assay, in comparison to
their non-irradiated counterparts (p < 0.0001, Figure 8B,C). Indeed, irradiation of A-431 cells incubated
with 250 µg mL−1 of rGOn-PEG induced an approximate 38% decrease of cell viability (p < 0.05,
Figure 8D). These results suggest a potential PTT effect of rGOn-PEG upon low-power (150 mW cm−2)
NIR irradiation. As control, no PTT effect was observed for cells incubated with 250 µg mL−1 of GOn
upon NIR irradiation (Figure 8D).
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However, the reduction of oxygen functional groups at the surface of GO leads to the formation of 
unstable colloidal dispersions in aqueous solutions, limiting their potential for biomedical 
applications and requiring further chemical functionalization toward improving water solubility 
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(molecular weight, chemistry, etc.). Single step reduction and PEGylation of graphene oxide has been 
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Figure 8. NIR irradiation and in vitro photothermal effect. (A) Experimental set-up. One day (24 h)
after seeding, human skin carcinoma cells (A-431) were treated with different concentrations of GOn
and rGOn-PEG and incubated for an additional 24-h period, prior to NIR irradiation for 30 min and
resazurin assay. (B) Cellular viability determined using resazurin assay. Results are shown as relative
fluorescence units (RFU). Statistically significant differences are shown as ****, p < 0.0001, ϕ, p < 0.0001
in comparison to LED off condition. (C) Cellular viability without NIR irradiation in the presence of
250 µg mL−1 of GOn or rGO-PEG. Results are normalized with respect to values of the control without
GBM (D) Cellular viability upon NIR irradiation in the presence of 250 µg mL−1 of GOn or rGOn-PEG.
Results are normalized with respect to values of the control without GBM. Statistically significant
differences are shown as *, p < 0.05.

4. Discussion

Graphene-based materials have been increasingly investigated for applications in nanomedicine,
particularly as PTT platforms to improve the efficacy of cancer treatment strategies. The 2D nanomaterial
graphene oxide is commonly obtained from graphite by exfoliation methods, like the modified
Hummer’s method used here and in our previous work [27]. The exfoliation process results in
the introduction of several oxygen functionalities and consequent loss of structural, thermal, and
electrical properties [24,28]. In order to restore some of the properties of pristine graphene, over the
years different reduction methods have been explored to produce reduced graphene oxide (rGO),
including chemical, thermal, and electrochemical reduction pathways [24]. However, the reduction of
oxygen functional groups at the surface of GO leads to the formation of unstable colloidal dispersions
in aqueous solutions, limiting their potential for biomedical applications and requiring further chemical
functionalization toward improving water solubility [25]. Covalent and non-covalent functionalization
of GO and rGO with biocompatible polymers like PEG has been widely reported [25,30,31,33,48],
using different methods and polymer characteristics (molecular weight, chemistry, etc.). Single step
reduction and PEGylation of graphene oxide has been previously described by Chen et al. using a
water bath at 90 ◦C for 24 h and methoxypolyethylene glycol amine (mPEG-NH2, Mn = 5 kDa) [37].
The authors reported improved water stability of the PEGylated reduced graphene oxide and increased
release of resveratrol upon irradiation using a high power 808 nm laser. Following this protocol,
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we used polyethylene glycol bis(amine) to prepare PEGylated reduced graphene oxide with small sizes
for low power NIR-light triggered PTT applications, using cheaper, smaller, and safer LEDs. For this
purpose, nano-sized GO (GOn) was obtained by ultrasonication of GO, rendering nanoplatelets with
average lateral dimensions below 300 nm. As previously demonstrated, the sonication step has a strong
impact on the size of GO flakes, without considerably changing other physicochemical properties [39].
Purified GOn dispersions with controlled lateral dimensions were then reduced and non-covalently
functionalized with PEG to attain stable aqueous dispersions with high NIR absorption capacity.
The chemical signature of obtained rGOn-PEG colloidal dispersions was carefully investigated through
multiple complementary techniques to assess the impact of one-step reduction and PEGylation on the
physicochemical properties of graphene oxide.

Upon chemical modification, a significant increase in lateral dimensions from ≈287 nm to ≈521 nm,
was found, suggesting the attachment of PEG molecules to GOn. Such an increase in size after
PEGylation has been reported by others [33,49]. Smaller sizes have been reported by introducing a
sonication step during PEG conjugation reaction [25]. It is relevant to notice that nano-sized particles
have been reported to result in improved skin permeation and skin retention, improving treatment
outcomes of inflammatory skin diseases [35,36].

The introduction of oxygen functionalities on the surface of GOn, as well as the reduction and
non-covalent functionalization of rGOn-PEG were confirmed by FTIR, TGA, and XPS. In comparison
with GOn, rGOn-PEG exhibited lower oxygen content given that the majority of oxygen-containing
functionalities (carboxyl, hydroxyl, and ketone groups) were removed during the reduction process.
Chen and colleagues have previously reported that covalent PEGylation of GOn preserved the aromatic
structure of GOn and that a similar green reduction protocol (24 h at 90 ◦C in a water bath) was able to
recover the aromatic structure on rGO-PEG by repairing defects caused during the removal of oxygen
moieties from GOn [32]. Additionally, comparing with rGO, simultaneous functionalization with PEG
was demonstrated, not only to improve water solubility, but also to increase the extent of the reduction
reaction, as confirmed by complementary techniques (TGA and XPS). Other studies have also attributed
a role to PEG in strengthening the reduction extent of GOn [32,37]. Indeed, amine groups, which can
be oxidized to nitrite, have been reported to exhibit mild reductive ability, being employed as reducing
reagents in the preparation of rGO [29]. Similarly to PEG-NH2, gelatin has numerous amine groups
in its backbone and has been reported to act as a reducing agent in the production of stable reduced
graphene oxide nanosheets under mild heating conditions [29,50]. In these cases, gelatin formed
covalent bonding with rGO through its amine groups. The chemical reactivity of graphene oxide
toward amines has been explained by different routes in the literature. Particularly, different types of
amine can react with GO functional groups via amidation reaction of carboxylic acid groups at the
edges of GO or through ring-opening of epoxides on the surface of GO [50–52]. Hydrogen bonding
between amines and hydroxyls of GO is another possibility [32,53]. Nonetheless, given the complex
structure of graphene-based materials, the nature of such chemical reactions is still far from being
fully understood.

According to TGA measurements, the ratio of grafted PEG was estimated to be 56.1%, supporting
the efficiency of single step reduction and PEGylation. Previous reports on rGOn-PEG prepared
through a similar method does not provide quantitative data regarding the chemical modification
of the material [37], but other non-covalent methods have shown around 78% modification through
PEGylation of previously reduced GO [33]. It is worth noting that such non-covalent functionalization
methods rely on polymer physisorption onto graphene basal planes via π–π stacking and van der
Waals interactions and few examples of covalent functionalization of rGO exist owing to the removal
of the majority of reactive functional groups upon reduction [24]. Notwithstanding, non-covalent
functionalization methods exhibit strong advantages over covalent functionalization, including
the preservation of extended π conjugation and the aromatic structure of GOn, whereas covalent
modification creates sp3 defects on the graphene ring [54].
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PEGylation was successful in terms of overcoming the hydrophobicity associated to rGO and
rendering a nanomaterial that is stable in different physiological media (PBS, FBS, and culture medium).
Herein, we demonstrated that rGOn-PEG had largely restored its aromatic structure showing strongly
enhanced absorbance in the NIR region (≈13-fold increase, in comparison to GOn) and light-to-heat
energy conversion capacity upon NIR irradiation, comparable to the material previously obtained using
a similar protocol with a different PEG [37]. On the other hand, other studies reported approximately 6-
to 8-fold increment in NIR absorption by rGOn-PEG produced through covalent PEGylation followed
by thermal reduction [32,49]. Several studies have shown a very rapid heating of graphene-based
nanomaterials using more powerful irradiation systems (>3 W cm−2, compared to 150 mW cm−2 used
herein) and reporting heating up to 60–70 ◦C [32,37,55,56]. Such high temperatures are above those
needed for tumor ablation treatments (> 50 ◦C) [7], and are also likely to induce damage in healthy
cells of surrounding tissues, particularly considering the small sizes of superficial non-melanoma
skin cancers, such as basal cell carcinoma (≈20 mm in size). For instance, protein-functionalized
rGO nanosheets (40 µg mL−1) and polyethylenimine-PEG-rGO (8 µg mL−1) induced a reduction
of 35% in cell viability without irradiation [55,57]. Herein, we demonstrated that both GOn and
rGOn-PEG alone and below 250 µg mL−1 were noncyotoxic to A-431 epidermoid carcinoma cells.
PEGylation is an effective chemical functionalization commonly used to improve the biocompatibility
of nanomaterials [25,30,34]. Although a tendency for a decrease in cell viability was observed with
increasing concentrations of unmodified GOn, the same was not observed for rGOn-PEG, for which
concentrations > 100 µg mL−1 resulted in higher fluorescence measurements using resazurin assay,
in comparison to control. This result supports the use of biocompatible polymers as PEG to enhance
the biological effects of developed nanomaterials.

To further determine the in vitro photothermal effect of rGOn-PEG, we irradiated A-431 cells in
the presence of prepared GBM using low power (150 mW cm−2) NIR LEDs. Consistently with
other studies [32,49,58], NIR irradiation alone was not sufficient to induce cell death, but the
combination of rGOn-PEG with NIR irradiation resulted in ≈38% decrease of cell viability after
a single treatment during 30 min. As described above, rGOn-PEG temperature increased up to 47 ◦C
upon NIR irradiation, which falls within the hyperthermia range of temperatures (41–50 ◦C) [6,7].
Hyperthermia triggers apoptotic pathways, interfering with normal cell functions, possibly leading
to enhanced membrane permeability, metabolic signaling disruption, dysfunctional membrane
transport, and activation of heat shock proteins, among other cellular and molecular changes [7,59,60].
Nonetheless, the effects of hyperthermia, and particularly their combination with graphene-based
nanomaterials, are still far from being fully understood. To the best of our knowledge, our study
is the first to report the effect of reduced graphene oxide on epidermoid carcinoma cells, which are
commonly used as in vitro models of non-melanoma skin cancer. The effect of nanocomposites of
gold nanorod-assembled PEGylated graphene oxide has been reported to result in similar levels of
cytotoxicity (≈40% decrease in cell viability) upon irradiation with high power (60 W cm−2) Xe-lamp
light [58]. Others have shown that comparable PEGylated graphene-based nanomaterials elicited ≈80%
cell viability decrease using 4T1 breast cancer cell line [37]; and up to ≈90% decrease of the viability of
A549 adenocarcinomic human alveolar basal epithelial cells using covalent chemical functionalization
methods [32]. Notwithstanding, major differences in the irradiation time and power of the light source
limit the comparison between studies.

5. Conclusions

In this work, we characterized the impact of a single step thermal reduction and PEGylation
process on the physicochemical properties of graphene oxide using multiple complementary techniques.
Chemical modification with PEG not only resulted in improved water dispersibility of reduced graphene
oxide, but also contributed to enhance the extent of the thermal reduction reaction. PEGylation yielded
single-layer rGOn-PEG sheets with average nano-sized lateral dimensions of ≈521 nm. The single step
process resulted in the restoration of the aromatic structure of graphene, evidenced by the appearance
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of C=C bonds in rGOn-PEG infrared spectrum, increased C/O ratio, and changes in the optical
properties through a red shift of λmax. The obtained rGOn-PEG exhibited a ≈13-fold increase in NIR
absorbance and reached 42 ◦C after 10 min of NIR LED irradiation, exhibiting a continuous heating
up to 47 ◦C after 30 min, whereas unmodified GOn remained at 34 ◦C even under NIR irradiation.
Temperatures registered for rGOn-PEG were within the hyperthermia range. PEGylation of rGOn
resulted in improved in vitro biocompatibility, compared to unmodified GOn, which seemed to induce
a reduction of A-431 cell viability for concentrations above 150 µg mL−1. Combining NIR irradiation
with rGOn-PEG in concentrations above 100 µg.mL−1 resulted in a cytotoxic effect. After a single
irradiation with a low power NIR LED system, a 38% decrease of cell viability was found, showing the
in vitro photothermal effect of rGOn-PEG.

Altogether, our results further support the use of a simple and facile method to obtain functionalized
rGOn as a promising photoabsorbing agent for PTT applications in non-melanoma skin cancer treatment.
The combination of this functionalized nanomaterial with NIR irradiation using a safer LED-based
NIR light source opens new possibilities toward exploring lower power and cheaper systems for mild
hyperthermia cancer therapy, enabling better control over nanomaterial heating.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/8/1840/s1.
Figure S1. Volume distribution of particle size of GOn and rGOn-PEG dispersed in water at an initial concentration
of 250 µg mL-1 and determined by light scattering using a Coulter counter. A boxplot, which is a standardized
way of displaying the dataset based on a five-number summary (the minimum, the maximum, the sample median,
and the first and third quartiles) is presented in Figure 2C. Figure S2. TGA curve of rGOn and weight loss.
Figure S3. XPS survey spectra and atomic composition for (A) GOn and (B) rGOn-PEG. Figure S4. Surface chemical
properties of rGOn. (A) Atomic composition of rGOn and content of C 1s and O 1s chemical groups resulting
from spectra fitting; (B, C) Deconvolution of high-resolution (B) C 1s and (C) O 1s XPS spectra. Figure S5.
Quantification of functionalization of rGOn-PEG. (A) Content of N 1s chemical groups resulting from spectra
fitting; (B) Deconvolution of high-resolution N 1s XPS spectra.
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