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ABSTRACT: The rapidly expanding availability of high-resolution mass spectrometry
has substantially enhanced the ion-current-based relative quantification techniques.
Despite the increasing interest in ion-current-based methods, quantitative sensitivity,
accuracy, and false discovery rate remain the major concerns; consequently,
comprehensive evaluation and development in these regards are urgently needed.
Here we describe an integrated, new procedure for data normalization and protein ratio
estimation, termed ICan, for improved ion-current-based analysis of data generated by
high-resolution mass spectrometry (MS). ICan achieved significantly better accuracy
and precision, and lower false-positive rate for discovering altered proteins, over current
popular pipelines. A spiked-in experiment was used to evaluate the performance of ICan
to detect small changes. In this study E. coli extracts were spiked with moderate-
abundance proteins from human plasma (MAP, enriched by IgY14-SuperMix
procedure) at two different levels to set a small change of 1.5-fold. Forty-five (92%,
with an average ratio of 1.71 ± 0.13) of 49 identified MAP protein (i.e., the true
positives) and none of the reference proteins (1.0-fold) were determined as significantly altered proteins, with cutoff thresholds
of ≥1.3-fold change and p ≤ 0.05. This is the first study to evaluate and prove competitive performance of the ion-current-based
approach for assigning significance to proteins with small changes. By comparison, other methods showed remarkably inferior
performance. ICan can be broadly applicable to reliable and sensitive proteomic survey of multiple biological samples with the
use of high-resolution MS. Moreover, many key features evaluated and optimized here such as normalization, protein ratio
determination, and statistical analyses are also valuable for data analysis by isotope-labeling methods.
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■ INTRODUCTION

Liquid chromatography−mass spectrometry (LC−MS) techni-
ques have been prevalently employed for the identification and
relative/absolute quantification of proteins. LC−MS-based
quantification approaches can be roughly divided into two
main categories: (i) labeling techniques such as isobaric tags for
relative and absolute quantification (iTRAQ),1 tandem mass
tags (TMTs),2 stable isotope labeling by amino acids in cell
culture (SILAC),3 and neutron-encoded mass signatures
(NeuCode)4 and (ii) label-free methods such as spectral
counting5,6 and peptide ion-current-based7−9 approaches.
Recently, because of their simplicity, cost-effectiveness, and
feasibility of multiple biological samples analyses,10−12 ion-
current-based approaches have emerged as an attractive tool in
quantitative proteomics. This trend has been also boosted by

the dramatically increasing availability of high-resolution MS
instrumentations in the past few years.13

Besides the well-controlled sample preparation and LC/MS
procedures, an appropriate method for data analysis is also
essential to achieve confident and accurate ion-current-based
quantification. For instance, normalization is often applied in
label-free quantitative proteomics to reduce the effect of the
complicated analytical variability and systematic bias.14,15 Many
normalization methods such as central tendency, lowess
regression, and quantile normalization were first used in the
analysis of microarray data16,17 and have been recently adapted
for analyzing proteomics data.18,19 The evaluation of different

Received: August 5, 2014
Published: October 6, 2014

Article

pubs.acs.org/jpr

© 2014 American Chemical Society 5888 dx.doi.org/10.1021/pr5008224 | J. Proteome Res. 2014, 13, 5888−5897

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

pubs.acs.org/jpr
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html


normalization approaches has been widely performed based on
high-abundance peptides (common to all or the majority of
LC−MS runs) in label-free quantitative proteomics.14,19

Kultima et al. demonstrated that the RegrRun (linear regression
followed by analysis order normalization) effectively decreased
the median SD by 43% on average compared with raw data in
peaks that successfully matched across more than 50% LC−MS
analyses.19 In addition, many factors involved in the normal-
ization procedure such as imputation (for missing values),
retention time, precursor m/z, and prefractionation of sample
also have been studied in label-free quantification.15,18,20

Another important issue for data analysis is choice of
methods to compute protein ratios based on peptide
quantitative information, which has been widely studied for
labeling techniques.21 It has been demonstrated that a simple
sum-of-intensities algorithm achieved superior performance
over other algorithms such as average of the ratios, libra ratio,
linear regression, and total least-squares for estimation of true
protein ratios.21 A systematic evaluation in this regard has not
been conducted for ion-current-based label-free method,
although various methods were applied in popular packages
and procedures. The sum or average intensity method has been
employed in packages such as the intensity-based absolute
quantification (iBAQ, though the intensity is divided by the
number of theoretically observable peptides),22 Progenesis
LC−MS software (Nonlinear Dynamics Limited, Newcastle
upon Tyne, U.K.),23 and the ion-current-based method we
developed previously.9,13 Packages such as Census24 and SIEVE
(Thermo Fisher Scientific, San Jose, CA)12,25 have applied a
variance-weighted method (based on standard deviation or
coefficient variation of peaks/peptides) to calculate protein
quantitation ratios. Other protein ratio estimation methods
such as TOP3 (using the sum intensities of the top-three
unique peptides)26 and average ratios27 are also employed in
quantitative proteomics.
In this study, we developed and optimized a new label-free

quantitative procedure for ion-current-based quantification,
ICan (ion-current-based analysis), and evaluated its capacity
for proteomic quantification and the discovery of significantly
different proteins, even for these with small-fold changes (1.5-
fold). Key quantitative features such as frame filtering,
normalization, protein ratio determination, and statistical
analysis were comprehensively evaluated and optimized. With
these optimizations, ICan significantly improved the quantita-
tive accuracy and sensitivity and performance in discovering
altered proteins over existing methods.

■ MATERIALS AND METHODS

Sample Preparation

The PC3-LN4 cells and E. coli cells were from Kinex
Pharmaceuticals (Buffalo, NY). The rat brain samples were
from Buffalo General Medical Center (Buffalo, NY). Cell or
tissue samples were homogenized in an ice-cold lysis buffer (50
mM Tris-formic acid, 150 mM NaCl, 0.5% sodium
deoxycholate, 2% SDS, 2% NP-40, pH 8.0) using a Polytron
homogenizer (Kinematica AG, Switzerland). After homoge-
nization performed for a 5−10s burst at 15 000 rpm for 10
times, the mixture was then sonicated in a cold room for ∼10
min with a low-power sonicator until the solution was clear.
Lysates were centrifuged at 140 000g for 1 h at 4 °C. The
supernatant was collected and stored at −80 °C until analysis.
For preparation of moderate-abundance proteins (MAPs), the

plasma sample (∼200 uL) from a healthy young woman was
fractionated with IgY14-SuperMix tandem column (Sigma-
Aldrich), as previously reported.28 Three buffers (dilution/
washing buffer: 10 mM Tris-HCl, 150 mM NaCl, pH7.4
(TBS); stripping buffer: 100 mM glycine, pH2.5; neutralization
buffer: 100 mM Tris-HCl, pH8.0) were, respectively, used for
loading/washing, eluting, and neutralization. The resulting
flow-through fraction (low-abundance proteins) and the
bound/eluted fractions from IgY-14 (high-abundance proteins)
and from SuperMix (MAPs) were collected separately. All
fractions were then individually concentrated in Amicon
centrifugal filter with 3-kDa molecular mass cutoff (EMD
Millipore), followed by buffer exchange to 50 mM NH4HCO3

according to the manufacturer’s instruction. Protein concen-
tration was measured using BCA Protein Assay (Pierce,
Rockford, IL). The amounts of 100 and 90 μg E. coli extracts
were, respectively, spiked with bovine serum albumin (BSA) at
four different levels (0.025, 0.05, 0.075, and 0.1% of total
proteins) and MAPs at two different levels (5 μg and 7.5 μg).
All samples (each containing ∼100 μg of total protein) were
reduced with TCEP (3 mM) for 10 min and then alkylated
with 20 mM IAM for 30 min in darkness. A precipitation/on-
pellet-digestion procedure was applied to performed precip-
itation and tryptic digestion as previously described.9,29

NanoLC−MS/MS Analysis

Peptide samples were analyzed using an ultrahigh pressure
Eksigent (Dublin, CA) nano-2D Ultracapillary/nano-LC
system coupled to a LTQ/Orbitrap XL hybrid mass
spectrometer (Thermo Fisher Scientific, San Jose, CA). The
mobile phase consisted of 0.1% formic acid in 2% acetonitrile
(A) and 0.1% formic acid in 88% acetonitrile (B). Samples were
loaded onto a reversed-phase trap (300 μm ID × 1 cm), with
1% mobile phase B at a flow rate of 10 μL/min, and the trap
was washed for 3 min. A series of nanoflow gradients (flow rate,
250 nL/min) was used to back-flush the trapped samples onto
the nano-LC column (75 μm ID × 75 cm, packed with 3 μm
particles) for separation. The nano-LC column was heated to
52 °C to greatly improve both chromatographic resolution and
reproducibility. To stabilize ionization efficiency, the spray tip
was cleaned by dripping 50% methanol by gravity after every
three runs. The parameters for MS were demonstrated in our
previous publications.9,12

In this study, for the spiked-in BSA experiment, each group
at different BSA concentration was analyzed four times; for the
spiked-in MAP experiments, two groups at different MAPs
concentration were alternatively analyzed five times. Five
consecutive runs of the rat brain sample and six runs with
different load amount of PC3-LN4 cell (1 and 2 μg, three
replicates per group) were further analyzed to assess different
normalization methods. In addition, to assess the performance
of biomarker discovery by ICan and iBAQ, we employed the
“Study 6 LTQ Orbitrap XL @P65” data set generated by the
program of Clinical Proteomic Technology Assessment for
Cancer (CPTAC).30 According to the publicly available
documentation associated with this study, the Universal
Proteomics Standard set 1 (UPS1, a 48-protein equimolar
standard) was spiked at amounts of 0.25 and 0.74 fmol/μL into
yeast lysate for sets A and B, the subset of studies investigated
in the current work. Each sample was analyzed by nano-LC−
MS with an Orbitrap XL analyzer in triplicate.
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Database Search and Validation

Proteome Discoverer version 1.4.1.14 (Thermo-Scientific) was
used to perform database searching against Swiss-Prot protein
database (version 06/13/2012) for the BSA spiked-in experi-
ment, five consecutive LC−MS runs experiment, and six LC−
MS runs with different load amount experiment. MaxQuant31

v1.4.1.2, incorporated with the Andromeda search engine,32 was
used for the MAP spiked-in experiment and CPTAC study 6
data. A total of 7766 protein entries, 20 238 entries, 4431
entries, and 7801 entries were presented in respective rat,
human, E. coli, and yeast database. The databases were
augmented with sequence of BSA, the UPS1 48 proteins
(Sigma-Aldrich), and 118 MAPs (achieved from three replicate
LC−MS/MS runs of MAP sample) when appropriate. The
search parameters used were as follows: 10 ppm tolerance for
precursor ion masses and 1.0 Da for fragment ion masses. Two
missed cleavages were permitted for fully tryptic peptides.
Carbamidomethylation of cysteines was set as a fixed
modification, and a variable modification of methionine
oxidation was allowed. The false discovery rate (FDR) was
determined by using a target-decoy search strategy.33 The
sequence database contains each sequence in both forward and
reversed orientations, enabling FDR estimation. For resulted
files from Proteome discoverer, Scaffold v4.2.0 (Proteome
Software, Portland, OR) was used to validate MS2-based
peptide and protein identification based on cutoffs of cross-
correlation (Xcorr) and Delta Cn values. The FDR was set to
0.01 and 0.05, respectively, for peptide and protein
identifications. For MaxQuant, the FDR was set to 0.01 for
peptide and protein identifications, respectively. The identi-
fications from the reverse database and common contaminants
were eliminated.

Protein Quantification

The protein quantitative values based on MS2-TIC, NASF and
emPAI for each data set were obtained using Scaffold v4.2.0
under the same peptide/protein identification criteria. The
iBAQ intensities, the sum of intensities of all peptides divided
by the number of theoretically observable peptides, were
achieved from the MaxQuant using standard settings with the
option “match between” runs selected. The iBAQ values for
each protein are normalized against sum of quantitative values
in individual runs. The quantitative analysis by ICan was
performed as shown in the pipeline (Figure 1). The peak
detection and chromatographic alignment based on retention
time, m/z, and charge states were analyzed by SIEVE v2.1
(Thermo Scientific, San Jose, CA). Quantitative frames/
features were defined based on m/z (width: 10 ppm) and
retention time (width: 2.5 min) of peptide precursors in the
aligned runs. Peptide ion current areas were calculated for
individual replicates in each frame. Subsequently, using tools in-
house the MS2 fragmentation scans associated with each frame
were assigned to the peptide/protein identifications from
Proteome Discoverer or MaxQuant as previously described.
Frames assigned to multiple peptides were excluded in ICan.
The LOESS normalization34 was performed to reduce the
systematic bias. In the case of missing data, a value of 1000 as
the baseline quantitative value was assigned.13 After further
excluding frames shared with multiple proteins, intensities for
frames with the same sequence were combined to be the
unique peptide intensity and then intensities for unique
peptides of the same protein were further combined to be
the protein intensity with Grubbs’ test analysis in both steps.

Grubbs’ test was performed by the ListPOR (v Version
2.2.2104) program (panomics.pnnl.gov). Minimum data set
presence 3 and 2, p value cutoff of 0.01 and 0.05, were,
respectively, set at frame level and unique peptide level. The
relative protein ratio was calculated by comparing the summed
abundance values of the protein in each group. Student’s t-test
statistics was applied to analyze log-transformed values of
protein intensities for all of these methods. Abundance change
≥ 1.3-fold and p value ≤ 0.05 were used as the thresholds to
define altered proteins. The p-value adjustments for multiple
testing were evaluated according to sequential Bonferroni
correction (SB),35 Benjamini−Hochberg FDR control (BH),36

and sequential Fisher’s combined probability test (SFisher).37

■ RESULTS AND DISCUSSION
For label-free proteomic quantification, accurate and precise
quantification of low-abundance proteins remains challenging.
As demonstrated by various laboratories including ours, spectral
count-based approaches resulted in suboptimal quantification
of low-abundance proteins due to the inherent biases and
variations in data-dependent sampling of fragment ions
(MS2).9,10,38 By comparison, ion-current-based approaches
have been shown to afford markedly improved quantification
for low-abundance proteins when efficient and reproducible
liquid-chromatography (LC) separation and high-resolution
MS are employed.9,10,13,39

To date, owing to the prevalent use of high-resolution MS,
ion-current-based methods have become the most promising
label-free approaches.10,13 However, comprehensive evaluation
and optimization of data analysis approaches for ion-current-
based quantification have not been adequately reported. Here,
based on extensive evaluation and optimization, we developed
an optimal ion-current-based procedure (Figure 1) termed
ICan (ion-current-based analysis) and assessed its capacity for
proteomic quantification and discovery of significantly altered
proteins, even for these with small-fold changes (1.5-fold). The
ICan is designed for data generated from high-resolution MS;

Figure 1. Flowchart of ICan. The ICan supports identification results
from Proteome Discoverer, MaxQuant, and Mascot. The optimal
normalization and protein ratio estimation approaches were also
integrated.
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in the current work, we chose to interface SIEVE (Thermo
Scientific, San Jose, CA) with this pipeline, which performs
peak detection and chromatographic alignment based on
retention time, m/z, and charge states. Each aligned
quantitative feature (i.e., a frame, the set of peak areas of a
specific peptide) was correlated with the peptide/protein ID
information from popular software such as Proteome
Discoverer, MaxQuant, and Mascot with scripts developed in-
house. Streamlined processes for frame filtering, LOESS
normalization,34 and outlier detection by Grubbs test40 on
both frame and peptide levels were integrated in ICan. These
processes were comprehensively optimized and proved to
significantly improve the quantitative accuracy and sensitivity
and performance in discovering altered proteins over existing
strategies.

Frame Identification and Filtering

In this study, the frame identification is derived from the
spectrum identification results from popular database search
algorithms such as Proteome Discoverer and MaxQuant. We
used in-house scripts to assign these peptide identifications to
the distinguished frames. On the basis of our previous
studies,9,13 it was observed that some frames contained multiple
unique peptides and thus may lead to unreliable quantification.
Here we examined the shared frame issue using the analysis of a
series of E. coli extracts spiked with BSA at four different levels
(0.025, 0.05, 0.075, and 0.1% of total proteins; four replicates
per group). A total of 818 proteins including BSA were
identified with a peptide FDR of 0.1% (Supplemental Table 1
in the Supporting Information). Among the total of 13 801
quantitative frames (Supplemental Table 2 in the Supporting
Information), 654 (4.7%) assigned to multiple peptide IDs
were observed. Of these shared frames, 617 (94.3%) frames
only have two unique peptides (Supplemental Figure 1 in the
Supporting Information). The peptides with shared frames
likely have indistinguishable m/z and retention time, or some of
them were derived from misassigned peptide during database
search. We evaluated different cutoff thresholds for peptide/
protein identification and found that more stringent cutoffs for
identification (e.g., lower identification FDR threshold)
reduced of the percentage of shared frames, and thus stringent
criteria for identification is advisable. Some representative data
are shown in Table 1. Moreover, the peptide FDR in shared

frame-associated spectra is much higher (∼9-fold) than the
determined global peptide FDR (Table 1), indicating increased
incorrect identifications in shared frames. Thus, in this study,
those share frames containing multiple unique peptides were
eliminated.
Evaluation of Normalization Approaches

An optimal normalization method is indispensable to reduce
systematic biases and variations and thus to ensure the accuracy
and precision of relative quantification in multiple samples.
Previously, many normalization approaches have been
evaluated for label-free quantification on relatively high-
abundance peptides that are commonly identified in all or the
majority of LC−MS runs in an experimental set.14,19 Here we
evaluated all of the identified peptides with a wide range of
abundance levels by six different normalization methods,
including LOESS, quantile, upper-quantile, maximum intensity,
median intensity, and total intensity normalization (Supporting
Information). The LOESS and quantile normalization achieved
best performances in the spiked-in BSA experiment, which
decreased the median coefficient variations (CVs) of E. coli
peptide intensities by an average of 29% compared with the
original data (Figure 2). We also evaluated these methods on

two other data sets, five LC−MS runs of the same rat brain
digest and six runs of the same digest with different load
amounts, respectively, representing data sets with minimal and
substantial variations of sample preparation and loading. The
LOESS approach showed the most effective normalization
(Supplemental Figure 2 in the Supporting Information) and
thus was employed in ICan and subsequent studies.
After normalization, the level of missing data and

reproducibility of the quantitative features by ICan was further
evaluated based on replicate LC−MS runs. One of the most
prominent advantages of ion-current-based approach over
spectral counting or fragment-ion intensities (MS2-TIC) is
the reliable quantification of low-abundance peptides, even
though a peptide was only identified for once in the entire
sample set,9,10,13 thus substantially reducing the frequency of
missing values and improving the analytical reproducibility. As
shown in Supplemental Figure 3 in the Supporting Information,
although several methods were employed to improve the
reproducibility of LC−MS analysis as previously described,9

Table 1. Evaluation of the Percentage of Shared Frames in
Multiple Data Sets with Different Peptide FDRa

five repli-
cates of yeast

20 repli-
cates of rat brain

spiked-in BSA ex-
periment

peptide FDR 0.51% 0.10% 0.52% 0.10% 0.45% 0.11%
protein FDR 7.69% 1.55% 9.92% 2.26% 8.35% 2.08%
identified
proteins

1119 970 1199 1063 886 818

total frames 15508 12486 34264 29832 14557 13801
shared frames 502 236 2533 1553 958 654
percentage of
shared
frames

3.24% 1.89% 7.39% 5.21% 6.58% 4.74%

peptide FDR
in shared
frames

4.09% 0.61% 4.77% 0.92% 5.79% 1.10%

aSpiked-in BSA experiment, 5 replicates of yeast and 20 replicates of
rat brain were analyzed in this study. Shared frames: frames assigned to
multiple unique peptides.

Figure 2. Evaluation of different normalization approaches using the
spiked-in BSA data. BSA was spiked into E. coli extracts at four
different levels (0.025, 0.05, 0.075, and 0.1% of total proteins; four
replicates/group). Box and Whiskers (1−99 percentile) plot was used
to analyze the coefficient variations (CVs) of E. coli peptide intensities
among these 16 LC−MS runs using different normalization methods.
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only 655 (80.1% of all identified) proteins were identified in all
16 LC−MS runs and thereby quantifiable by spectral counting
or MS2-TIC without missing data. Per contra, the ICan was

able to quantify 816 (99.8%) proteins without any missing
value across the 16 LC−MS runs. Two proteins (0.2%) were
filtered out because all frames assigned to these two proteins

Figure 3. Scatter plot of quantitative feature pairs to evaluate the analytical reproducibility. The excellent correlation of protein intensities between
different replicates of a spiked-in BSA (0.075%) group was observed. The two axes represent the quantitative abundance values of the same proteins,
respectively, by the two duplicate runs.

Figure 4. Evaluation of accuracy and precision of relative quantification analysis by ICan, MS2-TIC, NASF, and emPAI using the spiked-in BSA data.
BSA was spiked into E. coli extracts at four different levels (0.025, 0.05, 0.075, and 0.1% of total proteins). The expected ratio of 1 for reference
proteins and five theoretical fold changes of 1.33 (0.1/0.075), 1.50 (0.075/0.05), 2.00 (0.1/0.05), 3.00 (0.075/0.025), and 4.00 (0.1/0.025) for BSA
were investigated.
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were shared frames. We evaluated the quantitative reproduci-
bility of ICan by correlating the protein intensities between any
two of the four LC−MS analyses in the spiked-in BSA
(0.075%) group. Here the protein intensity was obtained by
summing the areas of all peptide peaks assigned to the specific
protein. Linear regression of the correlation between two
replicate runs was performed, and the R-squared values for
paired correlations are all above 0.99, indicating the excellent
quantitative reproducibility (Figure 3). Moreover, a high
quantitative reproducibility was also achieved for both high-
(the upper segment of each line) and low-abundance proteins
(the lower segment of each line). The reproducibility of
spectral counting or MS2-TIC methods was far inferior, which
is particularly sound for low-abundance proteins (Supplemental
Figure 4 in the Supporting Information). These results are in
agreement with previously reported.9,13

Accuracy and Precision of Relative Quantification by ICan

The preliminary assessment of quantitative accuracy and
precision by ICan was performed using the BSA spiked-in E.
coli data. The expected ratio of the reference proteins (E. coli)
was 1.00, and the five possible changes of BSA have expected
ratios of 1.33 (0.1%/0.075% BSA in E. coli), 1.50 (0.075%/
0.05%), 2.00 (0.1%/0.05%), 3.00 (0.075%/0.025%), and 4.00
(0.1%/0.025%), respectively. As shown in Figure 4, ICan
quantified nearly all identified proteins without missing data (as
previously described), and the measured BSA ratios agreed very
well with the expected values with small relative deviations
(0.3−9.5%). Excellent linearity between the nominal and
observed ratios was achieved (Supplemental Figure 5 in the
Supporting Information). The ratios of reference proteins
determined by ICan were tightly centered around the
theoretical value. The means and standard deviations of the
ratios of reference proteins, were, respectively, 0.99 ± 0.06, 1.01
± 0.07, 1.00 ± 0.05, 1.00 ± 0.08, and 0.98 ± 0.05 for the five
comparisons previously mentioned (N = 4/group), reflecting
the high accuracy and precision achieved by ICan in calculating
protein expression ratios. The popular MS2-based methods
such as MS2-TIC, the normalized spectral abundance factor
(NASF),41 and exponentially modified protein abundance index
(emPAI)42 were also evaluated (Figure 4B−D). To achieve
optimal analysis for these methods, we employed only the 655
proteins that had no missing data in any of the replicates when
performing quantification with these approaches. Even ICan
calculated the lowest 20% proteins in abundance while other
MS2-based methods did not, it still performed significantly
better in terms of quantitative accuracy and precision, as shown

in Figure 4. On the basis of these results, the following sections
are focused on the comparison of ion-current-based strategies.

Sensitivity and False-Positive Rate for Discovering Altering
Proteins

For proteomics quantification, one of the major aims is to
completely discover the true altered proteins to the extent
possible, while minimizing false-positives that can otherwise
lead to misleading biological clues and waste of resources in
informatics analysis and validation. To evaluate the sensitivity
and false positive rate (FPR) of biomarker discovery by ion-
current-based quantification methods, we spiked a mixture of
MAPs obtained from human plasma into E. coli extracts at two
different levels (MAP-A: 90 μg of E. coli and 5 μg of MAP;
MAP-B: 90 μg of E. coli and 7.5 μg of MAP). In this set, the
expected ratio of reference proteins (E. coli) and MAPs were
1.00 and 1.50 (MAP-B/MAP-A), respectively. A total of 775
proteins including 49 MAPs were identified with a peptide and
protein FDR of 1%, respectively, using MaxQuant31 (version
1.4.1.2). The list of peptide and protein identifications was
shown in Supplemental Table 3 in the Supporting Information.
When using 1.3-fold change (the lowest quantifiable fold-
change by our ion-current-based quantitative method based on
our previous investigation9) and p ≤ 0.05 (t test) as the cutoff
thresholds, 45 of 49 (91.8%) MAPs and none of reference
proteins were determined as altered proteins (FPR = 0%) by
ICan, as shown in Figure 5A (details in Supplemental Table 4
in the Supporting Information). The reference proteins and
MAP were, respectively, indicated by blue and red dots. The
spots in gray shade have ratios below 1.3-fold change. The
mean and standard deviation of the ratios of 45 altered MAPs
quantified by ICan was 1.71 ± 0.13, demonstrating excellent
sensitivity and accuracy in discovery of changed proteins. The
outstanding ability of ICan for identifying altered proteins was
further proved by the area under curve value of 0.97 using
receiver-operating characteristic (ROC) analysis (Supplemental
Figure 6 in the Supporting Information). In this study, it was
showed that ICan could quantify nearly all identified proteins
and assign significance with high sensitivity and low FPR to
small changes of 1.5-fold, providing a competitive ability in the
field of quantitative proteomics.
The iBAQ method, which divides the sum of intensities of all

peptides by the number of theoretically observable peptides,
was shown to be the most accurate among different absolute
quantification methods in a previous work.43 The intensities or
iBAQ values for proteins were also achieved from the
MaxQuant using standard settings with the option of “match
between runs” selected. Thus, here the same list of peptide/

Figure 5. Relative ratios obtained by (A) ICan and (B) iBAQ for a quantitative experiment of E. coli extracts spiked with human plasma moderate-
abundance proteins (MAPs) (N = 5/group). In total, 49 MAP proteins (red dots, expected ratio is 1.5 between two groups) and 726 E. coli proteins
(blue dots, expected ratio of 1.0) were quantified. Gray shade denotes ≤1.3-fold change (i.e., the cutoff threshold).
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protein identifications from MaxQuant was shared and analyzed
by ICan and iBAQ. We calculated the relative ratios of proteins
by the iBAQ values (Supplemental Table 4 in the Supporting
Information) against ICan. Using the same threshold, 42 of 49
(85.7%) MAPs and 7 reference proteins (Figure 5B) were
determined as altered proteins (FPR = 14.3%) by iBAQ, with a
significantly lower sensitivity and higher FPR than ICan. The
mean and standard deviation of the ratios of 42 altered MAPs
quantified by iBAQ was 1.8 ± 0.2, also indicating good accuracy
and precision in discovery of changed proteins.
A third-party, publicly available data set, the Clinical

Proteomic Technology Assessment for Cancer (CPTAC)
study 6 data,30 was employed for further investigation of
these two methods on the relative quantification. Here Study
6B (0.74 fmol/μL UPS1 spiked into yeast lysate) versus 6A
(0.25 fmol/μL UPS1 spiked into yeast lysate A) samples, which
contain relatively low abundance of UPS proteins, were selected
to analyze. The expected ratios for yeast proteins and UPS
were, respectively, 1.0 and 3.0. After database searching by
MaxQuant, a total of 777 proteins including 15 UPS proteins
were identified in this study. Using the same threshold (≥1.3-
fold and p ≤ 0.05), all (100%) UPS with a median ratio of 3.25
and 1 yeast protein were determined by ICan as significantly
altered proteins, while 12 (80%) UPS with a median ratio of
4.78 and 5 yeast proteins were determined by iBAQ
(Supplemental Figure 7 and Supplemental Table 5 in the
Supporting Information). Again, ICan was demonstrated to be
superior in that it identified more true-positives (UPS proteins)
with higher quantitative accuracy and lower FPR than iBAQ
method.

Evaluation of Protein Ratio Determination and Multiple
Hypothesis Testing

Wrong peptide identification or incorrect assignment of peptide
ID to quantitative frames may severely compromise the
quantification of the affected proteins; in quantitative analysis,
these incorrectly identified/assigned peptides often take the
form of outliers, which must be removed to ensure reliable
quantification. Here we used Grubbs’ test40 to identify and then
eliminate outliers arising from wrong peptide assignment or
large biological/technical variations before the calculation of
the quantitative values of unique peptides and proteins.
In this study, we further evaluated the protein ratio

determination method by comparing a sum-of-intensities
method with outlier removal versus other popular approaches.

Using the abundance values obtained by ICan, approaches for
aggregating quantitative data from peptide-level to protein
levels such as TOP3, sum-of-intensity, average ratios, variance-
weighted (on coefficient variation of peptide), and linear
regression (Supporting Information) were evaluated versus
ICan. As previously described, these approaches have been
widely used in quantitative proteomics. As shown in Figure 6A,
similar sensitivity for biomarker discovery was achieved by
ICan, variance-weighted, average ratio, and sum-of-intensity
approaches using the spiked-in MAP data. The ICan and
variance-weighted approaches showed the lowest and second
lowest FPR for identifying altered protein. Without outlier
analysis, variance-weighted approach achieved the comparable
sensitivity with ICan in discovering altered proteins in this
study, while the sensitivity of other approaches are inferior
(Figure 6A). In addition, it is clear that Grubbs’ test outlier
analysis greatly reduced the false-positives (ICan vs sum-of-
intensity) (Figure 6A). For instance, E. coli protein glutamine-
fructose-6-phosphate transaminase (Glms, expected ratio is
1.0), determined as an altered protein (1.56-fold and p value =
0.02) by sum-of-intensity method, was quantified by 11 unique
peptides, but 10 (90.9%) of them have ratios around the
expected ones, as shown in Supplemental Figure 8 in the
Supporting Information. The ICan analysis (sum-of-intensity
with rejection) removes the outlier (red spots in Supplemental
Figure 8 in the Supporting Information) and gives the protein
ratio (0.97-fold and p value = 0.43) that agrees well with most
of the peptide ratio. Therefore, here we utilized the sum-of-
intensity with rejection for protein ratio estimation in the ion-
current-based quantification procedure to replace the sum-of-
intensity approach we described in previous studies.9,13

We also evaluated multiple hypothesis testing such as
Sequential Bonferroni correction (SB),35 Benjamini-Hochberg
FDR control (BH),36 and Sequential Fisher’s combined
probability test (SFisher)37 to adjust the p value of t test
(Supporting Information). For investigation of multiple testing,
we used 0.05 and 0.10, respectively, as the critical significance
level. With the combination of fold-change (1.3-fold threshold)
and statistical testing (0.05 or 0.10), the superior performance
of biomarker discovery was observed by SFisher compared with
the other two methods (Figure 6B and Supplemental Table 6 in
the Supporting Information) in ion-current-based quantifica-
tion. Forty-three (87.8%) MAPs and none of reference proteins
were identified as altered proteins with the thresholds of ≥1.3-
fold and p ≤ 0.05 by SFisher. The CPTAC data described

Figure 6. Evaluation of (A) different methods for aggregating quantitative data from peptide-level to protein levels and (B) multiple testing
approaches for Ican-based quantification. The false-positive rate (FPR) and sensitivity for discovering altered proteins were investigated with the
combination of statistical analysis and a fold-change filter (1.3-fold). A p value of 0.05 was adopted. For investigation of multiple testing, critical
significance levels of both 0.05 and 0.10 were evaluated. SB, Sequential Bonferroni test; BH, Benjamini and Hochberg test; SFisher, Sequential Fisher
combined probability test.
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above were also tested using multiple testing, and a similar
result was shown in Supplemental Figure 9 and Supplemental
Table 7 in the Supporting Information, indicating the superior
of SFisher.

■ CONCLUSIONS

Ion-current-based quantitative approach has emerged as an
attractive alternative to both spectral counting and labeling
methods, which can analyze many biological samples for large-
scale studies such as clinical and pharmaceutical investigations.
Recently, the wide prevalence of high-resolution MS has greatly
boosted the quality of ion-current-based analysis. Moreover, the
substantial advancements in MS instrumentation (e.g., analysis
of ∼4000 unique yeast proteins in 1 h of LC−MS/MS run
using a hybrid Oribtrap MS instrument44), will markedly
enhance the coverage of ion-current-based analysis. For ion-
current-based strategy, a data-processing procedure enabling
accurate, precise, and sensitive quantification is critical. Here we
demonstrated that the ICan procedure is optimal for ion-
current-based quantitative analysis, which provides superior
quantitative accuracy and higher sensitivity for biomarker
discovery with a lower FDR than these popular methods we’ve
tested. Furthermore, the comparative investigations of various
quantitative features in this study provide highly valuable
information for the development and evaluation of algorithms
for both labeling and label-free methods.
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