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Abstract

Autophagy is a conserved catabolic process critical for cell homeostasis
with broad implications for aging and age-associated diseases. A defining
feature of autophagy is the de novo formation of a specialized transient
organelle, the double-membrane autophagosome. Autophagosomes
originate from small vesicular precursors after rapid membrane expansion
resulting in the engulfment of a broad spectrum of cytoplasmic cargoes
within a few minutes for vacuolar or lysosomal degradation. Recent
advances have provided exciting new insights into the molecular
mechanisms underlying the assembly of autophagic membranes during
autophagosome biogenesis. Specifically, the phospholipid biosynthesis
activity of the endoplasmic reticulum and a dedicated membrane-tethering
complex between nascent autophagosomes and the endoplasmic reticulum
have emerged as key factors in autophagosome formation.
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Macroautophagy, hereafter referred to as autophagy, is an
intracellular mechanism critical for the maintenance of meta-
bolic homeostasis and the removal of excess or dysfunctional
cellular components in basal and stress conditions'. Consist-
ent with its central role, it has become clear that defects in
autophagy are linked to aging and a broad spectrum of common
age-associated diseases, including neurodegeneration, diabetes,
and cancer’™. Autophagy possesses an unparalleled scope of
substrates ranging from protein aggregates to whole organelles
and intracellular pathogens’. The exceptional degradative
capacity of autophagy is based on the formation of a special-
ized transient organelle, termed autophagosome, that surrounds
and isolates substrates from the rest of the cytoplasm within
a characteristic double-membrane structure. The biogenesis
of an autophagosome begins with the nucleation of a small
single-membrane  vesicular structure, termed phagophore
(or isolation membrane). The phagophore undergoes a stage of
rapid membrane expansion and, within minutes, grows around
the cargo in the shape of a large membranous cup. The cargo is
topologically separated from the rest of the cytoplasm when the
phagophore closes and divides its originally continuous single
membrane into an inner and outer vesicle, the characteristic
double-membrane structure of the autophagosome. The outer
membrane of the autophagosome fuses with the lytic com-
partment (the vacuole in yeast and plants or the lysosome in
mammals) to expose the inner vesicle and the engulfed cargo to
degradation by resident hydrolases. The generated metabolites
are recycled back to the cytoplasm. Thus, the life cycle of
an autophagosome can be divided into five different stages:
nucleation, expansion, closure of the phagophore, and maturation

A

nucleation expansion
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and fusion of the autophagosome with the lytic compart-
ment (Figure 1A)** The origin of the autophagic membranes
has been an outstanding question in the autophagy research field
for many years.

A core set of autophagy proteins is essential for the biogen-
esis of autophagosomes and cooperates with a variety of cellular
factors. Upon induction of autophagy, core autophagy proteins
assemble in a hierarchical manner to initiate autophagosome
formation. The biochemical events underlying the initial
assembly have been characterized in considerable detail'”'".
In short, the Atgl/ULK kinase complex (composed of Atgl,
Atgl3, Atgl7, Atg29, and Atg31 in yeast and ULKI1/2,
ATG13, ATGI101, and FIP200 in mammalian cells) organizes
into phase-separating supramolecular structures, resulting in
auto-transactivation of the serine/threonine kinase activity of
Atgl/ULK'"""”. The Atgl/ULK kinase targets a number of
downstream factors, including the essential autophagy protein
Atg9". Atg9 is a transmembrane protein that resides in small
vesicles (Atg9 vesicles) that are derived from the Golgi
apparatus and recycling endosomes'*'°. Upon autophagy initia-
tion, Atg9 vesicles are bound by the Atgl/ULK kinase complex
and critically contribute to the nucleation of the phagophore'’~.
In addition, the phosphatidylinositol 3 kinase complex I (PI3KI)
(composed of Vps34, VpslS, Atgb, and Atgl4 in yeast and
VPS34, VPS15, Beclinl, and ATG14 in mammals) is recruited
to the site of autophagosome formation and generates PI3P
essential to autophagy’’'. PI3P is bound by the PROPPIN
Atg18/WIPI proteins, which recruit Atg2/ATG?2 to the phagophore
membrane”~*. In addition, the action of the two Atg8 and

closure degradation

OO

phagophore

phagophore

autophagosome

Figure 1. Autophagosome biogenesis. (A) The stages of the life cycle of an autophagosome. (B) Model for the role of local fatty acid (FA)
activation, de novo phospholipid (PL) synthesis, and Atg2-mediated PL transfer during phagophore expansion. ACS, acyl-coenzyme A

synthetase; CoA, coenzyme A; ERES, endoplasmic reticulum exit site.
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Atgl2 ubiquitin-like conjugation systems results in the
covalent linkage of Atg8 proteins (Atg8 in yeast and LC3s
and GABARAPs in mammals) to phosphatidylethanolamine
within autophagic membranes with critical functions for
phagophore elongation and substrate interactions™.

The broad scope of substrates of autophagy suggests that
cells form autophagosomes at many different sites in their
cytoplasm. In yeast and mammals, autophagy protein assembly
and formation of autophagosomes occur in close association
with the intricate and dynamic network of the endoplasmic
reticulum (ER), a seemingly universally conserved feature of
autophagy”~’. Although it has been unclear what determines
the specific site of autophagosome formation at the ER,
autophagosomes do form at specialized subregions of the ER
often in proximity to ER contact sites with other organelles,
including mitochondria or plasma membrane in yeast and mam-
malian cells’=. Specifically, in yeast, nascent autophagosomes
are quantitatively linked to ER exit sites (ERESs) dedicated to
the formation of COPII transport vesicles’**. The function of
ERESs is required for the assembly of the autophagy pro-
tein machinery downstream of the Atgl kinase complex and,
as a consequence, for the nucleation of the phagophore’*.
Strikingly, autophagic structures are stably tethered to ERESs
throughout autophagosome biogenesis with one or two ERESs
localizing to the rim of the expanding phagophore”. In line
with this spatial arrangement, recent work has demonstrated
that COPII vesicles are incorporated into autophagosomal
membranes in yeast”. In mammals, autophagosome formation
initiates in proximity to PI3P-enriched membrane compart-
ments connected to the ER, termed omegasomes, which closely
enwrap nascent autophagosomes”. Similar to yeast, ERESs and
the ER-Golgi intermediate compartment (ERGIC) can be found
in proximity to forming autophagosomes in mammalian cells,
and COPII vesicles play an important role in the early stages of
autophagosome biogenesis”’“.

Close physical association of membrane-bound organelles is
generally established by protein tethers, which organize these
sites into membrane contact sites”. Strikingly, the Atg2—Atgl8
complex (ATG2A/B and WIPI4) has emerged as a tether
for ER-phagophore contacts’’. Cryo-electron microscopy
(Cryo-EM) analyses have uncovered an extended rod-shaped
conformation for Atg2 bridging the distance between two
apposing membranes at membrane contact sites*’*. Indeed,
in vitro experiments revealed the ability of the Atg2-Atgl8
complex to tether membrane vesicles**>. A C-terminal amphip-
athic helix is required for Atg2 localization to the phagophore
while the N-terminus plays an important role for ER binding
critical to the expansion of the phagophore in yeast”. At the
same time, the Atg2-Atgl8 complex physically interacts with
Atg9, confining it to the rim of the expanding phagophore and
colocalizing it with ERESs’***. This spatial arrangement
has been highly suggestive of phospholipid transfer reactions
occurring at these ER-phagophore contacts. However, the
molecular nature of these potential phospholipid transfer
reactions had remained unclear. Excitingly, three independent
studies have demonstrated that Atg2 itself displays phospholi-
pid transfer activity in vitro: Atg2 can extract phospholipids
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from one vesicular membrane, bind them, and transfer them to a
separate vesicular membrane™~'°. This behavior is reminiscent
of other membrane-tethering complexes. Indeed, Atg2 shares
sequence and structural homology with the conserved mem-
brane-tethering and lipid transfer protein Vps13*. Cryo-EM
studies have revealed that Atg2 contains a cavity or groove
along its extended conformation which can bind phospholipids
indiscriminately in terms of headgroup or fatty acid chain
composition”*. The identification and first functional insights
into the Atg2-Atgl8 complex as a membrane tether and
phospholipid transfer protein have provided a novel model of
how at least parts of the membrane material required for the
rapid expansion of the phagophore are transferred from the ER
to the phagophore. In particular, the model of non-vesicular
transport provides an attractive explanation for the strikingly
low inner volume and protein concentration of the phagophore
membrane.

A central question that arises from this model is whether
Atg2—-Atgl8 bridges provide sufficient transfer capacity to
explain the rapid and extensive growth of the phagophore
membrane from a small vesicle to a double-membrane
autophagosome. It seems clear from estimates that the trans-
fer rate between vesicles mediated by Atg2—Atgl8 in vitro is
magnitudes to slow*: an autophagosome can reach a diameter
of 1 um within a few minutes of biogenesis and thus contain
around 25 million phospholipids requiring a total transfer rate
of >50.000 phospholipid molecules * s-!, but the extrapolated
maximal transfer rate in vitro is only 0.017 phospholipid
molecules * s per Atg2 molecule”. Multiple Atg2 molecules
contribute to the punctate structures seen at the ER—phagophore
contact site by fluorescence light microscopy, but their
number very likely cannot compensate for the low transfer
rate in vitro. Thus, if Atg2-mediated transfer is the predomi-
nant way with which phospholipids are channeled from the
ER into autophagic membrane assembly, mechanisms that
dramatically accelerate phospholipid transfer via Atg2 in vivo
must exist.

Very recent work has identified a pathway involving
conserved acyl-coenzyme A synthetases (ACSs) and localized
phospholipid synthesis in the ER that critically drives autophagic
membrane assembly during phagophore expansion in yeast®.
ACSs are a conserved protein family of peripheral and trans-
membrane proteins that link coenzyme A to fatty acids to
provide activated fatty acids for lipid synthesis, membrane
editing, protein acylation, or vesicular fusion”. In the context
of autophagy, the conserved ACS Faal localizes to nucleated
phagophores downstream of the assembled core autophagy
proteins and locally activates fatty acids. These activated fatty
acids are channeled into de novo phospholipid synthesis in
the ER, which is essential for the efficient expansion of the
phagophore and formation of functional autophagosomes®.
These data now show that newly synthesized phospholipids
locally drive autophagic membrane formation. Thus, although
a number of previously implicated organelles may contribute
preformed membranes during phagophore expansion, they appear
to be insufficient. These data indicate that localized de novo
synthesis may constitute a driving force for the directed
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transfer of phospholipids across the Atg2-Atgl8 complex
from the ER into the membrane of the phagophore. Indeed,
localized synthesis has been shown to accelerate the transfer of
phospholipids across ER-mitochondria membrane contact
sites”’. In line with these concepts, phospholipid-synthesizing
enzymes appear to be enriched within the ER in proximity to
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promotes autophagy in mammalian cells””. In summary,
although the mechanistic details have to be determined, the recent
advances in our understanding of the mechanisms that drive
the biogenesis of autophagosomes have shifted the focus to the
principles of how cells modulate their lipid metabolism and
transport across organelle contact sites in order to perform

forming autophagosomes and phosphatidylcholine synthesis autophagy and maintain cellular health.
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