
Toward in Silico Modeling of Dynamic Combinatorial Libraries
Iuri Casciuc, Artem Osypenko, Bohdan Kozibroda, Dragos Horvath, Gilles Marcou, Fanny Bonachera,
Alexandre Varnek,* and Jean-Marie Lehn*

Cite This: ACS Cent. Sci. 2022, 8, 804−813 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Dynamic combinatorial libraries (DCLs) display
adaptive behavior, enabled by the reversible generation of their
molecular constituents from building blocks, in response to
external effectors, e.g., protein receptors. So far, chemoinformatics
has not yet been used for the design of DCLswhich comprise a
radically different set of challenges compared to classical library
design. Here, we propose a chemoinformatic model for
theoretically assessing the composition of DCLs in the presence
and the absence of an effector. An imine-based DCL in interaction
with the effector human carbonic anhydrase II (CA II) served as a
case study. Support vector regression models for the imine
formation constants and imine-CA II binding were derived from,
respectively, a set of 276 imines synthesized and experimentally
studied in this work and 4350 inhibitors of CA II from ChEMBL. These models predict constants for all DCL constituents, to feed
software assessing equilibrium concentrations. They are publicly available on the dedicated website. Models rationally selected two
amines and two aldehydes predicted to yield stable imines with high affinity for CA II and provided a virtual illustration on how
effector affinity regulates DCL members.

■ INTRODUCTION

Dynamic combinatorial chemistry (DCC) implements the
generation of sets of dynamic molecular (or supramolecular)
entities by the recombination of building blocks linked by
covalent (or non-covalent) bonds formed in a variety of
reversible chemical reactions.1−8 The central feature of such
dynamic combinatorial libraries (DCLs) is their operation
under thermodynamic control, in comparison with “classical”
combinatorial libraries, which may be considered as static in
view of the high kinetic stability of the covalent bonds that build
up their members. The members of the DCL (called
constituents) are in equilibrium with one another through
constant exchange of building blocks (called components) via
reversible covalent (or noncovalent) reactions. As a conse-
quence, such a DCL can adapt to the action of physical stimuli or
chemical entities (called ef fectors), resulting in amplif ication of
the f ittest constituent(s),7,9−16 for that specific physical or
chemical agent, through selection and exchange of components.
The agent can be of variable naturea physical stimulus, like a
change of temperature,17 or a chemical effector like a metal
ion,18 a protein/enzyme,19,20 or properties of the medium
(solvent, pH, viscosity).21,22

Along with their numerous applications,1−8 DCLs are of
particular interest for drug discovery,23−30 where they have been
used to identify binders/inhibitors to proteins/enzymes,23−25

nucleic acids,26−29 and even living cells.30 Addition of a
biological target (e.g., an enzyme) to a DCL of potential

inhibitors has been shown to drive the selection of the most
potent binder/inhibitor in the DCL, causing its amplif ication
with respect to the distribution in the absence of the target
protein.19,20,23−25 Hence, the DCLs may be implemented for
lead generation in drug discovery. Enabling the protein to
actively enhance the formation of its preferred ligand(s), from
the pool of virtual binders, in a sort of “The Lock generates its Key”
process, provides an approach that can be beneficial over the
high-throughput screening (HTS)31 of individual compounds of
classical “static” combinatorial libraries23−30 obtained by mixing
sets of reagents of the same category−typically, n nucleophilic
species N1, N2, ...Nn and m electrophilic reagents E1, E2, ...Em.
The key benefit expected from DCLs is maintenance of the
simple “mixture” strategy but for a set of equilibrating
constituents while improving the chances that strong affinity
products will emergebecause they are dynamically selected
and amplified. The final DCL consists of the equilibrium
population of the constituents representing all of the possible
combinations generated by the reversible connection of the
components. The addition of an effector will modify the
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distribution of constituents depending on their affinity for the
target entity, amounting to an adaptation of the DCL to the
ef fector.7,32−34 Note that a procedure of dynamic deconvolution
may be applied to complex DCLs.23,35,36

Chemoinformatics is a key player in HTS library design. On
one hand, it may help to “focus” on compounds most likely to
bind the screened target (thereby eliminating testing of species
predicted to be inactive).37 On the other hand, it is also widely
used to design generic “diverse” libraries,38 to be used in HTS
against targets with no ligand structure−affinity information on
which to base a focusing strategy. Diversifying a library means
maximizing chemical space coverage and ensuring that included
compounds are not redundant. So far, however, chemo-
informatics has, to our knowledge, not yet been invoked for
the design of DCLs, given that such design comprises a radically
different set of challenges. Note that unsupervised machine
learning (including PCA, LDA, and cluster analysis) has been
used for statistical DCL data analysis.39−41

First, as in classical drug design, chemoinformatics may help
to select appropriate building blocks that are highly likely to lead
to products that fulfill the (steric, electronic, pharmacophoric)
constraints required for activity. In this context, there is no need
to precisely identify which of the possible products will be most
active because the DCL strategy per se provides a powerful
search mechanism for the latter. This is fortunate because
typically chemoinformatics approaches are not accurate enough
(except for, perhaps, costly free energy perturbation simu-
lations)42 to explain subtle activity differences between strongly
related members of a combinatorial library. They are, however,
well suited to quickly discard building block combinations that
are almost certainly unlikely to lead to active products. In
principle, a DCL should not be prebiased but based on sets of
the highest molecular component diversity without any
preconceived ideas. However, the DCL may be simplified by
not including building blocks that are with a high probability
either not expected to engender actives or predicted to be highly
active when combined with at least some of the other partners.
(Bio)activity prediction modelseither based on machine-
learned quantitative structure−activity relationships (QSAR) or
on ligand-site interactionmodels (pharmacophores, docking)
are thus important for DCL design, as they are for classical
library design.
Second, for the application of chemoinformatics to DCLs, the

partner building blocks should be selected so as to present
comparable reactivity and to form products of comparable
thermodynamic stability. The effector may displace the
equilibrium concentration in favor of its preferred binders
unless other concurrent reactions lead to some extremely stable
adducts. Thermodynamic stability of DCL constituents and target/
library constituents association are properties that can be machine
learned on the basis of experimentally studied cases.43 From such
data, quantitative structure−property relationships (QSPR)
models can be used to predict, on one hand, product stability as a
function of its structure, and, on the other hand, the affinity of
DCL constituents for the effector. The stability problem is,
however, complicated by the impact of the solvents, as that used
for DCL experiments (usually water for biological targets) may
differ from that for which the QSPR model has been calibrated.
Extrapolating measured equilibrium constants to a solvent
different from that in which the measurement was performed
(chloroform to water, for example) can be estimated on the basis
of partition coefficients (log P) between the two concerned
immiscible solvents. Once all the equilibrium constants are

presumed known, the equilibrium concentrationsand their
effector-induced shiftscan be calculated by a speciation
algorithm44,45 so that the DCL behavior can be simulated in
silico.
Chemical diversity considerations are particularly important.

Selected building blocks should be chemically as diverse as
permitted by the above constraints (matching activity require-
ments and ensuring a balanced distribution of relative product
stability). If there are building blocks based on distinct
chemotypes predicted to be compatible with the constraints
above, then they should be selectedinstead of limiting the
DCL to a redundant collection of building block homologues.
This work tentatively explores all the three key points above,

in order to (i) provide a concrete and technically detailed
illustration for an in silico DCL design strategy, (ii) prepare
required databoth from public databases and in-house
experimental measuresand (iii) finally build the models in
view of a future DCL design campaign, followed by an
experimental assessment. Building on seminal work in this
area,19 human carbonic anhydrase II (CA II)46 was chosen as an
effector to model the adaptive behavior of the imine-based DCL.

■ RATIONALE AND WORKFLOW OF SPECIATION
MODELING OF DCLs

The three steps of the modeling workflow are shown in Figure 1
and in Figure S1 (see Supporting Information). They comprised
the following operations.

Part 1. Experimental and Theoretical Assessment of
Equilibrium Constants for Imine Formation.
(1) Preparation of the training data set.

(a) Preselection of the aldehydes and amines based on
their “popularity” estimated by the number of
references in a scientific database (primary data set:
400 aldehydes and 300 amines);

(b) Selection of small diverse (nonredundant) pools of
amines and aldehydes.

(2) Experimental determination of the formation constants of
276 imines in deuterated chloroform (CDCl3) from the
selected training data set.

(3) Building of a predictive machine-learning model for the
logarithm of imine formation constant (log KC) in
chloroform as a function of the structure.

(4) Since DCL−effector protein interaction is occurring in
water, imine stability in water needs to be assessed using
the predicted stability in CDCl3. This was achieved with
the help of the predictive model for the chloroform−
water partition coefficient (log PC/w) prepared in this
work.

Figure 1. Main steps and outputs of speciation modeling workflow.
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Part 2. Preparation of the Model for the Affinity of
Organic Molecules to the Effector. The model for the
logarithm of the dissociation constant (pKi) of organic
molecules from human CA II was prepared using experimental
data extracted from the ChEMBL database.47−49

Part 3. Speciation Modeling of DCL in the Presence of
the Enzyme As Effector. The dynamic behavior of a simple
DCL (2 amines × 2 aldehydes) was simulated by applying
speciation software to compute equilibrium concentrations of
free and protein-bound imines, given their estimated stability in
water and affinities to the protein effector.
Pending experimental validation, this work focused on the key

steps of the envisaged strategy, with evaluation of the strengths
and potential pitfalls of the models.

■ RESULTS AND DISCUSSION
Part 1. Experimental and Theoretical Assessment of

Equilibrium Constant of Imine Formation. In the field of
dynamic combinatorial chemistry, imines,50−55 (Scheme 1)
formed by reversible amine-aldehyde condensation, represent a
class of compounds of particular significance for several reasons:

(i) they display high diversity in terms of structures and
physicochemical properties;

(ii) their building blocks, aldehydes and amines, are readily
synthetically or commercially available;

(iii) in most cases, they offer a convenient range of exchange
kinetics at room temperature in various media, including
neat conditions, organic solvents (such as chloroform,
toluene, or DMSO) and water.

=
[ ][ ]

[ ][ ]
K

imine H O
amine aldehydeeq

2

(1)

Although imine formation and component exchange in
aqueous medium are of special interest, the presence of several
possible intermediates and various side reactions such as amine
protonation as well as the formation of aldehyde-hydrate and
hemiaminals are serious challenges for experimental inves-
tigation, as we have shown elsewhere.55

Thus, it was decided to use deuterated chloroform as a
medium for the reaction. Chloroform is the most widely used
NMR solvent, and imine formation in chloroform usually leads
to negligible amounts of side-products (such as aldehyde
hydrates, hemiaminals, and aminals).
Selection of the Experimental Data Set. First, amine and

aldehyde building blocks were taken as the top 400 most cited
aromatic aldehydes and top 300 primary amines according to
SciFinder, using the following protocol: (a) the compounds
were sorted by the frequency of their use; (b) only molecules
with a molecular weight ≤ 400 Da were selected; (c)
compounds with only one aldehyde/primary amine group
were chosen; multifunctional compounds would produce much
more complex dynamic sets and represent a further step of

investigation; (d) preselected sets were manually checked, for
compatibility reasons (duplicates, functional group incompati-
bility, aggregate state incompatibility, solubility, availability,
etc.). Note that aliphatic aldehydes were excluded from the
study because experimental tests revealed various side reactions,
making the analysis challenging.51,54

This procedure resulted in a set of 120 000 possible imines
(400 × 300) serving as a reference pool out of which a small
combinatorial sublibrary of 360 imines was selected for
experimental assessment of their thermodynamic stability.
This core was defined as the combination of maximum diversity
reagents: the MaxMin56 algorithm was applied separately to the
amine and aldehyde sets in ISIDA fragment descriptor space
(see Table S1 in Supporting Information for details), picking
subsets of 24 aromatic aldehydes and 15 primary amines,
respectively (Figure 2).
These reagent subsets should in principle span as broad as

possible reactivity ranges, in order to yield an informative pool of
imines of significantly different stability, from which machine
learning would easily identify structural features enhancing and
respectively decreasing stability. Intuitively, it is therefore
legitimate to ask whether this diversity selection should not
been rather conducted in a quantum-chemical descriptor space,
as the latter is perceived as most directly related to reactivity
issues. However, there are several strong arguments in favor of
the herein adopted strategy:

(1) ISIDA fragment descriptors are excellent descriptors of
reactivityas will be proven further on, when discussing
their propensity to fit to experimentally measured
equilibrium constants. This simply means that key
quantum-chemical descriptors (HOMO or LUMO
energies, for example) are effectively covariant with the
presence of specific (electron-withdrawing or -donating)
fragments captured by the ISIDA fingerprint.

(2) Quantum-chemical descriptors alone fail to account for
sterical hindrance, which is better rendered by fragment
countsalbeit in an implicit way. Also, they are
geometry-dependentHOMO/LUMO energy differ-
ences in response of a conformational change may be
actually larger than differences between analogous
molecules in comparable geometries.

(3) In view of that mentioned above, it is no surprise that
machine-learning models of the imine stability based on
30 quantum-chemical descriptors issued from DFT
calculations (see their list in Section 3.3 in Supporting
Information) are not better than the much easier to use
and much faster fragment descriptor counterparts (see
Table S2 in Supporting Information). Moreover, ISIDA-
descriptor-driven diversity is perfectly suited to select
amines and aldehydes that are also “diverse” in terms of
quantum-chemical terms, as it is shown on the example of
HOMO/LUMO energies distribution in Table S3 in
Supporting Information.

(4) Finally, yet importantly, time-consuming DFT calcula-
tions can hardly be recommended to calculate descriptors
for large combinatorial libraries of 120 000 virtual imines.
On the other hand, the generation of ISIDA descriptors is
very fast, which makes them particularly attractive when
working with big chemical data.

Out of the above-mentioned 360 pairwise combinations, 276
imines were synthesized, and the equilibrium constants for their
formation were measured using 1H NMR spectroscopy.

Scheme 1. Generalized Reaction Scheme of Imine Formation
from an Aldehyde and an Amine; and the Corresponding
Expression for Its Equilibrium Constant (Equation 1)
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From the structural point of view, the set of aldehydes is quite
diverse (Figure 2 (top)): half of the molecules are heterocyclic
aldehydes, e.g., containing furan (A2 and A6), thiophene (A5,
A16), and thiazole (A22 and A23) cores. The set incorporates
aldehydes presenting either electron-donating groups (e.g., A4,
A8, A9, A13, A19), or electron-withdrawing groups (e.g., A3,
A6, A7, A11, A15).
The set of amines, on the other hand, predominantly consists

of various aliphatic amines (11 out of 15 molecules), three
anilines (B1, B7, and B11), and one heterocyclic amine (B14);
see Figure 2 (bottom).
Measurement of Stability Constants (log KC). Stock

solutions of all the aldehydes and amines were prepared in
deuterated chloroform. Prior to use, CDCl3 was filtered through
basic alumina to remove the possible traces of acid; then, it was
saturated with water to ensure a constant water content of 73.8
mM,57 and hexamethyldisiloxane (HMDSO) was added as an
internal standard. Imines were prepared directly in NMR tubes
by mixing the stock solutions of aldehydes and amines to reach a
concentration of 20 mM. To speed up the reaction, 2 mol % of

trifluoroacetic acid (TFA) was added to each tube, and the
reactions were equilibrated for 24 h at room temperature. Notice
that kinetics of equilibration for several checked samples was
well below 1 h.
Thus, from a virtual pool of 120 000 imines, 276 were

synthesized. The reaction constant for each was calculated from
direct measurement of the concentrations of the imine and of
the residual aldehyde and amine by integrating their
corresponding NMR signals relative to an internal standard
(see the “Experimental measurements” section in Supporting
Information). In most cases, the integrals could be measured so
as to provide stability constant (KC) values with a reasonable
precision of 0.15 log K units (Figure 3, green bars), but where
reaction was limited or strongly favored or where signal overlap
occurred, errors were large and the KC values can only be
described as “estimated” (Figure 3, orange bars).
As expected, the imines having high log KC, A6B6 (5.40),

A7B6 (5.48), A21B9 (5.54), etc., are formed by highly
nucleophilic amines and highly electrophilic aldehydes. Note
that most of the imines with log KC > 5 contain the

Figure 2. Chemical structures of selected aldehydes and amines for experimental determination of imine formation reaction constants.
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cyclopropylamine fragment (B6). The imines with very low log
KC are formed from electron-poor amines and electron-rich

aldehydes. For instance, electron-deficient amines such as B7
and B14 are poorly reactive in reactions with most aldehydes
(log KC < −3). Some amines (e.g., aniline B11) lead to imines
with a broad range of stability from −3.25 (A19B11) to 1.91
(A15B11). In this case, steric effects apparently play a significant
role in modulating the stability of constituents.

Predictive Model of Imine Stability in Chloroform.The data
obtained were used to calibrate and validate the model. Seven
support vector regression (SVR)58 individual models, each built
on a particular type of ISIDA descriptor59,60 (see Supporting
Information), contributed to consensus calculations. Their
predictive performance was assessed in five-fold cross-
validation. Finally, experimental versus predicted (cross-
validated) log KC values were compared (Figure 4a). For most
molecules, the predicted log KC values were close to those
determined experimentally (root-mean-squared error (RMSE)
is 0.62 log K units, see Figure 4), whereas most erroneous
predictions were found for the compounds labeled as
“estimated”.
Aside from its predictive utility, another important criterion

characterizing the obtained model is chemical space coverage,
identified as the applicability domain (AD) of the model. The
role of the AD is to define the boundaries in the chemical space
within which a model can be used and provide reliable and
accurate predictions. According to Vapnik,61 statistical models

Figure 3. log KC values distribution. Data are annotated as “exact” and
“estimated”, respectively. “Estimated” labels were assigned in cases
featuring (i) too low concentrations of reactants/products or (ii)
overlapping signals, leading to difficulties in quantitative identification
of compounds.

Figure 4. (a) Experimental vs predicted (cross-validated) log KC values plot of the consensus SVRmodel withQ2 = 0.93 and RMSE = 0.62 log K units
(see details in Supporting Information). The dotted line corresponds to ideal predictions. (b) Distribution of predicted values of log KC of imine
formation in chloroform. (c) (Top) Examples of “inert” aldehydes (left) and “inert” amines (right). Their interactions with any other aldehyde and
amine, respectively, lead in approximately 60% of cases to negative predicted log K. (Bottom) Examples of “reactive” aldehydes (left) and “reactive”
amines (right). Their interactions with other aldehydes and amines, respectively, lead in more than 60% of the cases to log KC > 1.
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are directly applicable to any test instance drawn from the
statistical distribution describing a training set; i.e., loosely
speaking, the training and test molecules should not be too
different. Here, we used the f ragment control approach59 to
identify the AD. If a test compound contains an ISIDA fragment
absent in the training set structures, it is considered to be out of
the AD and, therefore, should be discarded. In this context, the
SVR consensus model trained on log KC of 276 imines should
provide reliable predictions for almost 50% of the considered
imines (59 935 out of 120 000). For approximately half of the
imines within the AD (Figure 4b), the log KC has been predicted
as≤0, for around 30 000 imines the predicted logKC values were
in the range between 0 and 3, and for 768 imines the predicted
values of log KC were >3 (Figure 4b). Thus, the latter group can
be considered as suitable candidates for a DCL.
For these 59 935 imines, the chemotypes of their source

reactants were analyzed. Some aldehydes and amines have been
identified as “inert”: with >60% of the coupling partners, their
products have negative log KC values. By contrast, “reactive”
compounds have been identified as those with log KC values >1
in approximately 60% of the reactions involving them. As
expected, inert/reactive amines have, respectively, electron-
acceptor/electron-donor substituents, which reduce/increase
the reagent’s basicity (Figure 4c). Conversely, inert/reactive
aldehydes carry, respectively, electron-donor/electron-acceptor
substituents.
Estimation of Imine Formation Constants in Water.

Predicting the speciation of dynamic imine networks in the
presence of biological molecules as effectors requires the
prediction of the equilibrium constant of imine formation in
water (log KW) instead of the chloroform (log KC), considered
so far. The conversion of the constant in chloroform to that in
water can be related to differences in solvation of the involved
species, which are nothing but expressions of water−chloroform
partition coefficients:

= − +

+ −

K K P P

P P

log log log (imine) log (aldehyde)

log (amine) log (H O)C

W C C/W C/W

/W C/W 2 (2)

The detailed derivation of eq 2 is given in Supporting
Information, eqs S1−S3.
However, the required log PC/W values have not been

experimentally assessed for all the DCL reagents and even less
so for the large pool of possible products. Therefore, a
computational predictive log PC/W model was successfully
developed (see Supporting Information) on the basis of a
training set containing 50 compounds from the ChEMBL
database48,49 with experimentally measured chloroform/water
partition coefficients log PC/W. However, because of the
relatively small size of the training set (50 fragment-like
molecules), the applicability domain of the model is very
restricted. Thus, reliable predictions have been obtained only for
64 imines constituted from 14 amines and 22 aldehydes, with
structures given in the DCL_data.zip file in Supporting
Information. Application of eq 2 to the set of these 64 imines
shows that formation constants in water are always larger than
that in chloroform, i.e., log KW > log KC. However, this
notwithstanding, the corresponding imine concentrations will
be lower in water (which shifts the equilibrium toward the
reagentsamine and aldehyde). As water concentrations are
constant both in aqueous (55.56 M) and chloroform environ-
ments (saturation concentration of 73.8 mM) and hence do not

need to be monitored in the subsequent speciation calculations,
it makes sense to introduce “effective” stability constants instead
of the thermodynamic values employed so far:

=
[ ]

K
K

H O
eff

2 (3)

where [H2O] stands for the above-mentioned water concen-
trations in the respective phases.
For 64 imines within a chloroform/water partition coefficient

AD, a simple relation between effective constants of imines
formation in water and in chloroform has been observed (Figure
S4):

= −K Klog log 1W
eff

C
eff

(4)

Thus, effective stability constants reflect the intuitive
expectation of a net decrease of effective stability paralleling
the net decrease of imine concentrations in water. It is also a
useful shortcut for the speciation simulations. A linear
dependence of unit slope, involving a simple constant offset is
also expected as far as the intervening players displaying “ideal”
solvation behavior in both chloroform and water so that their
respective log P values may be considered as additive in terms of
functional group contributions. If so, the only net difference is
expected to stem from the replacement of the oxygen of the
aldehyde carbonyl by the nitrogen of the amine which losesmost
of its basicity when converted to the N− of the imine.
Contributions of conserved functional groups on the aldehyde
or the amine to the chemical potential of solvation will be
roughly the same, irrespective of whether they are carried by the
reagents of the product and hence cancel out according to eq
2hence the constant offset practically observed in Figure S4.
Of course, this simple assumption is no longer valid if functional
groups would mutually interact in the product and/or reagents.
A state-of-the-art chemoinformatics model of log Pmight indeed
be trained to capture such effectsbut, unfortunately, not in
this case, given the sparseness of measured chloroform/water
partition coefficient values log PC/W. Thus, we assume in the
following that eq 4 offers so far the best available estimation of
imine stability in water and can be applied to all 59 935 virtual
imines found within AD for the log KC model.

Part 2. Modeling of Binding Affinity to Human CA II.
The ChEMBL database was used as a source for experimental
ligand binding affinity data (cited as the negative logarithm of
the dissociation or “instability” constant, pKi). The training data
for themodeling contained 4350 unique inhibitors of humanCA
II with experimentally measured pKi varying from 0 to 11
(Figure S5 in Supporting Information). This set included 41
imines, most of which had a pKi in the range between 6 and 9.
The developed consensus SVR model (refer to Supporting
Information for details) of R2 = 0.96 and RMSE = 0.27 log Ki
units was used to predict pKi for the set of 59 935 imines within
the applicability domain of the model for imine equilibrium
constants. For these molecules, the predicted pKi values vary
from 4 to 8, and the distribution function has a maximum at pKi
= 5−6 (Figure S6 in Supporting Information).

Part 3. Speciation Modeling of the DCL. To illustrate the
operation of the speciation workflow, we decided to select the
simplest DCL consisting of two aldehydes, two amines, and the
related four imines. Ideal imines selected for the DCL should
fulfill the following requirements: (i) their formation constants
should be similar and high enough in order to provide
comparable and rather high concentrations, and (ii) one of
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the imines should have amuch larger affinity for the effector than
the other DCL members and their binding blocks, in order to
reveal the effector-induced dynamic enhancement.
After obtaining the 59 935 effector affinity constants for

imines within the model AD, this set was filtered by the
requirement of a predicted log KW

eff > 3 (stable in water). It was
achieved by applying the predictive model of thermodynamic
stability in chloroform, converting the result to the “effective”
constant in chloroform (eq 3) and then eventually to the
effective constant in water (eq 4). A total of 3615 imines passed
this test. This pool is a collection of individual products, not a
combinatorial library. “Singletons” were removed from this
collection, in the sense that an aldehyde (or amine)Awas kept if
and only if there was at least another reagentA′ of the same class,
as well as two partners B and B′ such that all combinations (AB,
AB′, A′B, A′B′) were among the 3615 selected. This led to a
restrained subset of 3091 of the above 3615 imines, forming a
sparse matrix of 278 aldehydes × 89 amines as a mosaic of
several complete combinatorial sublibraries (Figure S8).
One of these 2 × 2 sublibraries (see Scheme 2) was chosen to

illustrate the speciation analysis, the final step of the present
workflow. First, effector affinities for CA II (pKi) were also
estimated for the amine and aldehyde reagents, as these might
also interact with the protein (see Figure 5a and Table S5 in
Supporting Information). These values were used as an input to
the ChemEqui speciation software62 in order to calculate the
species concentrations in the absence and in the presence of the
CA II protein receptor (Figure 5b and Table S6 in Supporting
Information).
As shown in Figure 5a, A′B′ has the largest predicted pKi

value, although it does not stand out in comparison with the
others in this respect. As expected, in the absence of the effector,
the concentration of all imines is larger than that of their building
blocks, and A′B′ is the dominant product. In the presence of the
CA II enzyme, the interplay between the different ligand-
enzyme stabilities results in significant changes of the
constituent distribution of the DCL. The imine A′B′, which
has the highest binding affinity for the effector CA II (pKi =
6.70), becomes involved in a shift of the global equilibrium
toward this ligand−enzyme complex. Consequently, the
concentrations of its free building blocks in solution decrease,
the increase of concentration “amplification”of the
dynamically selected A′B′ leading to a decrease or “down-
regulation” of the poorly bound AB′ and A′B (Figure 5c). To
sum up, the addition of the human CA II to the solution
increased the overall concentration of AB by 12% and A′B′ by
27% with respect to their concentrations in the absence of the
effector associated with a decrease of the concentrations of AB′
and A′B by 26% and 28%, respectively.

■ DISCUSSION
In the present study, the stability constants for imine formation,
log K, and the affinity constants toward carbonic anhydrase CA
II, pKi (predicted), of almost 60 000 imines were determined.
With help from the speciation tool, a focused array of n
aldehydes×m amines could be picked such as to ensure that (a)
there are putative strong CA binders among the n × m imines,
and (b) these putative binders are not penalized by an intrinsic
instability that might jeopardize their “selection” by the protein
site. Of this pool of imines, the results show that there was no
“minimalistic” DCL obtained from a pairwise reaction of two
aldehydes and two amines, which would result in the exclusive
complexation of the human CA II enzyme with only one imine.

This is not surprising, as it echoes an already known feature of
combinatorial librariesthe high degree of relatedness of its
members: near neighbors sharing a parent may also share
comparable activity levels for the target. The positive aspect of
this result is that the discovery of a series of active analogues may
help the subsequent hit-to-lead optimization efforts. However, it
is clear that the DCL investigated so far is incomplete, failing to
include important structural features, notably in this case a
(phenyl)sulfonamide group because (i) of its low solubility in
chloroform, and (ii) it would overwhelmingly bias the DCL, as it
is expected to interact very strongly with the Zn(II) cation in the

Figure 5. Calculated thermodynamic and speciation parameters for
aldehydes (A,A′), amines (B,B′), and corresponding imines (AB,AB′,
A′B,A′B′). (a) Predicted logKW

eff (in orange) and pKi values (in green).
(b) The concentrations of the species in the absence (blue) and in the
presence of human CA II protein (gray for uncomplexed, and red for
complexed species). (c) Effect of dynamic amplification (up-
regulation) and down-regulation (%).
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active site of the enzyme, thus overshadowing any other
constituents. Investigation of other building blocks is required.
This is nevertheless not a liability at this stage because any
“primary hits” detected by a DCL would not have direct
applications in drug discovery. DCLs are key tools to probe the
protein binding patterns and provide structure−affinity
information for refinement of affinity prediction models
(machine-learned, pharmacophore-based, or docking-based).
The availability of experimental data on imine formation in a

given solvent and on effector-imine affinity is crucial for
machine-learning models. Models trained on small training
sets have restricted applicability domains, which may signifi-
cantly reduce the number of the considered DCL candidates.
Clearly, chemoinformatics will not predict a sole winner, given

the inherent inaccuracies of the underlying models. Even the
most accurate affinity prediction toolcomputer-intensive free
energy perturbation calculationswould fall short of this goal.
Actually, even if all stability and affinity constants of individual
DCL members were experimentally measured, the intrinsic
experimental error of measurements (typically on the order of
0.5 log units) would still introduce significant uncertainty in the
output of predicted speciation. Also note that predicted
protein−ligand interactions are only prone to happen at the
“envisaged” binding site for which the affinity model was tuned
(as far as training data are binding site specific, as is the case of
the classical Ki determinations from dose−response reference
ligand displacement curves). Should some ligands bind at
different protein sitespossibly modulating the protein
activitythey would be selected by the DCL but not recognized
as privileged ligands according to the predictive models. Such
binding may give rise to secondary site bioactivity, for instance,
by operation of an allosteric effect. This eventuality is an
especially attractive feature of the DCL approach, more than
direct binding to the “main” receptor site as highlighted by
crystallographic data. It amounts to exploration of potential
(virtual) sites versus design for a known sitebut cannot benefit
from chemoinformatics support, which is conditioned by prior
knowledge. From the drug discovery point of view, it would
suggest new regions for exploration of structure/activity
relationships. In practice, the application of a DCL is a task of
identification of the best/optimal binder(s), and it implicitly is
much facilitated by an a priori knowledge of the protein structure
and hence the knowledge about the binding site(s).63

■ CONCLUSIONS
The present study shows that detailed in silico predictions of the
behavior of DCLs is technically feasible, pending experimental
validation to prove that such insights gained from simulations
may indeed help to rationally design DCLs maximizing the
expectation to discover useful new protein inhibitors, metal ion
chelators, and synthetic receptors. So far, training data quantity
and quality are not sufficient to build ideally predictive models,
with extrapolation capacities such as to render predicted
equilibrium constant values accurate enough to support a
prediction of equilibrium concentrations in such a complex
system as a DCL. However, this ultimate goal is not the actual
objective of chemoinformatics, which has proven of great utility
in spite of the inaccuracy of its predictions. Total “computational
deconvolution” of a DCL is hardly an achievable goal.
Fortunately, this is not needed because the DCL is per se an
outstanding search tool for the optimal binder, allowing for
simultaneous “testing” of large numbers of competing
structures.23,35,36 The approach may, however, be sufficiently
accurate to ensure that a computer-designed DCL stands
enhanced chances of success compared to some randommixture
of reagent pools. Discovery is not expected to come from one
initial “perfect” prediction but from cycles of prediction
experimentationmodel reassessment and refinement, taking
into account the latest experimental results. The present work
outlines the technical feasibility of the computational part,
leaving the experimental validation challenge open for future
work.
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