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Abstract

An intriguing outcome of hybridisation is the emergence of clonally and hemiclonally repro-

ducing hybrids, that can sustain, reproduce, and lead to the emergence of polyploid forms.

However, the maintenance of diploid and polyploid hybrid complexes in natural populations

remains unresolved. We selected water frogs from the Pelophylax esculentus complex to

study how diploid and triploid hybrids, which reproduce hemiclonally via hybridogenesis, are

maintained in natural populations. During gametogenesis in diploid hybrids, one of the

parental genomes is eliminated, and the remaining genome is endoreplicated. In triploid

hybrids, the single-copy genome is typically eliminated, while genome endoreplication does

not occur. To investigate how diploid and triploid hybrid frogs reproduce in populations with-

out parental species, we crossed these hybrid animals from two separate pure hybrid popu-

lations located in Poland. Using cytogenetic analysis of tadpoles that emerged from the

crosses, we established which gametes were produced by parental hybrids. The majority of

hybrid females and hybrid males produced one type of gamete with the P. ridibundus

genome. However, in both studied populations, approximately half of the diploid and triploid

hybrids simultaneously produced gametes with different genome compositions and ploidy

levels, specifically, the P. ridibundus and P. lessonae genomes, as well as diploid gametes

with genomes of both parental species. Triploid hybrid males and females mostly produced

haploid gametes with the P. lessonae genome; however, gametes with the P. ridibundus

genome have also been observed. These results suggest that not all hybrids follow the clas-

sical hybridogenetic reproduction program and reveal a significant level of alterations in the

gametogenesis pathways. In addition, we found a variable survival rate of particular progeny

genotypes when we crossed hybrid females with different males suggesting the important

role of postzygotic barriers on the maintenance of pure hybrid systems. We suggest that the

observed variability in produced gametes and the different survival rate of the progeny with

certain genotypes is crucial for the existence of pure hybrid systems.
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Introduction

Species are fundamental evolutionary units that are separated from each other via different

prezygotic and postzygotic barriers [1]. Such barriers prevent gene flow between different spe-

cies, ensuring the isolation of their genomes [1, 2]. Interspecific hybridisation occurs both in

plants and animals, causing the instant creation of novel gene combinations [3, 4]. These nov-

elties may promote the evolutionary success of hybrid lineages, and possibly, the emergence of

new species [3–6]. However, one of the outputs of interspecific hybridisation is hybrid sterility,

which prevents recombination and thus, gene flow between the genomes of parental species

[7, 8]. In some animal hybrids, sterility is often overcome via modifications of gametogenesis

by the emergence of clonal or hemiclonal reproduction [9–11]. These forms of reproduction

become possible when gamete formation is modified to prevent pairing thus, preventing

recombination between orthologous chromosomes [11, 12]. Clonal propagation of the genome

usually leads to the emergence of triploid individuals with the frequent ability to fully or par-

tially restore recombination (sexual reproduction) [11–15]. This phenomenon of asexuality

accompanied by polyploidisation may involve multiple transient stages in which different

forms of hybrids reproduce with parental (sexual) species or with each other [14, 16]. How-

ever, how these stages of hybrid reproduction are manifested and what mechanisms provide

maintenance of hybrids remains unresolved.

The water frog complex (Pelophylax esculentus complex) provides several opportunities to

study hemiclonal reproduction and polyploidisation. This complex includes two parental spe-

cies, namely, the marsh frog (P. ridibundus; RR genotype, 2n = 26) and the pool frog (P. lesso-
nae; LL genotype, 2n = 26), the hybridisation of which leads to diploid hybrids, i.e., the edible

frog (P. esculentus; RL, 2n = 26) [17]. In addition to diploid hybrids, triploid (RRL and LLR,

3n = 39), tetraploid (RRLL), and rare pentaploid (RRLLL) hybrids have been recorded in natu-

ral populations [18–21]. Diploid hybrids exhibit a hemiclonal reproductive mode, known as

hybridogenesis [22]. During gametogenesis, the genome of one parental species is eliminated,

while the other genome is duplicated, allowing for its transmission into gametes [22–24]. In

restoring the next hybrid generation, such gametogenic properties create hybrids depending

on one of the parental species. This leads to the formation of various populations where

hybrids coexist with both parental species (R-E-L systems) and one or another parental species

(L-E or R-E systems, respectively) [18, 19, 25]. Alteration of diploid hybrid gametogenesis

leads to the appearance of fertile triploid hybrids, which partially restores sexual reproduction

[14, 18, 26]. During gametogenesis of triploid hybrids, the genome represented in one copy is

typically eliminated, while the others recombine to form haploid gametes [18, 19, 26, 27]. Dip-

loid and triploid hybrids can coexist independently from parental species, producing self-

maintaining evolutionary units (known as “E systems”) [18, 19, 25, 28, 29]. Such populations

are widespread in Sweden, Denmark, Germany, Poland, and Ukraine [28–32]. Here, we

focused on the reproduction of hybrid frogs in pure hybrid populations to determine contribu-

tion of hybrid animals to the progeny.

In this study, we considered whether different pure hybrid systems have similar hybrid

reproduction patterns. To investigate this, we selected two E systems located in northwest

(Wysoka Kamieńska) and southwest (Uciechów) Poland. In the E and L-E systems observed in

Wysoka Kamieńska, all three forms of edible frog (RL, LLR, LRR) co-occur, with the predomi-

nant form being LLR hybrids (approximately 60% of frogs per population) [33]. This popula-

tion in Wysoka Kamieńska is closely located to other E systems in Usedom and Bornholm

Islands, northern Germany, Denmark, and southern Sweden, which have been comprehen-

sively studied [28–30, 32, 34, 35]. Diploid hybrids from studied E systems mainly produce hap-

loid P. ridibundus gametes and diploid gametes, leading to the emergence of triploid hybrids
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[20, 28, 29, 34, 35]. Triploid hybrids with the LLR genotype usually produce haploid gametes

with the P. lessonae genome, as well as diploid gametes with P. ridibundus and P. lessonae
genomes and gametes with two copies of the P. lessonae genome [27, 28, 32–34]. The other

selected E system, located in southwest (Uciechów) Poland, is remote from the northern sys-

tems and likely represents a separate case of pure hybrid population formation. According to

our previous unpublished long-term field observations, this population included only hybrid

animals and was isolated from other water frog populations. However, the genotype composi-

tion of individuals from Uciechów has not been described thus far; therefore, we aimed to

characterise the structure of this population and the pattern of hybrid emergence and mainte-

nance in this E system.

Finally, we investigated whether all types of gametes produced by hybrids contributed to the

progeny genome composition. We crossed the same hybrid individuals with both parental (sex-

ual) species, and other hybrids, to compare the genotypes of their progeny. Previous studies have

reported that hybrids can simultaneously produce a variety of gametes with different genome

compositions and ploidy [28, 29, 35–39]. We expected to find no difference in the contribution of

hybrid gametes to the emergence of tadpoles with different genome combinations after crosses

with different parents. To test this, we performed a karyotype analysis of tadpoles obtained after

artificial crosses of di- and triploid hybrid frogs with each other and with parental species from

different populations. We identified karyotypes of 655 tadpoles from 27 crosses of hybrid frogs via

fluorescent in situ hybridisation (FISH) using species-specific markers. The results allowed us to

determine the contribution of hybrid frogs to the appearance of different forms of hybrids in E

systems and the role of postzygotic barriers on the survival and maintenance of the progeny.

Materials and methods

Animals

All procedures with both adults and tadpoles were performed in accordance with the relevant

guidelines and regulations. Adult frogs were captured by the General and Regional Director-

ates for Environmental Protection (DZP-WG.6401.02.5.2015.JRO, WPN.6401.177.2016.IL).

Adult individuals used for in vitro crosses were sampled from different locations in Poland.

According to the data collected in S1 Table, P. lessonae (females, N = 5; males, N = 8) were

obtained from the L-E and R-E-L systems; P. ridibundus (females, N = 1; males, N = 6) were

collected from R-E and R-E-L systems. P. esculentus (RL females, N = 9; LLR females, N = 3;

RL males, N = 9; LLR males, N = 3; RRL males, N = 1) were taken from E systems in Wysoka

Kamieńska (northwestern Poland), Uciechów (southwestern Poland), and other locations. All

experimental procedures were approved by the Local Commission for Ethics in Experiments

on Animals in Wrocław, Poland (27/2016) and the local animal ethics committee of Saint-

Petersburg State University (# 131-03-3).

Taxonomic evaluation of animals

Adult frogs collected for crossing experiments were first identified based on morphological

features according to Kierzkowski et al. [40]. Ploidy of P. esculentus individuals was initially

evaluated via erythrocyte long-axis measurements before crosses [40]. Phalanges were carefully

cut to obtain blood smears. After air-drying the erythrocytes, the long axis was measured

under an Axiostar Plus microscope (Zeiss) using 20× lenses and KS400 software (Zeiss). Dip-

loid erythrocytes were 23.4–24.9 μm long, and triploid erythrocytes were 29.5–33.3 μm long.

After crossing experiments, all frogs were identified by karyotyping followed by FISH with

species-specific markers, such as pericentromeric repeat RrS1 [41–43] and interstitial sites of

the telomeric repeat (ITSs) [36, 44].
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Crossing experiments

The collected animals were kept in humid boxes and subsequently used for in vitro crossing

experiments according to the standard procedures for water frogs [45]. Twenty-four hours

before the procedure, females were injected intraperitoneally with 6.25 mg/kg-body weight of

salmon luteinising hormone-releasing hormone (LHRH, H-7525.0001, Bachem) in amphibian

phosphate-buffered saline (APBS, pH 7.4, 11.2 mM NaCl, 0.22 mM KCl, 0.8 mM Na2HPO4,

0.14 mM KH2PO4). Eggs were artificially obtained from each female and separated into several

plates (depending on the clutch size) for fertilisation by different males. Males and females

were sacrificed after anaesthetising in a 0.5% solution of ethyl 3-aminobenzoate methanesulfo-

nate (tricaine methanesulfonate, MS-222, Sigma Chemical Co.) in APBS. Tissues and organs

were dissected and fixed in 96% ethanol for subsequent DNA isolation (phalange) and chro-

mosomal (intestine) analyses, as well as for in vitro fertilisation of eggs (testes). Tadpoles of

various phenotypes (LL, RR, RL, RRL, LLR), resulting from controlled in vitro crosses, were

reared in a greenhouse in PPE tanks, with approximately 10 tadpoles per litre of water and fed

with frozen lettuce and fish food. A total of 655 tadpoles were analysed from 27 crosses of

hybrids with each other and parental species.

Tadpole genome composition was identified by karyotyping followed by FISH using spe-

cies-specific probes. Using the (TTAGGG)5 probe, we revealed one or two interstitial telomere

repeat sites distinguishing the NOR-bearing chromosomes of P. lessonae and P. ridibundus
[36, 44]. In addition, we applied a probe to detect the centromere RrS1 repeat, which only

localises in P. ridibundus chromosomes [41–43].

Metaphase chromosome preparation

Tadpoles were anaesthetised with 0.15% MS222 (Sigma) before euthanasia. The gills, intestine,

and tail tip were hypotonised in distilled water for 30 min, followed by fixation in a 3:1 (etha-

nol:glacial acetic acid) Carnoy’s solution. After three fixative exchanges, tissues were stored at

4˚C until use. To obtain metaphase chromosomes, fixed tissues were placed in 70% glacial ace-

tic acid for 3 min and intensively macerated to obtain a cell suspension. The suspension was

dropped onto slides heated to 60˚C, on which nuclei and metaphase chromosomes remained

after liquid evaporation.

FISH

To identify chromosomes of both parental species, we applied DNA/DNA FISH protocols

with an oligonucleotide probe (TTAGGG)n repeat or a PCR-labelled probe to RrS1 repeat on

metaphase chromosomes obtained from tadpoles and parental individuals. A biotin-labelled

probe for RrS1 pericentromeric repeat was obtained from the genomic DNA of P. ridibundus
using PCR with the following primers (according to [41]): 50-AAGCCGATTTTAGACAAGAT
TGC-30; 50-GGCCTTTGGTTACCAAATGC-30.

Metaphase chromosomes were pre-treated with RNAse A (100–200 mg/ml) for 1 h and

pepsin (0.01% in 0.01 N HCl) for 10 min and then post-fixed in 2% paraformaldehyde for 10

min (in 1× PBS, 50 mM MgCl2). For the oligonucleotide probe, the hybridisation mix con-

tained 40% formamide, 2.4× SSC, 12% dextran sulphate, 5 ng/μl single-stranded (TTAGGG)5

probe conjugated with biotin and 10–50-fold excess of tRNA. For the PCR-labelled probe, the

hybridisation mix contained 50% formamide, 2× SSC, 10% dextran sulphate, 5 ng/μL probe

conjugated with biotin, and 10–50-fold excess of ssDNA. The hybridisation mix was applied to

slides with metaphase chromosomes under coverslips. Slides with chromosomes and probes

were denatured simultaneously for 5 min at 82˚C. For the oligonucleotide probe, hybridisation

was performed overnight at room temperature, followed by washing in 2× SSC at 42˚C.
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Regarding the PCR-labelled probe, hybridisation was performed overnight at 37˚C, followed

by washing in 0.2× SSC at 50˚C. Biotin-labelled probes were detected using streptavidin conju-

gated with Cy3 (Jackson ImmunoResearch Laboratories) or Alexa 488 (Invitrogen). Subse-

quently, the slides were counterstained in 1,4-Diazabicyclo[2.2.2]octane (DABCO) antifade

solution containing 1 mg/ml 40,6-diamidino-2-phenylindole (DAPI). At least three full meta-

phase plates with evident FISH signals were examined to identify the karyotypes of the tad-

poles and their parental individuals.

Wide-field microscopy

A Leica fluorescence microscope DM 4000B was used to analyse metaphase chromosomes.

Fluorescent signals were detected using appropriate filter cubes (Leica Wetzlar GmbH, Ger-

many). Images were taken using a monochrome digital camera DFC350 FX under 10×, 20×,

40×, and 100× objective lens magnifications using the Leica CW 4000 FISH software. Proper

adjustments of the images were performed using Adobe Photoshop and Adobe Illustrator.

Results

We analysed 33 hybrid individuals from two isolated pure hybrid P. esculentus systems (E sys-

tems) located in southwest (Uciechów) and northwest (Wysoka Kamieńska) Poland. Both

populations shared similar genotypes. Males were represented by all three genotypes (RL,

RRL, LLR), while females were represented by RL and LLR genotypes; RRL females were not

found (S1 Table).

Crosses of hybrid frogs from E-system from Uciechów

To investigate the mechanisms of hybrid frog maintenance in a previously undescribed E sys-

tem located in southwestern Poland (Uciechów), we performed a set of crossing experiments

of hybrid frogs with the other hybrids and with the parental species. We performed 17 crosses

of one triploid and eight diploid hybrid females with P. ridibundus, P. lessonae, as well as trip-

loid hybrid males with LLR and RRL genotypes (Fig 1; S2 Table). In addition, we crossed P. les-
sonae females and two diploid hybrid males.

In one cross of a diploid hybrid female with a P. lessonae male (cross # 37/2016), we

obtained only diploid hybrid tadpoles (Figs 1, 3C; S2 Table). In crosses of two other diploid

hybrid females with P. ridibundus males (crosses ## 14/2016, 18/2016), we obtained only P.

ridibundus tadpoles (Fig 1, S1G Fig; S2 Table). Thus, these females produced eggs with only

the P. ridibundus genome.

To check whether the hybrid females’ contribution to the progeny was comparable to

crosses with different parents, we split the eggs obtained from hybrid individuals and fertilised

them with the sperm of various sexual males. In crosses of diploid hybrid female with P. ridi-
bundus (cross # 15/2016) and P. lessonae (cross # 16/2016) males, we obtained P. ridibundus
and P. esculentus tadpoles, respectively (Figs 1, 3L; S1K Fig; S2 Table). We concluded that the

studied females transmitted oocytes only with the P. ridibundus genome (Fig 1).

In addition, we crossed another diploid hybrid female with a P. lessonae male (cross # 2/

2016), a P. ridibundus male (cross # 7/2016), and triploid hybrid male with the LLR genotype

(cross # 5/2016) (Figs 1, 3F–3I; S1M and S1N Fig). In crosses from this female with P. lessonae
and triploid hybrids, we obtained only diploid hybrid progeny. However, in a cross with P.

ridibundus, we detected not only P. ridibundus progeny, but also diploid hybrids. We con-

cluded that this female simultaneously produced haploid gametes with the P. ridibundus
genome and haploid gametes with the P. lessonae genome (Fig 1).
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Furthermore, we crossed another diploid hybrid female with P. lessonae (cross # 3/2016)

and P. ridibundus (cross # 8/2016) males (Fig 1). In the cross with the P. lessonae male (cross #

3/2016), we obtained diploid and triploid hybrids with the LLR genome (Fig 1; S1E, S1F Fig).

When we crossed this female with the P. ridibundus male, we obtained P. ridibundus and trip-

loid hybrids with the RRL genotype (cross # 8/2016), as expected, and diploid hybrids (Figs 1

and 3M–3O). Thus, this diploid hybrid female simultaneously produced three types of gam-

etes: the majority of the gametes were haploid with the P. ridibundus genome, and a minor

proportion of gametes was haploid with the P. lessonae genome or diploid with genomes of

both parental species (Fig 1).

In crosses of an additional diploid hybrid female with a P. lessonae male (cross # 7/2017),

we obtained triploid hybrids with the LLR genotype and diploid hybrids (Figs 1, 3G and 3H).

However, when we crossed the same female with diploid hybrid male (cross # 9/2017), all

progenies were diploid, including the P. ridibundus and P. esculentus individuals (Figs 1, 3J

and 3K). We concluded that this diploid hybrid female produced diploid eggs with genomes of

both parental species, as well as haploid eggs with the P. ridibundus genome. The diploid

hybrid male presumably produced two types of haploid gametes with the P. ridibundus
genome (Fig 1). Nevertheless, we could not infer the genome composition of all gametes pro-

duced by hybrid females and hybrid males, as it is possible for hybrid males and hybrid females

to produce gametes with the P. lessonae genome.

In a cross of another diploid hybrid female and a P. lessonae male (cross # 11/2016), we

obtained only diploid hybrid tadpoles (Fig 1, S1L Fig). We suggest that this diploid hybrid

female produced haploid gametes with the P. ridibundus genome. However, when we crossed

the same female and triploid hybrid males with the RRL genotype (cross # 12/16), we obtained

triploid hybrids with RRL and LLR genotypes, as well as diploid hybrids and P. ridibundus
individuals (Fig 1, S1A–S1D Fig). We cannot precisely identify the additional gametes of the

crossed hybrids, but we can infer the formation of diploid eggs with genomes of both parental

species and haploid eggs with the P. lessonae genome, which were undetected in the crosses of

the same female with P. lessonae males (Fig 1). Alternatively, triploid hybrid males with the

RRL genotype can produce spermatozoa with four different genotypes (diploid RL, diploid LL,

haploid R, and L); however, this scenario is less probable.

Next, we crossed one triploid LLR female with P. lessonae male (cross # 8/2017), diploid

hybrid male (cross # 10/2017), and P. ridibundus male (cross # 15/2017) (Fig 1, S2A, S2B,

S2D–S2F Fig). After crossing this female with P. ridibundus male, we found only diploid P.

esculentus tadpoles. However, when we crossed the same female with P. lessonae male, we

obtained P. esculentus and P. lessonae tadpoles. P. ridibundus and P. esculentus tadpoles were

obtained from a cross of the same female with P. esculentus male. These results allowed us to

speculate that this triploid hybrid female produced haploid oocytes with P. lessonae or P. ridi-
bundus genomes (Fig 1).

In addition, we crossed two diploid hybrid males with P. lessonae females. In one cross

(cross # 9/2016), we detected only diploid hybrid tadpoles (Fig 1). We concluded that this

Fig 1. Results of crossing experiments of diploid and triploid hybrids from pure hybrid system located in

southwest (Uciechów) Poland. Genome composition of tadpoles was identified by karyotyping followed by FISH with

probes to centromeric repeat RrS1 and telomeric (TTAGGG)n sequence. RR indicates P. ridibundus individuals; LL

indicates P. lessonae individuals; RL indicates diploid hybrids; LLR and RRL indicate triploid hybrid individuals.

Suggested genome composition of gametes produced by males and females is inferred based on tadpole karyotypes and

parent genotypes. R and L represent gametes with P. ridibundus and P. lessonae genomes, respectively. RL indicates

diploid gametes with the genomes from both parental species. Question mark (?) indicates difficulties in prediction of

the precise genome composition in gametes produced by hybrid males or females. Crossing IDs correspond to S2

Table.

https://doi.org/10.1371/journal.pone.0268574.g001

PLOS ONE Maintenance of pure hybridogenetic water frog populations

PLOS ONE | https://doi.org/10.1371/journal.pone.0268574 July 6, 2022 7 / 18

https://doi.org/10.1371/journal.pone.0268574.g001
https://doi.org/10.1371/journal.pone.0268574


diploid hybrid male produced gametes with the P. ridibundus genome. However, in the second

cross (cross # 17/2017), we found diploid hybrids and P. lessonae individuals (Fig 1; S2H and

S2I Fig). We suggest that this individual male simultaneously produced two types of gametes:

haploid gametes with the P. ridibundus genome and haploid gametes with the P. lessonae
genome.

Results of hybrid frog crosses from Wysoka Kamieńska

Additionally, we analysed the mechanisms of hybrid frog maintenance in different E systems

located in northwest Poland (Wysoka Kamieńska). We performed eight crosses of one diploid

and two triploid LLR hybrid females with hybrid males and with males of parental species. In

addition, we crossed five diploid and two triploid LLR males with parental species (S2 Table).

We performed crosses of one diploid hybrid female with P. lessonae male (cross # 1/2016)

and triploid hybrid male with LLR genotype (cross # 4/2016). In both crosses, we obtained dip-

loid and triploid LLR hybrid tadpoles (Figs 2, 3A, 3B, 3D and 3E). We suggest that this diploid

hybrid female transmitted oocytes with the haploid P. ridibundus genome and diploid oocytes

with genomes of both parental species; triploid hybrid males likely produced gametes with the

P. lessonae genome (Fig 2). Nevertheless, triploid hybrid male was able to also produce diploid

sperm with genomes of both parental species (Fig 2).

In addition, we obtained tadpoles from two crosses of two triploid hybrid females with the

LLR genotype and diploid hybrid males. In one cross (cross # 26/2016), we found tadpoles of

P. ridibundus, diploid hybrids, and triploid hybrids with the LLR genotype (Fig 2; S2I–S2K

Fig). In this case, we could not identify all types of gametes produced by hybrid parents, but

we concluded that both male and female hybrids produced P. ridibundus gametes, and one of

the parents produced diploid gametes. In another cross of triploid hybrid female with the LLR

genotype and diploid hybrid male (Cross # 27/2016), we obtained P. ridibundus and diploid

hybrid progeny (Fig 2; S2G and S2H Fig). Similar to the previously described cross, we could

not precisely identify the gametes produced by hybrid parents, but we suggest that both male

and female hybrids produced haploid gametes with the P. ridibundus genome, and at least one

of the parents additionally produced haploid gametes with the P. lessonae genome (Fig 2).

Next, we performed three crosses of diploid hybrid males with P. lessonae females. In two

crosses of hybrid males (crosses # 23/2016 and # 28/2016), we detected only diploid hybrid tad-

poles (Fig 2; S2M Fig). We concluded that diploid hybrid males from the studied crosses pro-

duced gametes with the P. ridibundus genome (Fig 2). All tadpoles from one cross of hybrid

male and P. lessonae female (cross # 31/2016) were P. lessonae (Fig 2; S2C Fig). Therefore, the

diploid hybrid male produced gametes with the P. lessonae genome (Fig 2).

Additionally, we analysed tadpoles from a crossing of P. ridibundus female with triploid

hybrid male with the LLR genotype (cross # 30/2016). All analysed tadpoles were diploid P.

esculentus (Fig 2; S2L Fig). Therefore, this triploid hybrid male produced gametes with the P.

lessonae genome (Fig 2).

Discussion

Gamete formation in hybrids from the studied pure hybridogenetic water

frog populations

The two studied pure E systems located in northwest (Wysoka Kamieńska) and southwest

(Uciechów) Poland have similar structures and genetic compositions. In both populations, we

detected diploid RL and triploid RRL and LLR hybrids, with predominant LLR genotypes (S1

Table). This result corresponds with previous data obtained for other E systems from
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northwest Poland, northern Germany, Denmark, and southern Sweden [28–30, 32, 34, 35].

Moreover, our results are strongly corroborated by early observations performed on E systems

in northwest (Wysoka Kamieńska) Poland [33, 34]. Therefore, we propose that the water frog

genotype composition is highly stable in E systems, and gametes produced by hybrids of differ-

ent genotypes and ploidy are sustainable.

The genome composition of tadpoles obtained in a series of artificial crosses allowed us to

establish the varieties of gametes produced by diploid and triploid hybrids. Moreover, we

observed similarities between the mechanisms of hybrid frog maintenance in the two isolated

pure hybrid systems. Diploid hybrid females from both analysed E systems predominantly

produced gametes with P. ridibundus genomes and diploid gametes with both parental

genomes (Fig 4). Diploid gametes are crucial for the formation of triploid hybrids with both

Fig 2. Results of crossing experiments of diploid and triploid hybrids from pure hybrid system located in the northwest (Wysoka

Kamieńska) Poland. Genome composition of tadpoles was identified by karyotyping followed by FISH. RR indicates P. ridibundus
individuals; LL indicates P. lessonae individuals; RL indicates diploid hybrids; LLR and RRL indicate triploid hybrid individuals. Suggested

genome composition of eggs and sperm is inferred based on tadpoles’ karyotypes and parents‘genotypes. R and L indicate gametes with P.

ridibundus and P. lessonae genomes, respectively. RL indicates diploid gametes with the genomes from both parental species. Question mark

(?) shows inability to deduce precise genome composition of gametes produced by hybrid males or females. Crossing IDs correspond to S2

Table.

https://doi.org/10.1371/journal.pone.0268574.g002
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the LLR and RRL genotypes. The role of diploid hybrid females in the formation of triploid

progeny has been shown in a number of other E systems [14, 20, 28, 29, 33], as well as in L-E

and R-E systems [17, 18, 36, 37, 42, 46]. We also found that at least one diploid hybrid female

from Uciechów produced haploid gametes with the P. lessonae genome along with diploid and

haploid gametes with P. ridibundus genomes. Such gametes have not been found in other E

systems [20, 25, 28, 29, 34, 35, 47–49].

Diploid P. esculentus males mostly produced gametes with the P. ridibundus genome. Nev-

ertheless, in both populations, we detected rare diploid hybrid males producing gametes with

only the P. lessonae genome or gametes with a mixture of the P. lessonae and the P. ridibundus
genomes. Males, which simultaneously produce two types of gametes, have been previously

observed in other systems and are particularly abundant in R-E systems [37, 38, 50–52]. These

results were obtained by measuring sperm genome DNA using flow cytometry [38, 51] and

determined after an analysis of progeny [37], as well as cytogenetic analysis of meiosis [50].

The simultaneous formation of two types of gametes can be explained by alterations in genome

elimination/endoreplication in different germ cell lines [36, 51].

Triploid hybrid males with the LLR genotype produced haploid sperm with the P. lessonae
genome in both analysed populations in Wysoka Kamieńska and Uciechów. Our results are in

agreement with earlier reports that triploid hybrids usually eliminate the genome that presents

as a single copy (LLR hybrids eliminate R genome; RRL hybrids eliminate L genome) and

transmit a two-copy genome to haploid gametes after normal meiosis [14, 18–20, 26, 28, 36].

In contrast to triploid hybrid males, triploid hybrid females with the LLR genotype

Fig 3. Identification of the tadpoles from crossings of diploid hybrid females with P. lessonae males (a-c, g-i, l), P.

ridibundus males (m-o), diploid hybrid males (j, k), and triploid hybrid males with LLR genotype (d-f). Metaphase

chromosomes from tadpoles after FISH with (TTAGGG)5 (b-d,g-i,k,l,o). One or two interstitial (TTAGGG)n repeat

sites were distinguished in P. lessonae and P. ridibundus NOR-bearing chromosomes, respectively. Arrows indicate

interstitial (TTAGGG)n repeat sites. FISH with the RrS1 (a,e,f,j,m,n) probe allows distinguishing pericentromeric

regions of only P. ridibundus chromosomes. According to karyotype and species-specific FISH markers, we

distinguished tadpoles of P. ridibundus (j,m), diploid hybrids (b,c,e,f,h,i,k,l,n), and triploid hybrids with LLR (a,d,g)

and RRL (o) genome compositions. Crossing IDs correspond to Figs 1, 2 and S2 Table. Scale bars = 10 μm.

https://doi.org/10.1371/journal.pone.0268574.g003

Fig 4. Schematic overview of contribution of diploid and triploid water frog hybrids to the maintenance of pure hybrid systems. Data from both

the studied pure hybrid systems are summarised with the indication of genotypes, sex, and gametes of hybrid frogs, tadpole genotypes, as well as

presumptive adult progeny. Female gametes are indicated in pink, and male gametes are indicated in blue. Gametes produced by RRL individuals

were not included in the schematic because of the low number of investigated individuals.

https://doi.org/10.1371/journal.pone.0268574.g004
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simultaneously produced a mixture of gametes with P. lessonae and P. ridibundus genomes.

The simultaneous formation of gametes with various genome compositions has been shown

for rare triploid LLR females from E systems [28, 29].

Diploid and triploid hybrids in both populations produced similar types of gametes, sug-

gesting a common pattern of emergence and maintenance of pure hybrid populations. Hybrid

males and females of both ploidy levels in the studied E systems produced gametes with vari-

ous genome compositions and ploidy levels, suggesting different contributions to the progeny

genotypes. Based on our results, we suggest a pattern of hybrid emergence in the studied E sys-

tems from Poland (Fig 4). The dominant fraction of gametes produced by diploid males and

females are those with the P. ridibundus genome; gametes with the P. lessonae genome are

mostly produced by triploid LLR hybrids of both sexes. The suggested reproductive patterns

are similar to those previously proposed for hybrids from the other E-type systems located in

Denmark and southern Sweden [14, 18–20, 28, 29]. Hence, the processes underlying the emer-

gence and maintenance of hybrids are essentially the same in the E systems studied thus far.

Impact of hybrid gametogenesis on the survival rates in different crosses

We found high variability of progeny genotypes when crossing one female with several males,

which indicates different survival rates of progeny depending on parental genotypes. Previous

studies have shown that hybrid frogs simultaneously produce gametes that differ in ploidy and

genotypes [14, 28, 29, 36, 37, 39, 42, 46]. In these studies, the genomic composition of gametes

was inferred by investigating the genome composition of oocytes and identifying the karyo-

types of progeny [14, 28, 29, 36, 37, 39, 42, 46]. However, here we found that not all of the gam-

etes produced were able to contribute to viable tadpoles if they were fertilised by sperm from

different parental species or hybrid males. According to our results, three diploid (43%) and

two triploid (50%) P. esculentus females were able to simultaneously produce gametes with dif-

ferent ploidy levels and genotype composition. We also detected decreased survival of tadpoles

with parental genotypes, which appeared after crossing hybrids with different parental species.

In two crosses of diploid and triploid hybrid females with the LLR genotype, we were not able

to detect P. lessonae progeny, whereas P. esculentus tadpoles were detected if the same females

were crossed with P. ridibundus males. In the cross of triploid hybrid female and P. ridibundus
male, we did not detect P. ridibundus tadpoles, wherein P. esculentus tadpoles were docu-

mented in the cross of the same female and P. lessonae male. The decreased survival rate of

neo-parental species progeny can be explained by deleterious mutations accumulated in the

clonally transmitted P. ridibundus and P. lessonae genomes [53–55]. When eggs containing the

clonal P. lessonae genome are fertilised by hybrid sperm bearing the P. lessonae genome, it

leads to the death of P. lessonae or P. ridibundus embryos [17, 54–56]. Earlier, it was shown

that P. ridibundus, which emerged from the crosses of two hybrids transmitting the same

genome from L-E systems, has multiple developmental abnormalities and is ultimately not via-

ble [17, 46, 57]. Similarly, P. esculentus males from R-E systems in central Europe often simul-

taneously produce two types of gametes with P. ridibundus and P. lessonae genomes based on

the identification of the tadpole genotypes [52]. After crosses with P. ridibundus females, the

majority of progeny consisted of P. esculentus males, suggesting that P. ridibundus individuals

likely die during early development [52]. In the studied E systems from northwestern and

southwestern Poland, we did not find adult P. ridibundus and P. lessonae individuals, despite

the detection of P. ridibundus and P. lessonae tadpoles, even after crosses of two hybrids from

the same locality. These results suggest that parental species have decreased survival rates at

later developmental stages and are likely to die during metamorphosis. Moreover, parental

species may have different fitness values than hybrid individuals [58]. Thus, the viability of the
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certain progeny genotypes indicates the strong effect of postzygotic rather than prezygotic bar-

riers on the maintenance of studied hybrid systems. Comparative analysis of crosses results

and hybrids gametogenesis in E [28, 29, 59], R-E [36–38, 50, 51, 60, 61], L-E [17, 39, 42, 54, 56,

62, 63] and R-L-E [42] systems, and direct observations of eliminated genome in hybrid tad-

poles [42, 43, 64] clearly show that P. lessonae genome is preferentially eliminated in contrast

to P. ridibundus genome. Nevertheless, striking variability of gametes produced by diploid and

triploid hybrids in E systems suggest aberrancies in the genome elimination and endoreplica-

tion during hybrids frog gametogenesis (this study, [28, 29, 59]). Such aberrancies may be

caused by the genetic introgression from other water frog species into the genetic background

of P. ridibundus and thus completely or partially prevent hybridogenetic reproduction [63].

Additionally, the ability of P. lessonae genome to persist elimination can cause competition

between different genomes to be eliminated or retained, resulting in gamete variability in one

individual. Interestingly, that R-E systems in the central Europe, in which diploid hybrid

males produce two types of sperm, have a single origin suggesting the possibility of latter sce-

nario [50, 52]. Nevertheless, the mechanism of genome elimination in water frogs requires fur-

ther investigation.

Based on the high variability of gametes produced by diploid and triploid hybrids, as well as

the various survival rates of the resulting tadpoles, we suggest that not all hybrids in E systems

follow the “classical” hybridogenetic pathways. The genome variability of gametes produced

by hybrid individuals from E systems is significantly higher than that in hybrids from L-E sys-

tems, which exhibit a stable and transient formation of gametes [17, 39, 42, 57, 63]. The vari-

ability of gametes produced by hybrids likely increases the number of possible combinations

of genotypes in their progeny. Moreover, the survival rate of particular tadpole genotypes also

depends on the genotype of the parents involved in a particular cross.

Conclusion

By cytogenetic analysis of tadpoles obtained from various crosses of hybrid frogs from two sep-

arate pure hybrid systems in Poland, we characterised the hybrid contribution to the emer-

gence and maintenance of hybrids in populations without parental species. We found

similarities in gamete formation between hybrids in the two separate E systems. Diploid hybrid

males primarily produced gametes with the P. ridibundus genome or a mixture of haploid

gametes with P. ridibundus and P. lessonae genomes; diploid hybrid females produced gametes

with the P. ridibundus genome and a mixture of haploid gametes with the P. ridibundus
genome, as well as diploid gametes with genomes of both parental species. Triploid hybrid

males primarily produced haploid gametes with the P. lessonae genome, while triploid hybrid

females produced a mixture of haploid gametes with P. ridibundus and P. lessonae genomes.

The majority of diploid and triploid hybrids simultaneously produced several types of gametes,

which differed in genome composition and ploidy level. Moreover, we observed sex-specific

differences in the contribution to the progeny in both diploid and triploid hybrids. In addition,

we detected preferential variability in the survival rate of particular genotypes, depending on

which species the progeny is crossed with, suggesting that postzygotic barriers play an impor-

tant role on the maintenance of hybrid systems. Such dependence of the variability in progeny

genotypes on the genotypes of their parents has crucial methodological consequences, as prog-

eny genotypes can be biased based on the survival rate of a particular genotype.
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males with LLR genotype (a-d, j). Metaphase chromosomes from tadpoles after FISH with

(TTAGGG)5 (a-f,h,i) and RrS1 (g,j,k,n) probes. Arrows indicate interstitial (TTAGGG)n repeat

sites. According to karyotype and used species specific FISH markers we distinguished tad-

poles of P. lessonae (h), P. ridibundus (b,g,k,n), diploid hybrids (a,f,i,j,l,m) and triploid hybrids

with LLR (d,e) and RRL (c) genotypes. Crosses IDs correspond to Figs 1, 2 and S2 Table. Scale

bars = 10 μm.

(TIF)

S2 Fig. Identification of tadpoles from crossings of triploid hybrid females with P. lessonae
males (a, b), P. ridibundus males (d), diploid hybrid males (e-k) as well as crosses of hybrid

males with P. lessonae (c, m) and P. ridibundus (l) females. Metaphase chromosomes of tad-

poles after FISH with (TTAGGG)5 (a-c,e-l) and RrS1 (d,m) probes. Arrows indicate interstitial

(TTAGGG)n repeat sites. According to karyotype and used species specific FISH markers we

distinguished tadpoles of P. lessonae (a,c), P. ridibundus (f,h,j), diploid hybrids (b,d,e,g,i,l,m)

and triploid hybrids with LLR genotype (k). Crosses IDs correspond to Figs 1, 2 and S2 Table.

Scale bars = 10 μm.

(TIF)

S1 Table. List of studied European water frogs from the population systems of E type in

Poland.

(XLSX)

S2 Table. List of crossed individuals and analyzed tadpoles with the indication of their

genotypes.

(XLSX)
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