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Abstract

Knowledge on whereabouts within the annual cycle of migratory species is prerequisite for

many aspects in ecology and biological conservation. Spatial assignments of stable iso-

topes archived in tissues allows for later inference on sites where the specific tissue had

been grown. It has been rarely tested whether spatial assignments match directly tracked

non-breeding residences, especially for migratory songbirds. We here compare assign-

ments of stable isotopes from feathers of Palaearctic Barn swallows Hirundo rustica with

their African non-breeding residence sites tracked by geolocation.Assignments based on

δ2H, δ13C and δ15N isotope compositions delineate three main non-breeding regions: a

main cluster in central Africa, a second in West Africa, and the third cluster in Northern

Africa. Using δ13C, δ15N only, non-breeding sites ranged from clusters in West/Southwest

Africa to South East Africa with a centre in Central Africa. The non-breeding areas (50% and

75% Kernel density estimates, KDE) of the birds tracked by geolocation stretched from

West Africa via central Africa to southern Africa. We found little overlap of 0.3% (assuming a

1:1 odds ratio) to 1.4% (3:1 odds ratio) in the three element assignments and KDEs for only

2 and 13 individuals out of 32 birds. Assignment maps for two elements (δ13C, δ15N) and

KDEs showed higher consistencies with an overlap of 3.6 and 8.5% for 12 and 18 birds. We

argue that the low matching between stable isotope assignments and non-breeding sites in

our study arise from insufficient baseline data for Africa (concerning both isoscapes and

specific discrimination functions). However, other factors like aerial foraging habit of the spe-

cies, and a potential mismatch of non-breeding site location and the spatial origin of aerial

plankton might further hamper accurate assignments. Finally we call for concerted analyses

of tissues i.e. feathers and claws of birds which are grown at known sites across the conti-

nent and from species with various ecological requirements (diverse habitats, foraging

behaviours, and diet compositions) to establish isoscapes for general applicability.
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Introduction

Individual residence sites outside the breeding season are still fragmentary known for many popu-

lations of migratory animals. Underlying reasons are e.g. body size constraints which impede the

adoption of transmitting devices such as GSM and ARGOS PTTs, low recapture rates of individu-

als marked with archival tags (GPS, geolocators) [1] or even the low numbers in rare species. This

lack of knowledge is unsatisfactory as migratory species are assumed to be prone to divergent

changes in various environments during their annual cycle [2] and thus their actual distribution

should be identified urgently to be able to track ongoing and future distributional shifts [3].

During the last decade, indirect methods for the identification of the distribution in long-

distance migrants such as small passerine birds or insects became progressively more sophisti-

cated and nowadays enable an outline of the species’ whereabouts on a very fine geographical

scale [4]. The accuracy of localisation attempts seems especially crucial when targeted conser-

vation actions subsequently are planned within the identified areas.

The analysis of naturally occurring stable isotopes archived in animal tissues is one of the

most widely adopted indirect tracking method developed to date [5]. Stable isotope analyses

are very powerful tools to observe various ecological phenomena in animals, related to food

and water intake, metabolism and finally the incorporation of chemical elements into the ani-

mal’s tissues. Herein, the tissue’s isotopic composition mirrors the source composition of the

diet in a predictable manner [6]. Moreover, various tissues in a broader sense differentially

archive this information on temporal scales from hours, like the composition of breath and

blood plasma [7], to very long times in metabolically inert tissues like teeth [8], keratin in

claws and feathers [9,10] or in hair of ancient mummies [11].

Additionally, the distribution of many stable isotopes like δ13C, δ2H and δ18O shows dis-

tinct spatial pattern across broad geographical scales, allowing for geographical assignments of

archive stable isotope compositions and thus inference on animal [12]. Today this approach is

frequently used especially in the study of long-distance migratory animals whose distribution

during parts of the annual cycle remains unknown so far. Prominent examples include diverse

animal classes like insects [13, 14], mammals [15] and most frequently birds [16].

The approach matches the isotopic composition of a tissue, whose time of synthesis is

approximately known, with the geographically specific isotope composition of the diet

ingested during the focal time [17, 18]. The method, however crucially depends on contrasting

geographical differences in the composition of certain elements and on detailed and complete

data for ground-truthed base line maps (so called isoscapes). Unfortunately, the latter usually

exist mainly for northern hemisphere regions [19]. Thus, predictions with sufficiently high

confidence are possible for certain regions on Earth, whereas for other areas like the African

continent such predictions might be hard to establish [20].

Assignments can be more powerful, if several chemical elements with various geographical

patterns are combined. In a pioneering work, [21] proposed a detailed method for geographi-

cal assignments of Afrotropical migrant birds based on three natural stable isotopes, namely
2H, 13C and 15N, wherein the baseline modelling is done by means of a multi-isotopic cluster

model. This approach was refined, among others, by [4] by applying multivariate normal prob-

ability density functions for a spatially explicit assignment of the moult origin of birds. The

method is based on a high assignment resolution (e.g. 0.33˚ [4]) instead of the rather broad

attribution to one of four or five isotopic similar regions (clusters) delineated by [21]. How-

ever, despite its increasing application, very few studies tested the assignment accuracy by

matching assignment results with parallel direct tracking data such as geolocation [22, 23, 24].

To our best knowledge, the isotopic assignment of moult origins in birds in the African conti-

nent has never been previously validated using individual-based migration tracking data.
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We here compared the geographical assignment to certain regions in Africa by stable iso-

tope ratios with non-breeding residence sites determined by geolocation of widespread Pale-

arctic–Afrotropical migrant, the Barn swallow Hirundo rustica. Barn swallows migrate from

their breeding sites in Europe to sub-Saharan non-breeding sites, which range from West

Africa to South Africa depending on the specific population [25, 26, 27]. Thus, the species

occupies regions with very different habitats and contrasting isotopic conditions [28]. Barn

swallows usually arrive in the non-breeding grounds at the end of September/beginning of

October, where they remain stationary for about six months until spring departure [29]. At

their non-breeding sites, adult Barn swallows accomplish the moult of wing feathers [30]. Con-

sequently feathers grown during the non-breeding period within Africa should reflect the sta-

ble isotope composition of prey and water available at these particular non-breeding sites and

within a confined period (e.g. growing season). In our study, we tested the hypothesis that

regions derived from spatial assignment of stable isotope composition of African-grown feath-

ers match the African non-breeding sites derived by geolocator tracking.

Material and methods

Study system and geographical assignment by light-level geolocation

We used data from a geolocation study on the non-breeding distribution of individual Barn

swallows breeding in southern Switzerland (about 46˚N, 9˚E) and northern Italy (about 45˚N,

9˚E) [29]. Birds had been equipped with geolocators (type SOI-GDL2, Swiss Ornithological

Institute) in spring 2010 and 2011. After spring arrival in the subsequent year, geolocators

were collected and a feather sample from the wing (the innermost tertial) of returning birds at

their respective breeding sites (for details on the geolocator study see [31, 29]). Non-breeding

sites were distributed in sub-Saharan Africa from Mali and Senegal in the West to South

Africa; the main residences were located in the region of Cameroon to Nigeria where about

88% of the studied individuals overwintered in a 1000 km wide area [29].

For the matching of isotope assignments and geolocation, we used a subset of 32 birds (22

males, 10 females, from 2010/11 and 4 from 2011/12), which represent the entire non-breeding

range with three individuals each for West and southern Africa) as well as a random selection

of 26 birds for the main nonbreeding grounds for this studied population (see above and Fig

1). The individual non-breeding areas were determined by 50% and 75% kernel density esti-

mations (KDE) (300 km search radius, ArcGIS 9.3) using geolocator location during the non-

breeding period, i.e. after arrival in the beginning of October and before departure in the

beginning of March from sub-Saharan nonbreeding sites. Wing moult in barn swallows is usu-

ally performed entirely during the non-breeding period [30], thus we assume the wing feather

had been completely grown at these non-breeding sites.

Stable isotope analysis

The feather samples were cleaned with hexane to remove contaminations, and subsequently

air-dried under a fume hood in the laboratory. For δ13C and δ15N determination, about 0.3 mg

of the feather vane samples were weighed into tin capsules. Their determination in one run

was carried out using an isotope ratio mass spectrometer (Isoprime, Elementar Analysensys-

teme GmbH, Germany) interfaced with an elemental analyser (Vario Isotope Cube, Elementar

Analysensysteme GmbH, Germany). For the analysis of δ2H, about 0.2 mg of sample was

placed in silver capsules and, once weighed, the samples and reference materials were left in

laboratory air moisture for at least 96 h, then placed in a desiccator with P2O5 under vacuum

for a further 96 h. Samples were then loaded onto the autosampler tray, put on the carousel,

sealed with a cover and purged with argon. δ2H was determined using an isotope ratio mass
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spectrometer equipped with a TC/EA (thermo combustion pyrolyser—elemental analyser;

Delta Plus XP -ThermoFinnigan, Bremen, Germany).

The isotope ratios were expressed in δ against V-PDB (Vienna—Pee Dee Belemnite) for

δ13C, Air for δ15N and V-SMOW (Vienna—Standard Mean Ocean Water) for δ2H according

to [32]. The values of δ2H were calculated building a regression line through the two reference

materials Caribou Hoof Standard (CHS, USGS—United States Geological Survey, Reston Sta-

ble Isotope Laboratory, Virginia, USA) and Kudu Horn Standard (KHS, USGS). The reference

values of the reference materials considered were δ2H = -197.0 ‰ for CBS and δ2H = -54.1 ‰

for KHS. Therefore, the δ2H values of the samples were expressed in comparison to V-SMOW

on scales normalized in such a way that the δ2H value of SLAP (Standard Light Antarctic Pre-

cipitation) was -428 ‰, as recommended by IUPAC [33]. In each analytical sequence, analysis

of an internal quality control material (keratin, Camida Ltd., Tipperary, Ireland) was included

to check analytical system performance.

δ13C and δ15N isotopic values were calculated against in-house standards, which were

themselves calibrated against international reference materials: fuel oil NBS-22 (IAEA Interna-

tional Atomic Energy Agency, Vienna, Austria; -30.031 ‰) and sugar IAEA-CH-6 (-10.449

‰) for δ13C, L-glutamic acid USGS 40 (-26.389 ‰ and -4.5 ‰ for δ13C and δ15N), hair USGS

42 (δ15N = +8.05 ‰ and δ13C = -21.09 ‰) and USGS 43 (δ15N = +8.44 ‰ and δ13C = -21.28

‰) for 13C/12C and 15N/14N.

Method uncertainty (calculated as one standard deviation in repeatability conditions) was

0.1 ‰ for δ13C, 0.2 ‰ for δ15N and 2 ‰ for δ2H.

Geographic assignment to the moult origin by stable isotopes

We aimed at identifying the moulting area during the nonbreeding period by applying a multi-

ple element approach [21, 4]. We used feather isotope data of δ13C, δ15N and δ2H with a reso-

lution 0.33˚ to perform spatially explicit assignments to isoscapes of Africa. The feather

Fig 1. Predicted moult origin/nonbreeding regions for barn swallows based on isotope assignment for three isotopes δ2H, δ13C and δ15N and geolocation. Kernel

density estimates are shown in red. The colours indicate the number of individuals that were isotopically consistent with a given raster cell in the isoscape representing

the likely moulting site. a) Odd ratio 1:1 and 50% KDE. b) Odd ratio 3:1 and 75% KDE.

https://doi.org/10.1371/journal.pone.0202025.g001
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isoscapes were derived from 1) isoscapes of amount-weighted mean growing season δ2H in

precipitation (δ2Hp, [34]), 2) the theoretical spatial δ13C distribution of plants [35] and 3) plant

δ15N isoscape developed by [36], following the method developed by [21]. Thereby, the δ2Hp

isoscape (p-precipitation) was converted into a δ2Hf isoscape (f-feather) based on regression

parameters derived from a regression of δ2Hf in feathers of insectivorous Eurasian reed war-

blers (Acrocephalus scirpaceus) against δ2Hp [37]. Discrimination between plant and feather

δ13C and δ15N isoscapes were accounted for by a discrimination factor of +2‰ for δ13C and

+5‰ for δ15N [21].

We determined the likelihood that a given raster cell within the feather isoscapes represents

a potential moult origin of a particular feather by applying multivariate normal probability

density functions (mvnpdf) following [4]. Thereby, we firstly considered the set of three iso-

topes δ13C, δ15N and δ2H, and then we repeated the procedure based only on the set of two iso-

topes δ13C and δ15N resulting in two different probability surfaces for every individual. We did

not include the species’ known nonbreeding distribution as prior information in the assign-

ment procedure.

In a second step, we reclassified each raster cell into likely (1) and unlikely (0) by selecting

those geographic locations that fell within the upper 50% (1:1 odd ratio) and 75% (3:1 odd

ratio) of the spatially explicit probability densities within the likelihood map. These values

were chosen as they correspond to the 50% and 75% KDE of the geolocator locations. The

resulting individual binary assignment maps were summed up to depict the likely population

moult origin.

Furthermore, in order to test the applicability of the isotopic clusters proposed by [21] we

estimated the assignment of individual feather stable isotope (SI) values to four and five isoto-

pic clusters (identified by [21]) derived by cluster analysis based on δ13C, δ15N and δ2H or

δ13C and δ15N, respectively. In this assignment procedure, linear discriminant function analy-

sis (DFA) is used to predict the posterior probability that a sample with a given multi-isotope

composition could have originated from any given cluster within Africa, given the predicted

ranges (min, max, mean and SD) for feather δ13C, δ15N and δ2H [21].

All assignments were performed by using the “mvnmle”, “raster” and “maptools” packages

[38, 39, 40] in R 3.1 [41].

Matching geographical assignment by stable isotopes and geolocation

We quantified the overlap of isotopic assignment and geolocation by calculating the percent-

age of raster cells of likely moult origin (by stable isotopes) overlapping with the individual

50% and 75% KDE derived from geolocation.

In addition, we calculated the percentage of cells within 50% and 75% KDE assigned to the

four (δ13C, δ15N and δ2H) and five (δ13C, δ15N) isotopic clusters based on the cluster analysis

by [21].

This study was carried out under permission #301 of Progetto Rondine Sul Piano di Maga-

dino, Italy. All efforts were made to minimize handling time of the birds while geolocators

were attached and removed.

Results

Identification of nonbreeding areas by geolocation

The non-breeding areas of the subset of Barn swallows used in this study stretched from 5˚W

to 31˚E longitude and 15˚N to 28˚S latitude (Fig 1, for the complete data set see [29]) including

a variety of main vegetation types from grass savannah (West Africa), tree savannah and tropi-

cal forest (eastern west and central Africa) to mainly steppe habitats (southern Africa). The
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median area of non-breeding sites calculated as kernel density area comprised about 149,020

km2 (25–75%: 111,495–171,191 km2) for the 50% KDE and 345,730 km2 (25–75%: 255,200–

418,764 km2) for the 75% KDE. This corresponds to approximately 107 and 252 cells for the

stable isotope assignment (see below).

Geographical assignment by stable isotopes

Assignment based on stable isotope composition of three elements, i.e. δ2H, δ13C and δ15N

highlighted four main regions comprising the likely moult origins (Fig 1A and 1B). For 31 of

32 individuals, origins were located in raster cells south of 5˚S, in DR Congo, Zambia, Angola

and neighbouring countries as well as Madagascar. Furthermore, a third cluster of likely moult

origin was found in West Africa (Guinea Bissau—Liberia), while a third cluster comprised

cells close to the coastlines in Northern Africa (Morocco, Tunisia and the Nile delta in Egypt).

On average a likely moult origin was assigned for 414 cells (1:1 odds) and for 953 cells (3:1

odds; Table 1).

Assignments derived by two stable isotopes, i.e. δ13C and δ15N, were less distinct with a

mean number of 1017 assigned cells for the 1:1 odds and 1928 assigned cells for 3:1 odds

(Table 1). Herein, likely moult origins ranged from a cluster in sub-Saharan West Africa to

South West and South East Africa with a clear agglomeration of individual assignments for

Central Africa (Cameroon, DR Congo, Central African Republic). A small cluster again was

located in the Nile delta (Fig 2A and 2B).

The discriminant function analysis predominantly assigned feather isotope values to isoto-

pic cluster 1 and 2 based on three isotopes δ2H, δ13C and δ15N with an average likelihood of

0.89 (Table 2). Considering only δ13C and δ15N, the bulk of individuals was clearly assigned to

cluster 3 with only five individuals assigned to cluster 2. Average likelihood amounted to 0.99

(Table 3).

Matching stable isotope assignment with geolocation

We found little overlap of stable isotope assignments based on δ2H, δ13C and δ15N and non-

breeding areas calculated as by KDE. Overlap increased when considering larger nonbreeding

areas: For the 1:1 odds corresponding to the 50% KDE we found a match for only 2 individu-

als, whereas for the 3:1 odds and the 75% KDE 13 individuals (40%) showed some overlap

(Table 1, S1 Fig).

However, the overlap between KDE and assigned cells was on average 0.3% for the 1:1 odds

and 1.4% for the 3:1 odds (Table 1).

The assignments based on two isotopes (δ13C and δ15N), individual KDEs and isotope

assignment maps were more consistent: 12 and 18 KDE comprised likely raster cells with a

mean overlap of 3.6 and 8.5% (Table 1).

Similar to the little overlap between KDEs and isotope assignments based on 0.33˚ cells,

there was hardly any consistency in the individual assignment to isotopic clusters and the clus-

ter(s) represented by the cells inside the KDEs (Table 2). For the three-element cluster

approach, only for three (50% KDEs) and two (75% KDEs) individuals, the assigned isotopic

cluster corresponded with the cluster categories of cells inside the KDEs (with > 50% of raster

cells representing one cluster; Table 2). For the two-element cluster approach (δ13C and δ15N)

we found more matches between cluster assignments and cells within the KDEs: for eight

(50% KDE) and seven individuals (75% KDE) clusters were the same for both methods

(Table 3).
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Discussion

Our study highlighted a lack of concordance between the individuals’ assignment based on

δ2H, δ13C and δ15N isotopes and the corresponding non-breeding sites derived from geoloca-

tion for Barn swallows during their non-breeding period in Africa.

This mismatch could be ascribed to several ecological as well methodological reasons. The

expectation on a similarity of SI assignment and geolocation is based on some fundamental

assumptions: (1) the geolocation kernel density estimate represents the bird‘s non-breeding

residence site (during boreal winter), (2) the study species moult their wing feathers in their

Table 1. Overview of geographical position (Latitude and Longitude), size of nonbreeding range of Barn swallows (KDE-Kernel density estimates in km2 and num-

ber of raster cells), the number of assigned raster cells based on stable isotope assignments (CN = two isotopes: δ2H, δ13C and HCN = three isotopes δ2H, δ13C and

δ15N) and overlap of matching raster cells (KDE & SI assignment, the number of cells and %).

ID Lat (˚) Long (˚) Size KDE (km2) Size KDE (#

cells)

Assignment based

on CN (# cells)

Assignment based

on HCN (# cells)

Overlap KDE and

assignments HCN (# of

cells, %)

Overlap KDE and

assignments CN (# of cells,

%)

50 % 75 % 50 % 75 % odds 1:1 odds 3:1 odds 1:1 odds 3:1 50 % 75 % 50 % 75 % 50 % 75 % 50 % 75 %

1RZ 4.0 14.6 171826 348808 133 269 828 1420 312 813 0.0 3.0 0.0 1.1 6.0 66.0 4.5 24.5

1ST 9.2 -2.9 127633 281490 98 217 1671 3143 770 1578 0.0 1.0 0.0 0.5 0.0 11.0 0.0 5.1

1SU -0.4 14.2 133563 268400 103 207 866 1824 400 1040 0.0 21.0 0.0 10.1 7.0 71.0 6.8 34.3

1TQ 13.5 10.3 183776 444172 142 343 1073 1771 415 1006 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1TS 12.6 -8.0 124394 324231 96 250 341 1093 202 726 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1UE 9.5 7.4 91977 201018 71 155 920 1556 405 1011 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1UH 8.6 6.6 139026 329324 107 254 1169 2004 194 462 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1UJ 10.2 16.0 269300 522239 208 403 1147 1931 560 1241 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1UY 10.1 17.1 278742 551148 215 425 1021 1688 584 1160 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1WG 6.4 10.5 155518 322219 120 249 914 1541 199 464 0.0 0.0 0.0 0.0 0.0 5.0 0.0 2.0

1WH 0.9 13.0 102288 297575 79 230 1636 3434 620 1289 0.0 0.0 0.0 0.0 0.0 21.0 0.0 9.1

1WW 1.5 8.7 139341 458723 108 354 1031 1789 175 414 0.0 0.0 0.0 0.0 17.0 84.0 15.8 23.7

1XR 7.0 10.6 115981 323817 89 250 866 1466 197 515 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1XT 3.6 11.5 171685 344246 132 266 845 1494 225 626 0.0 3.0 0.0 1.1 14.0 63.0 10.6 23.7

1YA -1.3 8.9 173642 420043 134 324 1295 2526 647 1363 0.0 12.0 0.0 3.7 18.0 78.0 13.4 24.1

1YD -27.9 25.6 125560 233820 97 180 1401 2684 929 1899 7.0 2.0 7.2 1.1 4.0 1.0 4.1 0.6

1YW 7.7 7.3 202535 414928 156 320 166 855 113 507 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1ZS 0.6 6.3 101523 242870 78 187 996 1710 227 570 0.0 0.0 0.0 0.0 8.0 37.0 10.2 19.7

1ZV 3.3 15.6 160011 307053 123 237 790 1397 267 748 0.0 0.0 0.0 0.0 3.0 27.0 2.4 11.4

2AA 12.7 6.2 157142 329983 121 255 1114 1934 110 282 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2AI 13.1 -10.4 294337 631533 227 487 592 1349 201 520 0.0 11.0 0.0 2.3 0.0 0.0 0.0 0.0

2AL 7.6 13.2 147322 456900 114 353 1177 2001 470 1055 0.0 3.0 0.0 0.9 0.0 1.0 0.0 0.3

2AR 6.3 9.1 198118 404295 153 312 134 888 148 592 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.3

2AZ 9.1 15.9 111478 212401 86 164 1253 2321 643 1377 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2BJ 7.4 -0.3 111544 220143 86 170 968 1662 225 476 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2CT 5.4 7.8 124339 323513 96 250 909 1537 407 963 2.0 16.0 2.1 6.4 1.0 6.0 1.0 2.4

2DC -3.6 14.0 149296 340756 115 263 1042 2327 523 1194 0.0 17.0 0.0 6.5 16.0 92.0 13.9 35.0

2DF 7.2 18.4 156047 498641 120 385 1189 2082 138 336 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.3

3CX 4.9 -4.5 60807 210245 47 162 767 1374 464 975 0.0 1.0 0.0 0.6 0.0 0.0 0.0 0.0

3RD -2.8 14.5 95104 343880 73 265 988 2200 437 1043 0.0 14.0 0.0 5.3 20.0 114.0 27.3 43.0

3RN -25.0 20.6 105973 250801 82 194 1567 3235 1142 2412 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3ST 7.9 -2.7 96932 204126 75 158 1877 3448 915 1841 0.0 9.0 0.0 5.7 5.0 20.0 6.7 12.7

mean 149274 345729 115 267 1017 1928 415 953 0.3 3.5 0.3 1.4 3.7 21.8 3.6 8.5

https://doi.org/10.1371/journal.pone.0202025.t001
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African non-breeding grounds. Further, (3), the diet ingested by swallows originates from the

specific non-breeding site tracked by geolocators and finally (4) the isotopic composition of

local diet is adequately reflected by the isoscape model. Each of these assumptions will be dis-

cussed below.

It is generally accepted that geolocation by light correctly determines locations based on

predictive differences in sun rise and sun set times. However, the method has inherent inaccu-

racies caused by environmental shading and the behaviour of the tagged individual during sun

rise/sun set times [42]. Generally, estimates of latitude are more inaccurate than longitude esti-

mates, and inaccuracy is largest during equinox periods [43, 44]. In our study, we determined

residence sites of Barn swallows during the boreal winter, and thus uncertainties due to equi-

nox can be excluded. Moreover we used a rather conservative approach (KDE) for determin-

ing non-breeding areas, which may even most likely overestimate a Barn swallow’s home

range during the non-breeding period. Thus, we would expect an overestimation in the over-

lap between non-breeding sites and SI assignment per individual instead of the general low

percentage of matched raster cells per individual found in this study.

Correct spatial assignments based on stable isotope composition of e.g. feather keratin

require prior knowledge about the time of formation of the targeted tissue. Barn swallows

which moult outside the non-breeding season, e.g. at the end of the breeding season or en
route during migration will certainly cause faulty assignments. Although there are some obser-

vations of wing moult had been already started on the European breeding grounds [45], the

proportion of these early moulting birds in a population is generally very low with about 3%

for Central European breeders [45]. Applying this percentage to our study, we would expect

that not more than a single bird would carry a non-African isotope signature in its tertial wing

feathers. Moreover, we can exclude the possibility that we simply could have missed the birds’

moulting period and thus site, as wing feather moult usually extents over almost the entire sea-

son when birds occur in sub-Saharan Africa [46]. Even acknowledging a small proportion of

Fig 2. Predicted moult range/nonbreeding range for barn swallows based on isotope assignment for two isotopes δ13C and δ15N and geolocation. The different

colours of raster cells indicate the number of individuals that were isotopically associated with a given raster cell of the isoscape. Kernel density estimates (KDE) derived

from geolocation are shown in red. a) Odd ratio 1:1 and 50% KDE. b) Odd ratio 3:1 and 75% KDE.

https://doi.org/10.1371/journal.pone.0202025.g002
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birds to have moulted their tertials outside the African non-breeding distribution, we would

expect that isotopic composition in feathers would allow at least for some correct assignments.

Barn swallows are aerial feeders, preying on flying insects which might disperse over larger

distances by wind drift. As dispersal distances of small insects like mosquitoes and blackflies

can reach several hundreds of km when transported passively by winds [47, 48], influxes of

alien isotope compositions could be a likely reason which has led to the mismatch of our geolo-

cation and SI assignment results.

However, the prevailing wind directions in SW-Africa during the non-breeding season are

rather NE or SW [49], which does not support a passive transport of insects from the Congo

Basin (as suggested by SI assignments) to the majority of the Barn swallow’s non-breeding

sites in Cameroon and Nigeria. It cannot be entirely excluded that the diet ingested by

Table 2. Assignment of individual feather stable isotope value to four isotopic clusters based on δ2H, δ13C and δ15N (according to [21]) and the percentage of raster

cells assigned to four isotopic clusters within the individual 50% KDE and 75% KDE. Grey shading indicates corresponding assignment of individual feather stable iso-

topes and KDE.

Assignment Isotopes Cells within 50% KDE Cells within 75% KDE

SampleID C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

1RZ 100 0 0 0 23 76 1 0 41 52 8 0

1ST 0 100 0 0 0 0 100 0 0 0 98 2

1SU 4 96 0 0 73 27 0 0 76 24 0 0

1TQ 88 12 0 0 0 0 61 39 0 0 65 35

1TS 98 2 0 0 0 0 100 0 0 0 100 0

1UE 100 0 0 0 0 0 100 0 0 2 98 0

1UH 40 60 0 0 0 6 94 0 0 6 94 0

1UJ 78 22 0 0 5 61 34 0 4 57 39 0

1UY 100 0 0 0 0 0 81 19 4 73 23 0

1WG 100 0 0 0 9 32 60 0 10 29 62 0

1WH 0 100 0 0 97 3 0 0 73 26 1 0

1WW 32 68 0 0 91 9 0 0 57 21 21 0

1XR 100 0 0 0 2 48 51 0 1 28 72 0

1XT 86 14 0 0 57 39 4 0 54 28 18 0

1YA 0 100 0 0 89 5 5 0 89 8 3 0

1YD 0 100 0 0 41 58 1 0 29 64 7 0

1YW 100 0 0 0 0 4 96 0 0 5 95 0

1ZS 52 48 0 0 88 12 0 0 79 21 0 0

1ZV 100 0 0 0 15 83 2 0 22 61 17 0

2AA 34 56 0 0 0 0 79 21 0 0 73 27

2AI 56 44 0 0 0 22 78 0 0 23 75 2

2AL 12 88 0 0 0 13 87 0 0 15 68 17

2AR 88 12 0 0 12 18 69 0 17 15 68 0

2AZ 12 88 0 0 0 0 93 7 0 0 84 16

2BJ 100 0 0 0 1 4 94 0 2 4 94 0

2CT 100 0 0 0 15 34 51 0 12 27 62 0

2DC 0 100 0 0 73 27 0 0 76 23 1 0

2DF 2 98 0 0 1 1 98 0 16 13 70 1

3CX 100 0 0 0 20 2 78 0 9 1 89 1

3RD 0 100 0 0 74 26 0 0 68 21 11 0

3RN 0 100 0 0 0 0 100 0 0 0 100 0

3ST 0 100 0 0 0 0 100 0 0 0 100 0

https://doi.org/10.1371/journal.pone.0202025.t002
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swallows originates, to some part, from outside the specific non-breeding site. However, the

lack of knowledge both in diet selection during the non-breeding period as well as the spatial

extent of both passive and active movements in prey insects within sub-Saharan Africa renders

a conclusion impossible.

Consequently, we speculate we can exclude a significant effect of 1) potential inaccuracy of

geolocation and 2) uncertainties in the timing and location of moult and as well do not con-

sider 3) large-scale relocation of prey as a (major) probable cause for the mismatch found in

our data set.

Rather, we assume that the reason for the discrepancy between isotopic assignment and

actual residence of the birds is an inadequate reflection of isotopic composition, e.g. of local

diet by the available isoscape models. Firstly, inconsistencies can be attributed to a mere lack

of a sufficient data base, as the accuracy of modelled isoscapes naturally highly depends on

Table 3. a) Assignment of individual feather SI value to five isotopic clusters based on δ13C and δ15N (according to [21]) and percentage of raster cells assigned to

four isotopic clusters within individual 50% and 75% KDE. Grey shading indicates corresponding assignment of individual feather stable isotopes and KDE.

Assignment Isotopes Cells within 50% KDE Cells within 75% KDE

SampleID C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

1RZ 0 0 100 0 0 0 78 22 0 0 0 58 39 4 0

1ST 0 100 0 0 0 0 0 0 59 41 0 0 0 51 49

1SU 0 0 100 0 0 0 30 70 0 0 0 26 74 0 0

1TQ 0 0 100 0 0 0 0 0 12 88 0 0 0 21 79

1TS 0 0 100 0 0 0 0 0 1 99 0 0 0 24 76

1UE 0 0 100 0 0 0 3 0 97 0 0 3 0 79 18

1UH 0 0 100 0 0 0 6 0 94 0 0 7 0 83 10

1UJ 0 0 100 0 0 0 0 5 31 63 0 0 4 33 63

1UY 0 0 100 0 0 0 11 0 53 36 0 15 1 47 37

1WG 0 0 100 0 0 0 39 7 53 0 1 32 10 58 0

1WH 0 100 0 0 0 0 2 98 0 0 0 25 75 0 0

1WW 0 0 100 0 0 3 14 83 0 0 5 30 50 14 0

1XR 0 0 100 0 0 0 63 0 37 0 0 36 0 44 21

1XT 0 0 100 0 0 1 37 60 2 0 3 29 53 15 0

1YA 0 18 82 0 0 0 21 79 0 0 1 15 84 0 0

1YD 0 100 0 0 0 38 59 3 0 0 63 33 3 1 0

1YW 0 0 100 0 0 0 4 0 85 10 0 7 0 72 21

1ZS 0 0 100 0 0 8 20 72 0 0 12 24 63 0 0

1ZV 0 0 100 0 0 0 90 10 0 0 0 77 18 5 0

2AA 0 0 100 0 0 0 0 0 21 79 0 0 0 26 74

2AI 0 0 100 0 0 0 16 0 36 47 0 20 0 32 48

2AL 0 0 100 0 0 0 17 0 77 6 0 18 0 41 40

2AR 0 0 100 0 0 4 20 9 67 0 4 20 11 59 6

2AZ 0 0 100 0 0 0 0 0 45 55 0 0 0 45 55

2BJ 2 0 98 0 0 0 30 0 70 0 0 21 2 73 4

2CT 0 0 100 0 0 0 41 15 44 0 1 30 12 48 9

2DC 0 18 82 0 0 0 30 70 0 0 0 25 75 0 0

2DF 0 0 100 0 0 0 26 0 73 1 0 31 0 55 13

3CX 0 0 100 0 0 0 38 14 48 0 0 17 8 69 6

3RD 0 0 100 0 0 0 26 74 0 0 0 29 66 5 0

3RN 0 100 0 0 0 0 0 0 100 0 0 0 0 100 0

3ST 0 100 0 0 0 0 2 0 92 6 0 1 0 69 30

https://doi.org/10.1371/journal.pone.0202025.t003
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underlying data. For the African continent, base data are less comprehensive than for other

region on earth. For instance, the fundamental δ2H isoscape for Africa reflecting amount-

weighted mean growing season δ2H in precipitation (δ2HP, [34]) is based on data from only 44

sampling stations which are not evenly distributed across the continent and for which years of

collection also vary substantially [50].

Large inner- and inter-annual variation in δ2HP caused by high fluctuations in the amount

of precipitation [51, 52], and strong effects of local habitat due to evaporation [53] are further

factors of uncertainty leading to an isoscape which might be too coarse for a precise delinea-

tion of individual distribution. In our data set, the limits of the available δ2H isoscape are

already reflected in a relative improvement of assignment maps when we considered only δ13C

and δ15N in the multivariate normal probability density functions. The overlap between KDE

and isotope assignment clearly increased. However, the core areas of KDEs around 05˚N and

12˚E were still spatially very distant from those target regions based on δ13C and δ15N compo-

sition (core area approx. 01˚S, 24˚E; see further below).

Secondly, the low matching of stable isotope and geolocation data can be a matter of scale if

the resolution of the available isoscapes and the size of the individual residence site deviate

substantially. Although daily ranges of Barn swallows in Africa are still not known, there is

indication that the species forages on a rather large scale as ring recoveries of the species within

the same season encompassed distances of about 100 km. Furthermore, wide-ranging move-

ments up to 600 km are recorded as well [54]. Accordingly, due to their potential wide-ranging

aerial foraging behaviour, we would expect Barn swallows to integrate various isotopic values

across the landscape much better than an e.g. rather sedentary species such as the Aquatic war-

bler (Acrocephalus paludicola), for which [55] recognized isotopic signatures being inappropri-

ate markers for geographic assignments. Aquatic warblers are habitat specialists with very

confined non-breeding home ranges of only a few hectares [56] the actual isotope value of a

bird‘s feather was interpreted to be largely determined by very small-scale foraging behaviour

at a specific location rather than by large-scale isotopic gradients.

However, although the overall spatial scale reflected in the isotopic values of the individual

Barn Swallows feathers should correspond to the resolution of the available isoscapes, there

might still be effects of an uneven integration of isotopic composition (by the individual bird)

across the landscape. This becomes especially evident when we excluded δ2H in the isotopic

assignment due to uncertainties mentioned earlier. Based only on δ13C and δ15N, isotopic

assignments of the majority of birds pointed to regions in the Congo basin, dominated by Gui-

neo-Congolian evergreen and semi-deciduous rainforest [57]—and still hundreds of kilo-

metres distant to the individual residence sites identified by geolocation.

Although the species’ ecology during the non-breeding season is fragmentarily known,

authors assume Barn Swallows to primarily prefer riverbeds and wetland habitats for roosting

and foraging [45, 58]. Azonal and local habitat types such as wetlands are known to harbour

proportionally more C3 plants compared to the overall C3/C4 plant ratio in the predominating

ecosystems [55]. This reveals isotopic values in local plants and herbivorous insects which are

more similar to tropical forests than the grassland or savannah biomes identified by geoloca-

tion. Accordingly, despite the species’ rather large-scale foraging behaviour, feather isotope

values could still deviate substantially from the prevailing δ13C gradients as isoscapes do not

sufficiently account for such habitat effects on spatial scales below the landscape-level.

Conclusion and outlook

The analysis of multiple stable isotopes for spatial assignments is a very powerful tool to derive

geographical information. The method has been successfully applied to many terrestrial
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species and regions world wide (Europe/Asia: [59], North America: [60], South America: [61]

and is very efficient to track individuals or carry-over effects in large sample sizes allowing for

robust conclusions (i.e. [62]). Based on our dataset of 32 barn swallows we could not ground-

truth isotopic assignments in Africa with areas localised by direct tracking using geolocation

by light. We argue that this discrepancy may mainly arise from quality of isoscapes currently

available for Africa and not from a general failure. As the evolution of sophisticated statistical

methods at present theoretically enables prediction of probable moult origins with a resolution

of 0.33˚ or higher, we caution against their precipitous use as long as underlying models for

isoscapes based on a weak data basis, probably reflecting a much coarser resolution. We explic-

itly do not object to the application of isotopic assignments for Africa in general. As the

method is low-cost, both in the lab and in the field, it is well suited for surveys accepting a (at

present) coarse resolution [63, 27]. For studies requiring a finer resolution, the present base

data for African feather isoscape(s) needs to be improved. Recently, there are endeavours to

amend δ2H isoscape(s) by e.g. the application of feather samples with spatially explicit infor-

mation [64]. However, beside the use of archival samples, systematic sampling and isotopic

measurements of feathers of known origin and across several years are still fundamental for

the delineation of a sound feather δ2H isoscape for Africa. Accordingly, tracking studies on

species with moult in Africa should be accompanied by sampling of feathers allowing for fur-

ther information on the isotopic conditions in the inferred locations.

So far, almost all assignment attempts have to be based upon African δ2H isoscapes which

were calibrated by a function established for Eurasian reed warblers (Acrocephalus scirpaceus)
sampled in Europe [37]. The development of a calibration function explicitly based on feathers

of known origin grown within Africa might improve existing δ2H isoscapes significantly.

However, these fine-tuning possibilities still have to be attended by a general improvement of

the resolution and spatial arrangement of the δ2Hp-sampling stations (Global Network of Iso-

topes in Precipitation, GNIP) across the African continent [65].

Recently, there are large efforts to improve the existing GNIP data within the continent, i.e.

IAEA is mapping surface water isotope values which can results in updated isoscapes which

will likely be useful for marsh associated species or birds feeding on aquatic emergent insects

[66].

Finally, we would like to call for a concerted action to solve the δ2H isoscape for Africa

within the near future including sampling of species with different ecological requirements.

Supporting information

S1 Fig. Predicted moult origin/overwintering regions for two individual barn swallows

based on isotope assignment for three isotopes δ2H, δ13C and δ15N and geolocation. 75%

Kernel density estimates are shown in red. a) Example of best geographical overlap. b) Exam-

ple of least overlap.
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