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Abstract

Background: Factor graphs provide a flexible and general framework for specifying probability distributions. They
can capture a range of popular and recent models for analysis of both genomics data as well as data from other
scientific fields. Owing to the ever larger data sets encountered in genomics and the multiple-testing issues
accompanying them, accurate significance evaluation is of great importance. We here address the problem of
evaluating statistical significance of observations from factor graph models.

Results: Two novel numerical approximations for evaluation of statistical significance are presented. First a method
using importance sampling. Second a saddlepoint approximation based method. We develop algorithms to
efficiently compute the approximations and compare them to naive sampling and the normal approximation. The
individual merits of the methods are analysed both from a theoretical viewpoint and with simulations. A guideline for
choosing between the normal approximation, saddle-point approximation and importance sampling is also provided.
Finally, the applicability of the methods is demonstrated with examples from cancer genomics, motif-analysis and
phylogenetics.

Conclusions: The applicability of saddlepoint approximation and importance sampling is demonstrated on known
models in the factor graph framework. Using the two methods we can substantially improve computational cost
without compromising accuracy. This contribution allows analyses of large datasets in the general factor graph
framework.

Keywords: Significance evaluation, Factor graph, Saddlepoint approximation, Importance sampling

Background
Factor graphs are a graphical model formalism, able to
capture both Bayesian networks andMarkov networks, i.e.
directed and undirected graphical models [1]. Graphical
models enjoy widespread use in genomics, in diverse areas
such as genetics, integrative genomics and comparative
genomics [2–4]. A range of well-known bioinformati-
cal models, such as position weighted matrices, hidden
Markov models, hierarchical models and phylogenetic
models can all be cast into the factor graph formalism.
Therefore the overall return from efficient algorithms and
methods operating on factor graphs is high.
Signals in data are often associated with large devia-

tion from a null (noise) model. The amount of deviation is
quantified with a score, such as the odds-ratio, i.e. the ratio
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between the probability of an observation under a fore-
ground model to the probability under a null model. The
odds-ratio is a popular choice of score, but in statistical
practice other scores can be preffered, either because they
are more robust, easier to compute, easier to interpret
or simply because there is no explicit foreground model.
Irrespectively of the chosen score function, an important
question is the statistical significance of the score, i.e. what
is the probability that a score as high or higher is generated
from the null model.
In the present paper we consider the problem of eval-

uating statistical significance of rare events defined over
factor graphs. A problem which is generally NP-hard
even in the special case where all variables are indepen-
dent of one another [5, 6]. Accordingly, it is important
to formulate numerical approximations instead of exact
methods. We have developed two approximation meth-
ods, one is based on importance sampling, the other on
a saddlepoint approximation. Both methods rely on novel
algorithms for their efficient evaluation. The merits of the
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individual methods are assessed both theoretically and in
a simulation study.
The applicability of the methods is demonstrated with

four models used in different areas of bioinformatics.
First, we consider the Poisson binomial distribution. This
model has a number of applications, among others in can-
cer driver detection, where it is used to find regions of
the genome that contain a surprisingly high number of
somatic mutations [7]. Second, the ubiquitous position
weight matrix model for motif description is discussed.
The literature on PWM models also contains proofs that
the problem of evaluating the significance of a motif
match score defined by a PWM under a genomic back-
ground represented by a first-order Markov model is
NP-hard [5, 6]. This also shows that the more general class
of problems is NP-hard. The third model is higher-order
Markov chains. Again a Markov chain is an extremely
versatile model with applications both inside and out-
side of bioinformatics. Here we focus on a recent use in
modelling sequence motifs, where parameters in a higher-
order Markov chain are learned in a regularized fashion
[8]. Finally we look at phylogenetic models and models
of nucleotide substitution. Phylogenetic models are inter-
esting in their own right but also serve to illustrate the
use onmodels withmore complex dependency structures.
We use the framework to evaluate if a position in an
alignment column shows evidence of evolutionary con-
servation. Though simplified this is conceptually similar
to the widely used phyloP-score, measuring evolutionary
conservation and acceleration [9].
For many probabilistic models it can be computation-

ally expensive if not intractable to evaluate the statistical
significance of an observation. Even for the models where
an efficient computational scheme exists it is often time-
consuming to derive and implement. With the genericity
of the factor graph formalism, we believe that the meth-
ods proposed here, will aid the analysis of data using a
wide range of models. We have implemented the impor-
tance sampling and saddlepoint approximation methods
in a freely available R-package called dgRaph and provide
code for the examples discussed in the paper. For effi-
ciency the core algorithms are implemented in C++ using
the Rcpp R-package [10]. dgRaph also contains methods
for training factor graph models using the EM-algorithm,
this however is not a focus in the current paper, where we
will treat models and parameters as given.
Despite the fact that the saddlepoint approximation was

conceived as far back as 1954 [11], it has only seen spo-
radic use in genomics [12, 13]. We find that there are
ample opportunities to apply saddlepoint approximation
in genomics, but its intimidating appearance may have
prevented more widespread application. By supplying an
R-package we hope to reduce the barriers towards the use
of saddlepoint approximation.

In applications of importance sampling, the proposal
distribution is often picked based on experience, cali-
bration or experimentation. By pointing out similarities
between saddlepoint approximation and importance sam-
pling and tying it up to existing litterature, we can advise
the choice of proposal distribution in importance sam-
pling on factor graphs. Applying this more principled
approach could lead to the discovery of more effecient
importance sampling schemes for particular problems.

Methods
Problem statement
Throughout the paper we will work with factor graphs
[14, 15]. Importantly, both directed (Bayesian networks)
and undirected (Markov random fields) graphical models
can be cast into the factor graph formalism ([16], ch. 8).
A factor graph is a bipartite graph consisting of variable
nodes, X , and factor nodes A (Fig. 1). There can only be
edges between variables and factors. To every factor node,
a, we associate a potential, fa(·), which is a non-negative
function of the neighbouring variables, xa. The factor
graph induces a probability measure over the variables

P(x) ∝
∏

a∈A
fa (xa) . (1)

If
∑

X
∏

a∈A fa (xa) = 1 we will say that the factor
graph is normalised and the proportionality in (1) can be
replaced with equality. The sum-product algorithm, the
main algorithm for calculating likelihoods and marginals,
operate on graphs free of undirected cycles and with
finite state spaces [15]. We will therefore limit ourselves
to cycle-free graphs with finite state spaces. As continu-
ous distributions can be discretized and thus this does not
present a major limitation.

Fig. 1 A factor graph with two variables. The probability function is
p(x1, x2) ∝ fa(x1)fb(x1, x2). It is customary to shade observed variables
and leave latent variables unshaded. To calculate the marginal
probability of the observed variables, we need to sum out the latent
variables. The sum-product algorithm does that efficiently taking
advantage of the conditional independence structure of the graph
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We define a score of an observation, x, as:

S(x) =
∑

a∈A
ga (xa) , (2)

where
{
ga(·)

}
a∈A is a collection of functions. Given a null

model,
(
X ,A,

(
fa

)
a∈A

)
, we are interested in determining

how often extreme scores occur, that is we will address the
problem of evaluating significance, P(S(x) > t).
It has been shown that even the simpler subclass of this

problem where the variables are independent, i.e. each
variable node form a connected component together with
its neighbouring factor nodes, is NP-hard (see section
Markov Chains), yet an exact solution can be obtained
with a method known as convolution ([17], Ch. 7). The
convolution approach may be generalized to the depe-
dence scenarios, factor graphs can represent, but not
without significant additional bookkeeping, rendering the
method intractable even in problems of modest size. In
this light we investigate a number of approximation meth-
ods namely naive sampling, importance sampling, normal
approximation and saddlepoint approximation.
In many real world problems, for instance in

genomics, interesting findings often has significance,
z = P (S(x) > t), in the order of 10−6 or smaller. Where
an absolute error of e.g. 10−5 is more than good enough
for a probability in the order of 10−2, it is inadequate for
a probability in the order of 10−6. Generally, if ẑ denotes
our estimate, to establish the order of magnitude of z, we
need a small relative error,

∣∣z − ẑ
∣∣ /z, rather than a small

absolute error,
∣∣z − ẑ

∣∣.

Scores
A number of different scores can be employed, indeed the
examples will give an idea of the flexibility that Eq. (2)
offers in devising the scoring scheme. Two choices deserve
special attention. First, consider the case where we have a
null model Pbg(·) and define S(x) = − log

(
Pbg(x)

)
. With

this choice of score a high value is equivalent to a small
likelihood indicating an observation that is unlikely under
the model. We can write

S(x) = − log(P(x)) =
∑

a∈A
− log

(
fa(xa)

)
(3)

and it can be seen immediately that S(x) is indeed of the
form (2) with ga(xa) = − log

(
fa(xa)

)
.

Second, if instead we want to compare a background
model to a foreground model, Pfg(·), we can define the
score from the ratio of the probabilities in the two models:

S(x) = log
(
Pfg(x)
Pbg(x)

)
=

∑

a∈A
log

(
f fga (xa)

f bga (xa)

)
. (4)

Again this is on the form (2) with

ga (xa) = log
(
f fga (xa)
f bga (xa)

)
. (5)

Sampling based methods
In the following we introduce three different approxima-
tion methods for significance evaluation. In the end of the
section we highlight similarities and differences.
The first method is importance sampling (IS) using the

following class of proposal distributions parameterised
by α:

P̃α(x) ∝ P(x) exp
(

α
∑

a∈A
ga (xa)

)
. (6)

As α increases the corresponding proposal distributions
will generate higher scores more frequently. Note that by
taking α = 0, IS is reduced to naive sampling. With the
particular choice of

{
ga

}
a∈A from Eq. (5), the proposal

distributions have the form

P̃α(x) ∝ Pbg(x)1−αPfg(x)α . (7)

Here the parameter α gradually skews the proposal dis-
tribution from the background distribution (α = 0) to the
foreground distribution (α = 1) and beyond.
Due to the factorisation properties, the proposal distri-

butions generally have a particularly simple form

P̃α(x) ∝ P(x) exp
(

α
∑

a∈A
ga (xa)

)

=
∏

A
fa (xa) exp

(
αga (xa)

)

=
∏

A
f̃a,α(xa),

(8)

where f̃a,α = fa(xa) exp
(
αga(xa)

)
. This is again an (unnor-

malised) factor graph model with the same structure. The
marginal distribution for each variable and for each set
of variables neighbouring the same factor node can be
found with the sum-product algorithm. Using a method
reminiscent of the forward sampling method used for
Bayesian networks ([1], p. 488-489), we can generate sam-
ples, x1, x2, . . . , xN , from the proposal distribution (8)
(Additional file 1: Figure S1). The weight of each sample is
wi = w(xi) = P(xi)/P̃α(xi) and the score is si = S(xi). The
IS estimate of the significance is then,

P(S > t) ≈ 1
N

N∑

i=1
wiI (si > t) .

As with sampling in general the variance of the esti-
mate is O(1/N), yet the choice of α is critical to the
performance of IS in practice. One natural choice of α
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is such that the mean score under the importance sam-
pling distribution is equal to the score threshold, t, i.e.
Eα [S] = t.
Using proposal distributions of the form (7) has been

explored previously in sequence analysis; the same idea
is applied to hidden Boltzmann models, a generalization
of hidden Markov models, in [18]. This theory enables
computation of significance statistics over sequences of
arbitrary length, whereas we generalize to arbitrary struc-
tures.Wewill see later that this particular class of proposal
distributions is in fact an example of exponential tilting
([19], pp. 129-131), an idea tightly linked to the method
of saddlepoint approximation that we will explore next. In
[18] it is recommended to pick α using calibration requir-
ing sampling with multiple different values of α’s. Below
we provide amethod for choosing an α, that in many cases
has the property of logarithmic efficiency (see Efficiency),
and can computed efficiently.

Analytical approximations
We now derive two analytical approximations. First the
conceptually simpler normal approximation and second
the saddlepoint approximation.
Consider a random variable S with density function

fS(s) and define the moment generating function(mgf),
ϕ(θ) = E

[
eθS

]
, and the cumulant generating func-

tion(cgf ), κ(θ) = logϕ(θ). The exponential family gener-
ated by S is defined by

f (s; θ) = exp(θs − κ(θ))fS(s). (9)

The probability measures in this family are called the
exponentially tilted measures. The following important
identities connect the mean and variance of distributions
in this family to the cumulant generating function, see e.g.
([20], p. 6):

Eθ [S] = κ ′(θ) and Vθ [S] = κ ′′(θ). (10)

In a normal approximation the score distribution is
approximated by a normal distribution having the same
mean and variance. These quantities can be found using
the cumulant generating function:

ms = E [S(x)] = κ ′(0) (11)

and

vs = V [S(x)] = κ ′′(0). (12)

The tail estimate is then:

P(S > t) ≈ 1 − �

(
t − ms
vs

)
(13)

where � is the distribution function of the standard nor-
mal distribution. The normal approximations has gener-
ally quite poor performance in the tail of the distribution
as we will show later.

Saddlepoint approximation (SA) is another analytical
approximation that has better performance in the tails
([20], ch. 4; [21]). SA is typically used for independent vari-
ables or in weak dependence scenarios [22], but we have
developed algorithms that allow their evaluation on gen-
eral factor graphs. Along with introducing SA, that might
be unfamiliar to many readers, we will also indicate where
these algorithms are used.
SA proceeds by choosing the parameter, θ = θ(t), called

the saddle-point, such that the mean under f (s; θ(t)) is t,
that is

Eθ(t) [S] = κ ′(θ(t)) = t. (14)

We want to evaluate the tail probability

P(S > t) = ∫ ∞
t fS(s)ds

= ∫ ∞
t exp

(
− θ(t)s + κ(θ(t))

)
f (s; θ(t))ds.

(15)

Now approximate f (s; θ(t)) with a normal distribution
having the same mean, t = κ ′(θ(t)), and variance, v ≡
κ ′′(θ(t)). Then we have

P(S > t) ≈
∫ ∞

t
exp(−θ(t)s + κ(θ(t)))

× 1√
2πv

exp(− 1
2v

(s − t)2)ds

= ϕ(θ(t))
∫ ∞

t

1√
2πv

exp
(

− (s − t + θ(t)v)2

2v

+ 1
2
θ(t)2v − θ(t)t

)
ds

= ϕ(θ(t)) exp(−tθ(t)) exp
(

θ(t)2v
2

)

× [
1 − �(θ(t)

√
v)

]
. (16)

In order to obtain the saddlepoint approximation we
need to solve (14) and compute κ ′′(θ(t)). It turns out that
both κ ′ and κ ′′ can be calculated exactly with extensions
of the standard message passing algorithm (Additional
file 1: Figure S9).We solve (14) numerically usingNewton-
Raphson and then proceed to calculate κ ′′(θ(t)).

Importance sampling vs. saddlepoint approximation
Importance sampling and saddlepoint approximation are
more similar than they appear at a first glance. Let us look
again at (9), f (s, 0) is the density function of s(x) with x ∼
P, similarly f (s, θ) is the density function of s(x) with x
being distributed according to

f (x; θ) = exp(θs(x) − κ(θ))Pbg(x)

= ϕ(θ)−1 exp
(

θ
∑
a∈A

ga(xa)
)
P(x). (17)

We see that we recover (6) and that importance sam-
pling and saddlepoint approximation are essentially just
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two strategies for evaluating (15): Either sampling f (s, θ)

indirectly through f (x, θ) or approximating f (s, θ) by a
normal distribution. The above analysis also suggests that
a good choice of α for importance sampling around t is
using the saddlepoint κ ′(α) ≈ t. We will call importance
sampling using this strategy for choosing α saddlepoint
guided importance sampling (SG-IS).

Results
Poission-binomial
As a first example we discuss the Poisson-binomial dis-
tribution. The Poisson-binomial distribution arises as
the number of succeses in N independent but not
neccesarily identically distributed Bernoulli trials. Let
p1, . . . , pN be a set of probabilities and {Yn}Nn=1 be inde-
pendent with Yn ∼ Bernoulli(pn). Then S = ∑N

n=1 Yn is
Poisson-binomial distributed. In the case where pn =
p the Poisson-binomial reduces to the regular binomial
distribution.
The model has seen widespread use in a variety of fields,

including genomics, forensics, psychometrics and ecol-
ogy [7, 23–25]. As an example Melton et al. [7] considers
regional somatic mutation status in cancer samples. A
logistic regression model is used to determine the muta-
tion rate at each loci for each sample. They then identify
cancer-drivers by testing if a given genomic region has a
surprisingly high number of mutated samples.
We compute the tail of a Poisson-binomial using SA and

using a fast Fourier transform based method (DFT-CF)
[26] as implemented in the R-package poibin (Fig. 2a).
In the simple case with pi = p we also compare with the
exact binomial probabilities (Additional file 1: Figure S10).
All comparisons are qualitatively alike: The saddlepoint
and DFT-CF methods give identical results for most part
of the tail. The saddlepoint approximation is not suited
for calculating large (not significant) p-values (> 0.1). On
the other hand the DFT-CF method experiences numeri-
cal underflow for small p-values (< 10−13). Large p-values
are typically not of interest and can usually be computed
efficiently by other means.
An additional argument for prefering saddlepoint

approximation over DFT-CF is the run-time complexity.
Although the DFT-CF uses the fast Fourier transform, the
required preprocessing step makes it anO(N2) algorithm.
In contrast, the saddlepoint approximation scales linearly
withN, having complexityO(N) (Fig. 2b, Additional file 1:
Table S1).
For many applications it is attractive to assign a different

score, sn, for each event, Yn, leading to a new score of the
form S = ∑N

n=1 snYn. Using a different score and thus a
different test statistic can be used to increase the statistical
power of the test. The DFT-CF does not readily generalize
to different scoring schemes whereas this is immediately
achieved with SA and SG-IS.
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Fig. 2 a The tail of a Poisson-binomial distribution where pi is drawn
independently from a Beta(1, 100) and N = 1000. The saddlepoint
approximation tracks the exact distribution perfectly. The
Poisson-binomial as implemented in poibin R-package. b A
comparison of the computation time for the two algorithms. The
DFT-CF method has quadratic run-time complexity whereas the
Saddlepoint method has linear run-time complexity

PWMs
Our next two examples revolve around sequence motifs.
We consider analysis of motifs with both the classical posi-
tion weighted matrix model and a more recent Bayesian
motif model.
Consider a simplistic DNA model, where DNA is a

sequence of letters, x1 · · · xL, from a four-letter alphabet.
The xi’s are independent and identically distributed and
we let pj = P

(
xi = j

)
for j ∈ {A,C,G,T}. A motif is

(for our purpose) a fixed length subsequence of DNA that
exhibits a specific pattern. This pattern can be described
with a probability distribution

(
fji

)
j={A,C,G,T} at each posi-

tion i ∈ {1, . . . ,N} and is typically represented in a
position weighted matrix (PWM), which is a 4×N matrix,
M, whereM(j, i) = fji.
If we think of the DNA-model as the background model

and the motif as the foreground model, the log score for a
subsequence xm · · · xm+N−1 of length N is simply:
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S (xm · · · xm+N−1) =
N−1∑

i=0
log

fixm+i

pxm+i
.

This is a sum of independent random variables and the
motif model can be encoded in a rather simple factor
graph, where each variable has its own potential (Fig. 3b).
The significance can be evaluated using discretization and
dynamic programming. These computations can be accel-
erated using heuristics such as branch-and-bound, still the
problem remains NP-hard [5, 6].
As an illustration we analyse 1080 motifs from the JAS-

PAR database [27]. Sequence motifs are often represented
with so-called sequence logos that show the log2 fold
enrichment of a given base relative to the background
(Fig. 3a).
We calculate the significance over a range of scores

using both SA and IS and compare with the estimates
of the significance obtained from the TFMPvalue soft-
ware package [5]. Here we show the estimates for the
CTCF motif. (Fig. 3c). As a means for evaluating the
difference between the approximations, we compute the
relative difference at a number of quantiles and take the
average of the numerical value of these. By this measure
it can be seen that all three methods agree well: IS show-
ing relative differences in the order of 10% with 1000
samples and without tuning α. The relative differences
for SA decreases with motif length and is typically less
than 10% for motifs longer than 10 basepairs. The motifs
where the saddlepoint approximation performs poorly
have a strong preference for a single base at each site. For
these motifs the score matrix have similar contributions
at each site, causing the score distribution to have a
discrete nature, not well approximated by SA (Fig. 3d and
Additional file 1: Figure S13).
The Poisson-Binomial and the PWM models can be

seen as special cases of amore general class ofmodels with
variables taking a discrete set of values. In the supplement
we state a theorem giving conditions, where the saddle-
point approximation has uniform relative error O(1/N)

for this class of models (see Additional file 1: Section xiv).
We then give sufficient conditions for both the Poisson-
Binomial and PWM model. Although this result involves
the limiting behaviour of the approximation, it has been
demonstrated that the saddlepoint approximation has
remarkably small error even for small N [21].
TFMPvalue has two modules for p-value computation.

The first calculates the exact p-value and the other rounds
the score-matrix to increase computational speed. The
exact p-value computation module in the TFM soft-
ware has exponential computational time complexity
(Additional file 1: Figure S11) therefore we only compare
with the approximate p-value calculation from TFM.
The approximate TFMPvalue computation is O

(
N2),

but faster in practice due to the branch-and-bound

A

B

C

D

Fig. 3 a Sequence logo for the CTCF binding motif. The larger the
letters, the higher the fold-enrichment compared to the background
distribution. b The PWMmodel represented as a factor graph. Note
that since the nucleotides are considered independent of one
another, no variable nodes are connected. c The approximations to
the tail obtained from IS, SA and the method from the TFMPvalue
package. d The relative difference between significance estimates
from TFMPvalue and IS and SA respectively for all JASPAR Vertebrate
motifs. The differences for the CTCF motif is indicated with yellow stars

heuristic. Again computing saddlepoint approximation is
roughly O(N). For shorter motifs this does not make any
practical difference, but for longer motifs (> 20 bp) the
difference can be sizeable depending on the exact problem
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and the desired level of accuracy (Additional file 1:
Figure S12). In the next section we will show that the SA
and IS methods can be applied to richer motif models,
where the convolution methods can not easily be adapted.

Higher-order Markov chains
First- and higher-order Markov chains is another applica-
tion domain of SA and SG-IS. In a recent paper by Siebert
et al. [8] they argue convincingly for replacing the PWM
motif models with higher order Markov chains using a
Bayesian prior (BaMMs).
A PWMmodel assumes that each base in amotif is inde-

pendent. In contrast Markov chains are able to capture
context dependent nucleotide frequencies at the expense
of more parameters. Siebert et al. overcome the challenge
of training the parameter rich models by employing a
Bayesian model, where the prior shrinks the high-order
parameters towards their lower-order counterparts for
contexts rarely encountered in the training data.
BaMMs outperformed PWMs in discriminating

ChIP-seq peak-sequences from simulated background
sequences of the same length and tri-mer composition.
Including flanking regions widens the gap between
BaMMs and PWMs in terms of predictive power. This is
possibly explained by two modes of DNA-protein binding
specificity; base readout and shape readout. In base read-
out the protein recognizes the DNA sequence. This form
of binding specificity is dominant in the core motif and is
reasonably well-captured by PWMs. In shape readout the
protein recognizes the shape of the DNA, the DNA shape
is in turn determined by motifs showing high neighbour
correlation [28].
Due to the large-scale nature of motif-detection accu-

rate p-value evaluation is important. As PWMs are
Markov chains of order zero, we are again dealing with an
NP-hard problem, making it natural to look for approxi-
mate methods.
We obtain a BaMM for the CTCF transcription factor

binding motif in MCF-7 cell lines (see Additional file 1:
Section x). Second- and higher-order Markov chains con-
tain cycles and are therefore not immediately suited for
the framework. However by compounding variables an n-
th order Markov chain can be represented as a first order
Markov chain (Fig. 4a).
First the significance of the log-odds score of a single

match is determined using SA and IS. Second the accuracy
of the approximations is verified using deep naive sam-
pling, generating 106 background sequences of the same
length as the motif (16bp) with a homogeneous second
order Markov model. Comparing the approximation to
the estimates obtained from deep naive sampling we the
see that they track each other perfectly (Fig. 4b).
Another classification task of interest is identifying

longer sequences containing the motif. We simulate 104
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Fig. 4 a 2nd and higher-order Markov chains contain cycles. But
higher-order Markov chains can be viewed as first order Markov chains
by compounding variables. We thereby obtain a tree-structured
graph. b Simulating 106 sequences of the same length as our motif
and estimated the significance and corresponding 95% confidence
interval shown in shaded grey. We compare this with SA and IS using
(α = 0.5) and 104 samples. cWe simulated 104 sequences of length
200bp and calculated the maximummotif match score of all offsets,
the 95% confidence interval is shown in shaded grey. To calculate the
significance of this maximum, we used the calculation from a single
match and employed a Poisson approximation

200 bp long sequences again with a homogenouos second
order Markov model. Within a 200 bp long sequence a
motif of length k can start at 200−k+1 positions (offsets).
We consider the max of log-odds scores obtained from
evaluating a motif match in all offsets. To calculate the
significance we use the estimates of significance for a sin-
gle match and employ a Poisson approximation [29] (see
Additional file 1: Section x). The Poisson approximation
is typically valid if the sequence we search is sufficiently
long and the motif is not of low complexity (i.e. not highly
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repetitive). Again we observe that the SA and IS method
combined with Poisson approximation provides a good
approximation of the statistical significance (Fig. 4c).

Phylogenetic trees
Our final example is derived from molecular evolution.
A phylogenetic tree represents the relationship among
species. With each leave representing a species and inter-
nal nodes common ancestors.
Evolutionary conservation manifests itself by a slower

than normal substitution rate. At the population level,
purifying selectionmaintains phenotypic function by con-
straining the evolutionary process and effectively elimi-
nates some mutations from being fixed as substitutions.
Evolutionary conservation therefore reflects presence of
functional constraints. Using a fixed phylogenetic tree
and a model for nucleotide substitution we can calculate
the expected number of substitutions along the branches
of the tree given the present day sequences. We can
then evaluate if this number is significantly lower than
expected. This is conceptually similar to the widely used

phyloP-score, although their method is more sophisti-
cated; modelling and accounting for clade specific muta-
tion rates and indels [9].
We perform our analysis on a phylogenetic tree with 11

leaves, corresponding to present day sequences (Fig. 5a,
for a detailed description of the phylogenetic tree see
Additional file 1: Section xii). A phylogenetic tree model
can be cast into a factor graph where leaf and each
internal nodes are variable nodes and branches are factor
nodes (Fig. 5b). Assuming the Jukes-Cantor substitution
model, we can calculate the transition probabilities and
the expected number of transitions conditional on the
end points of each branch. These are exactly the matrices
needed in order to compute the expected number of
substitutions conditional on the present-day sequences.
Note that we are not limited to the Jukes-Cantor model,
these matrices can be computed for any substitution rate
matrix [30].
The distribution of the conditional expectation of the

number of substitutions is obtained by simulating 105
alignment columns (Fig. 5c). As we are testing for

Conserved

Neutral A C G G A C A T T C A
C C C G C C C T C C C

1e−04

1e−02

1e+00

41 2181 61
s

P
(S

 >
 s

)

alpha

0

1.5

0%

2%

4%

6%

12141618
s

P
er

ce
nt

ag
e

A B

C D

Fig. 5 a A phylogenetic tree with 11 present sequences. A single alignment column with a high degree of identity across sequences indicate
evolutionary conservation. b A phylogenetic tree can easily be converted to a factor graph, here shown for a phylogenetic tree with only 3 species.
Note that the common ancestors are typically not available for sequencing and their sequences are unknown. The internal variables are therefore
unshaded indicating a hidden variable. c The distribution of the conditional expectation of the number of substitutions over the whole
phylogenetic tree, given the present sequences. The distribution is obtained by simulating 105 times. dWe use IS to estimate the tail of the
distribution by sampling n=1,000 scores. Two different α-values were used: 0, corresponding to naive sampling and 1.5. Note that naive sampling
has much wider confidence bands in the tail compared to importance sampling
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evolutionary conservation, a low number of expected
substitutions is significant, testing for accelertion is how-
ever easily done by instead regarding a high number of
expected substitutions as significant. While the actual
number of substitutions is evidently an integer, the condi-
tional expectation can be any non-negative number. Note
also that even for complete sequence identity the expected
number of substitutions is non-zero as multiple substi-
tutions at the same site can anull each other. Observing
less than 14 expected substitutions is a moderately rare
event. But using IS we can get a good handle on these
probabilities (Fig. 5d).
In the present example the chosen score factorizes

neatly according to (2), but this would not have been the
case had we chosen a likelihood based score. As opposed
to the previous examples this example contains latent vari-
ables. The log likelihood does not factor into (3). This is
not a problem for the IS procedure, where we can still
simulate data from the full data distribution and then
calculate the likelihood. For the SA method there is no
immediate solution.

Efficiency
In the following two sections we address the question of
efficiency; basically establishing and evaluating appropri-
ate measures of the quality of our approximations, both in
terms of accuracy and computational cost.

Normal and saddlepoint approximations
The error bounds typically given for the normal and sad-
dlepoint approximations, are derived for sums of i.i.d.
variables or Markov chains [21, 22]. We review a few of
these results. As i.i.d. variables and Markov chains are
special cases in our setup, they will inform us on the
behaviour we should expect in the general case.
For the normal approximation the Berry-Esseen

theorem [31] provides us with an upper bound on the
absolute errors. Consider a sequence X1,X2, . . . ,XN
of i.i.d. variables having mean μ and variance σ 2. Set
S = ∑N

i=1 Xi, then

sup
x∈R

∣∣∣∣P(S < t) − �

(
t − Nμ

σ
√
N

)∣∣∣∣ = O
(

1√
N

)
.

However the relative error is not bounded, which in
most cases can be ascertained by considering a t of
order N.
On the other hand the saddlepoint approximation has

relative error of order O(1/N) [20]. This bound holds for
homogeneuous Markov models and under mild regular-
ity conditions for the Poisson-Binomial and PWMmodels
(see Additional file 1: Section xiv). Opposed to the normal
approximation, the saddlepoint approximation will rec-
ognize bounded variables in the sense that (14) has no
solution if t is outside the range of S.

To study the behaviour of the saddlepoint approxima-
tion in the general case, we conduct a simulation study.We
investigated how the complexity of the graph, the degree
of independency between the contributions from each
factor and the size of the graph affects the quality of the
approximation. The graphs were chosen as balanced trees
(Additional file 1: Figure S2) and such that the contribu-
tion to the sum (2) from each factor had the samemarginal
distribution. The complexity is adjusted by the degree of
the variable nodes in the tree. The degree of independency
is measured by the variance ratio, the ratio of the variance
of the score and the sum of variances from each factor (i.e.
the variance we would have seen if each contribution was
independent)

VR = V
[∑

a∈A Sa(Xa)
]

∑
a∈A V [Sa(Xa)]

. (18)

For a more detailed description see Additional file 1:
Section ii.
First note that as we go to smaller percentiles the errors

in the saddlepoint approximation remains stable, whereas
they increase in the normal approximation increases.
This parallels the situation for i.i.d. variables (Fig. 6b,
Additional file 1: Figure S3). As expected the relative error
decreases with the size of the graph (Fig. 6a), note however
that the errors do not seem to converge to zero. This we
believe is explained by the discrete nature of the scores,
there exist a correction factor to the saddlepoint approxi-
mation in the case the variables take values on a lattice:

K(θ ,α) = α |θ |
1 − exp (−α |θ |) , (19)

where α is distance between two consecutive points in the
lattice. Generally log-odds scores will not take values on a
lattice, still as the correction factor is larger than 1, it sug-
gests that the tail probability is underestimated and more
so for large θ , this explains the only near convergence to
zero. It is further observed that the convergence is slower
for more complex graphs, i.e. graphs having many nodes
with high degree, and that there appear to be an optimal
amount of correlation between the contributions from
each factor in the graph (Additional file 1: Figures S4
and S5).

Sampling basedmethods
Both naive sampling and importance sampling gives unbi-
ased estimates. We are therefore concerned with the
variance of our estimate and not the bias. Statements
about the variance are typically phrased in an asymptotic
setup. Let {Pn} denote a family of probability distribu-
tions, where Pn is derived from a factor graph with n factor
nodes. Assume also that the contribution of each factor to
(2) is identically distributed with mean μ. Consider now
zn = Pn (S > n(μ + ε)) and let Zn be the estimate of a zn
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Fig. 6 aWe investigate the quality of the approximation as a function
of graph size and conditioned on the degree of independence
between variables as measured by the variance ratio (18). Here we
found the 1%-quantile in a Markov chain using importance sampling.
We then found the saddlepoint approximation of the tail probability
in this particular point and plot the relative error as a function of the
length of the Markov chain. For details see Additional file 1: Section ii.
b The relative error measured at different quantiles for both SA and
normal approximation, this was done under the same range of
conditions as above. We see that while the errors remain stable for
the SA they increase for the normal approximation as we move to
smaller percentiles

obtained from a single sample. We will say that the class
of estimators, {Zn}∞n=1, has bounded relative error if

lim sup
n→∞

V(Zn)

z2n
< ∞.

For technical reasons one often considers the slightly
weaker criterion of logarithmic efficiency namely,

lim sup
n→∞

V(Zn)

z2−ε
n

= 0, ∀ε > 0.

The relationship between naive and importance sam-
pling resembles that between normal and saddlepoint
approximation: In the case where the contributions to (2)
are also independent, SG-IS has logarithmic efficiency as
proven in [19]. For naive sampling the absolute error tends

to zero but the relative error tends to infinity. We have
strong reasons to believe that if certain regularity con-
ditions regarding the correlation between neighbouring
variables are imposed, logarithmic efficiency also holds in
the more general case of factor graphs having bounded
degree. We are currently working on a proof, this is how-
ever beyond the scope of the current work.

Computational speed
Making a direct comparison of the computational speed
of evaluating the saddlepoint and normal approximations
on one hand and doing importance sampling on the other
is not meaningful, as the accuracy of the importance sam-
pling depends both on the number of samples and the
choice of tuning parameter α.
Furthermore the three methods have different

behaviours when it comes to evaluating a range of points
and not only a single point: The additional computing
time for importance sampling is negligible as long as the
points have roughly similar significance so that we can
use a single batch of samples generated with one α value.
Similarly for the normal approximation the mean and the
variance of the score needs being calculated only once,
the computational cost of evaluating the normal distribu-
tion is again negligible. The saddlepoint approximation
does get sligthly faster per evaluation with consecutive
evaluation, as the Newton-Raphson procedure can be
initiated with the previous saddlepoint, still there is a
linear cost in the number of evaluations (Additional file 1:
Figures S7 and S8).
All three methods scale linearly with the number of

nodes in the graph (Additional file 1: Figure S6). This sug-
gests that we can formulate a rule-of-thumb regarding the
number of points we need to evaluate before importance
sampling becomes faster than SA. The benchmarks show
that one evaluation of the saddlepoint approximation
takes about the same time as generating 40 importance
samples.
In conclusion saddlepoint approximation is accurate

and relatively fast for a single evaluation. If we have to
do multiple evaluations importance sampling is prefer-
able. If speed is really the main concern and we need to
evaluate a large range of scores, we can use the normal
approximation to obtain rough estimates.

Discussion
The saddlepoint approximation was originally conceived
by Daniels as far back as 1954 [11]. Although it has
found uses in some areas of biomedical science e.g. sur-
vival analysis [32], its intimidating look may have pre-
vented widespread use in genomics, where we believe
there is ample opportunity to apply it. The R-package
we have developed contains methods for both building
and training models, but also for applying the saddlepoint



Madsen et al. BMC Bioinformatics  (2017) 18:199 Page 11 of 12

approximation and importance sampling algorithms.
Thereby we hope to reduce the barriers towards the use of
saddlepoint approximations.
SG-IS was derived by noting similarities between

importance sampling and saddlepoint approximation. The
literature contains proofs that this importance sampling
scheme is in a certain respect the optimal [19]. Taking
this more principled way of designing importance sam-
pling distributions is likely to lead to faster convergence to
effective importance sampling schemes.
A direction of research that can be further pursued is

how to deal with latent variables: As briefly discussed in
the context of phylogenetic trees, the log-odds score does
not factorize when we have latent variables. It is therefore
not possible to calculate the moment generating function
and its derivatives efficiently using the algorithms we use
here. This prevents the use of the saddlepoint approxima-
tion. Importance sampling will however still work, by just
using the tilted distribution on the full data distribution.
The methods and algorithms have been phrased in

terms of the factor graph formalism throughout the paper.
As factor graphs can capture both directed (Bayesian
network) and undirected (Markov random field) models
the theory applies to both of them. Especially Bayesian
networks have gained much popularity as a tool for inte-
grating the vast array of molecular profiling experiments.
The general framework of factor graphs is a powerful tool
to analyze such data.

Conclusion
In the current paper we have presented saddlepoint
approximation and importance sampling based methods
for evaluation of significance in factor graphs. Efficient
algorithms were developed for computing the first and
second order statistics, required to derive the saddle-
point approximation, making the saddlepoint approxima-
tion feasible for large graphs. We provide an adaption of
the forward-sampling algorithm tailored to factor graphs,
needed for importance-sampling.
We further reviewed the theoretical properties of the

two methods. As most results are derived for indepen-
dent identically distributed variables, a simulation study
was performed to confirm that many of the properties
still hold in a range of dependence scenarios. Further we
compared the computational speed of the methods to give
rough guidelines for deciding between the two.
We demonstrated the utility of the methods considering

four different bioinformatics applications. The examples
were chosen to show that current models can make use of
the methods, but also point forward to new applications.
First we looked at the Poisson-binomial model, despite or
because it is the simplest of the models, it has numerous
uses. At the same time it appears that the algorithms used
for analysing the Poisson-binomial model is not state of

the art. For exact computation, an adaption of the algo-
rithm implemented in the TFMPvalue R-package [5], is
likely to outperform the DFT-CF method. We showed
that our approximationmethods were able to compute the
significance to a high accuracy.
Two motif examples were given, both to show that the

problem we are solving is NP-hard, but also to provide
useful methods to the motif-analysis field. These methods
are especially likely to prove valuable for long and complex
motifs such as nucleosome binding motifs.
The phylogenetic example was of a more complex

nature than the other examples, highlighting the flexibil-
ity of the methods, more than trying to compete with
existing methods. Yet, it is qualitatively similar to the
phyloP-score. With the availability of massive multiple
alignments, such as the UCSC 100-way vertebrate align-
ment and the coming results of the Genome 10K projects
[33], there should be ample opportunity to apply these
methods.

Additional file

Additional file 1: Supplementary material. This file contains extended
method descriptions and supplementary figures. Additionally there is a
vignette accompanying the dgRaph R-package as well as vignettes
covering each of the models used in the result section. (PDF 699 kb)
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