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Abstract

The xenotropic/polytropic subgroup of mouse leukemia viruses (MLVs) all rely on the XPR1 receptor for entry, but
these viruses vary in tropism, distribution among wild and laboratory mice, pathogenicity, strategies used for trans-
mission, and sensitivity to host restriction factors. Most, but not all, isolates have typical xenotropic or polytropic
host range, and these two MLV tropism types have now been detected in humans as viral sequences or as infec-
tious virus, termed XMRV, or xenotropic murine leukemia virus-related virus. The mouse xenotropic MLVs (X-MLVs)
were originally defined by their inability to infect cells of their natural mouse hosts. It is now clear, however, that
X-MLVs actually have the broadest host range of the MLVs. Nearly all nonrodent mammals are susceptible to X-
MLVs, and all species of wild mice and several common strains of laboratory mice are X-MLV susceptible. The poly-
tropic MLVs, named for their apparent broad host range, show a more limited host range than the X-MLVs in that
they fail to infect cells of many mouse species as well as many nonrodent mammals. The co-evolution of these
viruses with their receptor and other host factors that affect their replication has produced a heterogeneous group
of viruses capable of inducing various diseases, as well as endogenized viral genomes, some of which have been
domesticated by their hosts to serve in antiviral defense.

Introduction
Gammaretroviruses of three distinct host range tropisms
have been isolated from the laboratory mouse (Table 1).
The first of these mouse leukemia viruses (MLVs) were
discovered in 1951 through their association with neo-
plasias of hematopoietic origin [1]. These MLVs were
found to infect mouse and rat cells and could induce
leukemias or lymphomas in inoculated mice. A second
MLV type with a distinctly different host range was sub-
sequently isolated by Levy and Pincus from the NZB
mouse strain [2]. These viruses were defined by their
apparent inability to infect cells of their host species,
although they could efficiently infect cells of other spe-
cies such as human, rabbit and cat [3,4]. These viruses
were termed xenotropic (Gr. Xenos - foreign) to distin-
guish them from the mouse-tropic, sometimes patho-
genic MLVs, now termed ecotropic (Gr. Oikos, home),
that is, viruses with host range limited to the species of
origin [5,6]. The third MLV host range group, the poly-
tropic or dualtropic viruses (P-MLVs), are routinely iso-
lated from mouse lymphomas and leukemias, and were

initially described as having the broadest host range of
the 3 MLV types because they could efficiently infect
mouse cells as well as cells of heterologous species [7,8].
The P-MLVs can be pathogenic in mice and cytopathic
in mink cells and have also been termed mink cell
focus-forming (MCF) MLVs.
The host range of these 3 MLV subtypes maps to the

receptor binding domains (RBDs) of their envelope
(Env) glycoproteins, and their RBDs govern the ability of
these viruses to interact with their cognate receptors
[9-11]. While the E-MLVs use the mCAT-1 receptor for
entry [12], the X-MLVs and P-MLVs both use the XPR1
receptor [13-15] (Table 1) and I will term the set of
mouse viruses that use this receptor, X/P-MLVs. Host
range differences among the X/P-MLVs are due to
sequence polymorphisms in the viral env and in the
host receptor gene. These genes evolved in concert,
altering virus-receptor interactions and the biological
properties of these viruses, and producing an unusually
heterogenous set of retrovirus and receptor variants.
Analysis of X/P-MLVs in laboratory and wild mice has

detailed their roles in pathogenesis, their acquisition as
endogenous elements in the Mus genome, and their
interactions with and co-option as host restriction
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factors. This review will describe the evolutionary his-
tory of these viruses with special emphasis on tropism
changes, the involvement of these viruses in disease
induction in mice, and host factors that affect their
replication and their recent transspecies transmission to
humans.

Endogenous MLVs in Laboratory Mice
Approximately 37% of the Mus genome is comprised of
retroelements, and one-third of these are endogenous
retroviruses (ERVs) [16,17]. ERVs represent germline
proviral insertions generated by past retroviral infec-
tions. While the Class I ERVs that include the MLV
ERVs constitute less than 1% of the mouse genome,
attention has focused on this relatively small subgroup
because of their relationship to the infectious and patho-
genic C-type gammaretroviruses.
The MLVs and their endogenous ERV counterparts

have the simplest of retrovirus genomes [18]. The MLV
ERV genomes contain protein coding sequences for the
virus core proteins (gag), enzymes (pro, pol, in) and
envelope (env) that are flanked by long terminal repeat
sequences (LTRs) that regulate transcription. The gam-
maretroviruses lack the accessory proteins of immuno-
deficiency viruses like HIV-1, have only one zinc-finger
in nucleocapsid and rely on a translational strategy that
reads through the gag termination codon. Many gam-
maretroviruses also uniquely produce a second, larger
and glycosylated form of the Gag precursor polyprotein
that uses an alternate, upstream initiation codon [19-21].
All three host-range MLV variants are present as

ERVs in laboratory mice, many of which are full-length,
with apparently nondefective protein-coding regions.
Infectious viruses of all three host range classes can be
isolated from mice, but not all ERVs produce virus, and
those that do differ significantly in the timing and cir-
cumstances of their expression. Chromosomal locations
for many of these ERVs in common inbred mouse
strains were determined by conventional genetic meth-
ods [22-24] and the completion of the mouse genome
sequence has allowed for complete characterization of
the ERVs carried by the C57BL mouse [25]. ERV loca-
tions are, however, strain or strain-lineage specific; the

various inbred strains carry multiple non-allelic provirus
insertions [24,26].

Ecotropic MLV ERVs (Emvs)
Many if not most of the Emvs can produce infectious
virus. Up to 6 Emvs are found in the inbred strains
(Table 2) [26]. Some of these Emvs are constitutively
expressed from birth in the “high virus” strains such as
AKR (Table 2) [27]. Other Emvs are inefficiently
expressed, but their expression can be enhanced or
induced by halogenated pyrimidines [28,29]; mouse
strains carrying these Emvs produce infectious virus late
in life, if at all (Table 2). Other mouse strains carry no
Emvs [26]. Novel Emv proviruses can be acquired in
viremic strains like AKR [30,31]; oocytes are the targets
of these germline reinfections [32].

Polytropic MLV ERVs (M/Pmvs)
There are up to 40 copies of P-MLV ERVs in the
laboratory mouse genome [24,33]. The P-MLV ERVs
have been divided into two closely related subgroups
that differ most notably by the presence or absence of a
27-bp segment in the proline rich domain of env. These
2 P-MLV ERV groups are termed polytropic (Pmvs) and
modified polytropic (Mpmvs or mPTs), and there is a
smaller subgroup named intermediate polytropic MLVs
(iPT), identified in NFS/N mice [34,35]. I will use the
term M/Pmvs to refer to this subgroup of MLV ERVs
collectively or when subtype is not known. Although the
coding regions of many M/Pmvs have open reading
frames [25], none are apparently capable of producing
infectious virus; the reason for this is unknown, but may
be due to accumulated mutations [25] or to LTR defects
such as the presence of a 190 bp LTR insertion [36].
Despite the apparent inability of M/Pmvs to produce

infectious virions, cell-to-cell transmission of this sub-
group can be detected, and infectious P-MLVs can be
produced in the presence of E-MLV infection. Thus,
replicating E-MLVs can recombine with M/Pmv ERVs
in mice to produce recombinant viruses with M/Pmv
env sequences [35,37-40]; these viruses generally have
polytropic host range, but are usually transmitted in
viremic mice as pseudotypes of E-MLVs [41,42]. In the

Table 1 Classically defined host range subgroups of infectious mouse gammaretroviruses isolated from laboratory
mice

Host Range

Type Subtype Tropism Laboratory
Mouse

Other
Mammals

Receptor Pathogenicity in Laboratory
Mice

Endogenous
Retroviruses

E-MLV ecotropic + - mCAT-1 +,- Emv

X/P-
MLV

X-MLV xenotropic - + XPR1 - Xmv

P-MLV polytropic + + XPR1 +,- M/Pmv (Pmv, Mpmv)
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apparent absence of recombination, the transcribed pro-
ducts of M/Pmvs can also be packaged as homodimers
into virions of exogenous ecotropic virus, and these
“mobilized” M/Pmvs can infect cells, replicate in those
new cells, and spread to other cells as pseudotyped virus
[43]. Another transmission mechanism allows P-MLVs
to completely bypass the need for their cognate recep-
tor. These viruses are able to use alternative receptors
in the presence of the soluble RBD glycoprotein for that
receptor. Thus, entry defective E-MLVs as well as P-
MLVs, but not X-MLVs, can be “transactivated” in this
way by E-MLV RBD [44,45].

Xenotropic MLV ERVs (Xmvs)
Xmvs are present in 1-20 copies per mouse strain
[33,46]. The Xmvs in the sequenced C57BL genome are
highly polymorphic, and phylogenetic analysis suggests
that these Xmvs fall into 3 clades which may have
resulted from 3 separate infections [25]. Some of the
laboratory mouse Xmvs produce high levels of virus and
other Xmvs can be induced to produce virus, but most
Xmvs are not readily capable of producing infectious
virus (Table 2). Among the laboratory mice, two strains,
NZB and F/St, have a high virus phenotype, producing
high titers of X-MLV throughout most of their lives
[2,47,48]. Other strains rarely produce infectious virus,
but cells from many common strains can produce virus
following chemical induction or stimulation of spleen
cells by bacterial lipopolysaccharide (LPS) or in a graft
versus host reaction [28,29,49,50].
There are four active proviruses capable of producing

virus in laboratory mice (Table 2). One of these proviruses,
Bxv1, is a Chromosome 1 (Chr 1) locus sensitive to chemi-
cal induction or stimulation by LPS [51], and is carried by
about one-third of the common strains of inbred mice
[52]. The Bxv1 provirus has been identified [46,53], and is
present in the sequenced C57BL genome [25]. Expression
of Bxv1 is low except in the F/St strain, where the high
level of virus expression is linked to the major histocom-
patibility locus [54]. The 3 additional active Xmvs found in

laboratory mice have not been characterized. The high
virus NZB mouse carries two loci neither of which maps
to Chr 1 [55-57]. Nzv1 produces low levels of X-MLV, but
Nzv2 is constitutively active [55]. The fourth active Xmv
was identified in MA/My mice, a strain that also carries
Bxv1 [57]. Other strains like NFS and SWR carry Xmvs
but are rarely or not capable of producing infectious X-
MLV [22,33,53] (Table 2).

MLV ERV produced proteins
Many ERVs produce viral proteins in the absence of
infectious virus. Some of these proteins were initially
identified as novel antigens on mouse lymphocytes. Two
of the most extensively studied of these antigens, GIX

and XenCSA, are Env glycoprotein determinants [58,59].
These determinants can be detected in virus infected
cells, and their expression in mice is associated with
specific ERVs and is controlled by host genes linked to
the major histocompatibility locus and the retrovirus
restriction gene Fv1 [54,60,61].

MLVs in cell lines and passaged tumors
The presence of multiple ERVs in the genomes of all
laboratory mice can create problems for the use of these
animals or established mouse cell lines in research.
Many cell lines in common use carry active ERVs, or
ERVs that can become active after long term culture of
these lines. For example, the macrophage cell line
RAW264.7 produces infectious E-MLV and P-MLV
[62]. Also, various L cell derivatives like Clone 929
(ATCC CCL-1) and A9 (ATCC CCL-1.4) express Env
glycoprotein and are either poorly infectible or comple-
tely resistant to infection by E-MLVs as well as P-MLVs
(unpublished observations). Because Xmvs like Bxv1 can
be induced by immune stimuli, including graft versus
host reactions and B cell mitogens [49,50], it is not sur-
prising to find infectious X-MLVs in hybridomas, or in
tumor cells passed in SCID or nude immunodeficiency
mice, as many of the strains carrying these mutations
also carry Bxv1.

Table 2 Distribution of active MLV ERVs and their expression in selected common strains of laboratory mice.

ERV Type Expression Level Laboratory Mouse Strainsa Expressed MLV ERVsb

High AKR, C58, HRS, PL, SL, F/St, C3H/Fg 2-6 Emvs/strain

Emv Intermediate BALB/c, DBA, RF, CBA, NZW, C57BR, C57BL, C3H/He, SJL 1-2 Emvs/strain

Low NFS, NIH Swiss, C57L, 129, NZB, SWR -

High NZB Nzv2, Nzv1

F/St Bxv1

Xmv C57BL, C57L, BALB/c, DBA, AKR, NZW, HRS Bxv1

MA/My Bxv1, Mxv1

Negative (Rare?) NFS, NIH Swiss, A, 129, SWR -
a[54,210].
b[26,55,57].
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Distribution of X/P-MLV ERVs in wild mouse
species
The presence of still active MLV ERVs in mice and the
positional polymorphism of these loci among inbred
mouse strains indicate that all 3 ERV types entered the
Mus germline recently. The genus Mus originated 8-12
million years ago (MYA) on the Indian subcontinent,
and the 4 Mus subgenera diverged from one another
shortly after Mus diverged from other Murinae [63,64]
(Figure 1). Among the 40 recognized Mus species, there
are 3 commensal species, or house mice, that evolved
0.5-1.0 MYA, and a fourth house mouse population in
Japan, M. molossinus, which represents a natural hybrid
of M. castaneus and M. musculus [65-67]. These house
mice have largely nonoverlapping geographical ranges in
Eurasia (Figure 2). House mice differ from their free-
living or aboriginal ancestor species in their dependence
on man; the house mice can live in houses, barns, ware-
houses and ships, and they travel wherever humans go
[68]. Over the past few centuries, mice of the house
mouse species were collected and interbred by hobbyists
in Asia and Europe, and animals from these fancy
mouse colonies were used to generate the common
strains of the laboratory mouse [69,70]. It is also these
house mouse species, the mice in closest contact with
humans, that carry MLV ERVs. The identification of MLV ERV-related env and LTR

sequences in house mouse species, but not their free-
living progenitors, suggests these ERVs were acquired
only 0.5-1.0 MYA [71]. Although inbred strains of labora-
tory mice tend to carry multiple copies of both Xmvs and
M/Pmvs, these virus subtypes are largely segregated into
different species in the house mouse complex [71]
(Figure 1, 2 and 3). Sequences related to the env RBD of
M/Pmvs are found in M. domesticus of Western Europe,
while Xmvs predominate in M. castaneus, M. musculus
and M. molossinus in eastern Europe and Asia (Figure 3).
Use of probes from the LTR and from env segments that
are outside the RBD largely confirmed this pattern of
ERV segregation in Mus species, and found two polytro-
pic subtypes, Mpmvs and Pmvs, in M. domesticus as well
as evidence of atypical, recombinant types in the various
house mouse species [72,73].
Mus is not native to the Americas, but was introduced

with human travelers. American house mice most clo-
sely resemble the western European M. domesticus in
that they lack Emvs and carry multiple M/Pmv ERVs
and few or no Xmvs [71]. One exception to this is
found in Lake Casitas, California, where mice carry mul-
tiple copies of Xmvs and M/Pmvs [71]. These mice also
carry an Emv subtype common to Asian mice [71,74].
LC mice may thus represent a natural hybrid of Eur-
opean M. domesticus with M. castaneus mice that may
have arrived in America with Chinese laborers and
cargo.
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Figure 1 Distribution of Xpr1 variants and endogenous X/P-
MLV env genes in the genus Mus. The 4 subgenera originated
about 7.5 million years ago (MYA). Red arrows and brackets mark
the distribution of the 5 functionally defined Xpr1 alleles among
Mus species and strains. The house mouse species are indicated by
a bracket, and the specific MLV ERV env types found in Mus are
listed on the right. The tree is adapted from the synthetic trees
developed by Guenet and others [63,64,211].

X/P
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X
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Figure 2 Geographic distribution of the 4 house mouse species
of Mus in Eurasia. The three blue blocks show the distribution of
species carrying primarily Xmvs, and the yellow block marks the
range of the species carrying M/Pmvs. The blue line is the Yangtze
River which roughly coincides with the transition between M.
castaneus and musculus [66], and the red line represents the well-
studied hybrid zone separating musculus and domesticus [211].
Infectious viruses of the indicated types were isolated from mice
trapped at sites indicated with arrows; not shown: the X/P-MLV
virus CasE#1 isolated from a California wild mouse.
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Some of the wild mouse ERVs are active, and infec-
tious viruses of xenotropic or atypical host ranges have
been isolated from lymphoid tissues or cultured cells of
Eurasian species and from mice trapped in California
[57,75-79] (Figure 2). M. molossinus carries multiple
ERVs capable of producing X-MLVs [57], one of which
has been identified as the active laboratory mouse Bxv1
Xmv [52]. Bxv1 is found in some, but not all M. molossi-
nus breeding lines, but has not been identified in the
Xmv-positive progenitors of M. molossinus, M. musculus
and M. castaneus. This indicates that the Bxv1 insertion
arose relatively recently in the Japanese M. molossinus
mice. The presence of Japanese mice among the fancy
mouse progenitors of the laboratory strains [80,81] also
suggests that these strains acquired Bxv1 from Japanese
mice. Other wild mouse species, like M. dunni and M.
spretus, carry only M/Pmvs, and these ERVs, like their
laboratory mouse counterparts, do not produce infec-
tious virus. However, M. spretus can, like laboratory
mice, produce infectious P-MLVs when inoculated E-
MLVs recombine with M/Pmv ERVs [82].

Heterogeneity among Infectious X/P-MLVs
Many laboratory and wild mice carry ERVs that can pro-
duce infectious MLVs, and some wild mouse populations
also carry infectious MLVs that have not become endo-
genized [83,84]. The various X/P-MLVs isolated from
laboratory and wild mouse species differ phenotypically
on the basis of host range, variable reactivity with anti-
MLV antibodies, cross-interference, cytopathicity, and

pathogenicity in mice. Sequence data for these viruses is
limited, but comparisons of available env sequences indi-
cate there is significant heterogeneity, particularly in the
RDB of the Env glycoprotein. This region is marked by 3
hypervariable segments, VRA, VRB, VRC, where multiple
substitutions and indels distinguish the prototypical P-
MLVs and X-MLVs. In addition to these sequence poly-
morphisms, another source of variation comes from the
fact that each infectious P-MLV is the product of a
recombination between E-MLVs and different endogen-
ous M/Pmvs, and the size of the recombination can
vary [82,85,86].
Not all laboratory mouse P-MLVs have polytropic

host range. Some of these recombinant viruses (R-XC-,
SL3-2, GPA-V2, ecotropic recombinants) have ecotropic
host range [9,87-89]. These tropisms are governed by
RBD substitutions that lie outside the major host range
determinant for MLVs, VRA, which is the most 5’ of
the 3 variable regions of the env RBD [9,11,90]
Among the wild mouse isolates, X-MLVs from M.

molossinus and M. castaneus, and P-MLVs from M.
spretus resemble the laboratory mouse isolates in their
restriction maps and biological properties [78,91], but
X/P-MLVs with atypical host range have also been iso-
lated from wild mice. One such isolate, CasE#1 (or Cas
E No. 1), was isolated from a wild-trapped California
mouse [77]. It resembles P-MLVs in its ability to pro-
duce MCF-type foci and in its interference properties,
but, like X-MLVs, it fails to infect laboratory mouse
cells and has novel receptor requirements [77-79].
Cz524 MLV was isolated from the wild derived M. mus-
culus strain CZECHII/EiJ, and differs from both P-
MLVs and X-MLVs in host range [79]. The env genes
of these two wild mouse isolates are not identical to
laboratory mouse P-MLVs or X-MLVs, but are related
to both [78,79].

XPR1 Receptor for X/P-MLVs
The X-MLV and P-MLV subgroups use the same XPR1
receptor for entry, although they were initially described
as 2 host range groups because of their differential abil-
ity to infect mouse cells. This receptor was first identi-
fied as a P-MLV susceptibility gene and was mapped to
distal Chr 1 [92]. Subsequent studies showed that X-
MLVs could infect cells derived from wild mice [93-95],
and genetic crosses mapped this X-MLV susceptibility
as well as the P-MLV resistance of M. castaneus to the
same segment of distal Chr 1 [95,96]. The conclusion
that susceptibility to X-MLVs and P-MLVs is governed
by a single gene was also supported by the observations
that these viruses cross-interfere [77,97], and that infec-
tion by X-MLVs in wild mice is reduced by Rmcf, a host
gene that restricts P-MLV infection by receptor interfer-
ence [95].

Xmv Pmv Xmv Pmv Xmv PmvXmv PmvXmv Pmv Xmv Pmv Xmv PmvXmv Pmv

M. molossinus M. castaneusM. domesticus M. musculus

SU TMVRASU TMVRA

probes

Figure 3 Southern blot analysis of genomic DNAs of house
mouse species using env-specific hybridization probes. At the
bottom is a diagram of the MLV env showing the position of the
~120 bp hybridization probes [33,71].
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The XPR1 receptor for X-MLVs and P-MLVs has 8
putative transmembrane domains and 4 putative extra-
cellular loops [13-15]. This multiple-membrane-span-
ning structure is a common feature of the receptors
used by the gammaretrovirus family [98]. While this
suggests these viruses evolved from a common progeni-
tor, this multi-membrane spanning structure is not
representative of all retroviral receptors, some of which,
like the lentivirus CD4 receptor and the receptors for
alpha- and betaretroviruses have single TM domains
[99]. Although the host cell function of XPR1 has not
been defined, the other gammaretrovirus receptors with
known function have all been identified as transporters
of small solutes like phosphate or amino acids [98]. The
XPR1 protein may have a similar function as it is homo-
logous to the yeast SYG1 and plant PHO1 genes, which
have roles in signal transduction and phosphate sensing
and transport, respectively [14]. Recent work has indi-
cated that XPR1 is upregulated following activation of
the NF-�B RANKL-RANK signaling pathway in osteo-
clastogenesis [100].
Mus species and inbred strains carry at least 5 func-

tionally distinct XPR1 variants [13-15,78,95,96,101].
These five Mus XPR1 s differ in their ability to support
entry by prototype X-MLVs and P-MLVs and by the
two wild mouse isolates CasE#1 and Cz524 (Figure 4)
[79,101]. One of these alleles, Xpr1sxv (susceptibility to
xenotropic virus), is fully permissive for all X/P-MLVs.
The other 4 variants restrict infection by two or more
members of this virus family. All variants except the
XPR1 of NIH 3T3 cells support entry by X-MLVs,
although with differences in efficiency. Only 2 of the 5
receptor variants are permissive for P-MLVs. The
laboratory mouse allele, Xpr1n, allows entry only by P-
MLVs.

Specific XPR1 residues responsible for virus entry lie
in 2 of the 4 predicted extracellular loops (ECLs) of
Xpr1, ECL3 and ECL4 (Figure 5) [78,79,101-103]. Two
critical amino acids are needed for X-MLV entry, K500
in ECL3, and T582 in ECL4 [102]. Both sites are
mutated in the X-MLV restrictive NIH 3T3 Xpr1n allele,
and corrections at either of these two sites produce X-
MLV receptors [102], although these are not function-
ally equivalent. Thus, the Δ582T insertion generates a
receptor for X-MLV as well as CasE#1, but the E500K
substitution does not allow for CasE#1 entry [78]. Sensi-
tivity to different X/P-MLVs is further modulated by
specific substitutions at ECL3 residues 500, 507, 508
and ECL4 residues 579 and 583 [78,79,101] (Figure 5).
Substitutions at these sites can result in subtle differ-
ences in the efficiency of virus infection or complete
resistance to specific X/P-MLVs.
All of the viruses that use XPR1 are sensitive to muta-

tional changes in both ECL3 and ELC4, suggesting that
residues in these ECLs contribute to a single virus
attachment site [78,79,101]. Thus, Xpr1 mutants with
substitutions in ECL3 but identical ECL4 sequences pro-
duce receptors with differential sensitivities for P-MLVs
and for the CasE#1 and Cz524 viruses. These same
viruses also differ in their infectivity for cells with
Xpr1m, Xpr1c and Xpr1sxv, which have identical
ECL3 sequences but different deletions in ECL4. The
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Figure 4 Five functional variants of Xpr1 in Mus. Susceptibility to
4 host range X/P-MLV variants was determined using virus
pseudotypes carrying the LacZ reporter gene [101].

ECL3
ECL2

ECL4ECL1

ECL1 ECL2 ECL3 ECL4ECL1 ECL2 ECL3           ECL4

500 507 508 579 582 583

Xpr1sxv K  T  V    I  T  T
1Xpr1n E  T  V    I - T

Xpr1p K  Y  K    I  T  T 
Xpr1c K  T  V    I  - -
Xpr1m K  T  V - T  K p

Figure 5 Putative transmembrane structure of XPR1 and
locations of the 6 residues responsible for receptor function.
XPR1 has 4 putative extracellular loops (top) indicated as yellow
bars in the mRNA. Codon positions for residues involved in entry
are marked with arrows, and residues at these sites are shown for
the 5 Mus alleles. “-” represents a deletion.
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requirement for residues in two XPR1 loops for receptor
function is not unusual as other receptors require multi-
ple domains [104]. While these multiple domains in sev-
eral other retroviral receptors have distinctive roles in
virus attachment and entry [105,106], this has not been
shown to be the case for the XPR1 ECL3 and ECL4
domains.

Evolution of the Xpr1 receptor gene in virus
infected mice
The 5 functionally distinct mouse XPR1 receptor var-
iants are found in different mouse lineages. The species
and geographic distribution of these variants indicate
that much of this receptor variation is coincident with
exposure to MLVs [101]. Most Mus species carry the
most permissive XPR1 variant, Xpr1sxv, which persisted
in Mus through much of its evolutionary history (Figure
1). The species with Xpr1sxv either lack X/P-MLV ERVs
or carry only M/PMV ERVs that are not known to pro-
duce infectious virus. The 4 restrictive receptor alleles
appeared at two distinct time points in Mus evolution.
Xpr1p appeared about 7.5 MYA, shortly after the diver-
gence of Mus from other Murinae [63,64], and there is
no evidence that the mice with this restrictive receptor
were exposed to MLVs as they lack MLV ERVs [71].
The other 3 restrictive Xpr1s arose later, in the house
mouse complex. This roughly coincides with the acqui-
sition of X/P-MLV ERVs (Figure 1). Two of these 3
restrictive house mouse variants, Xpr1m and Xpr1c, like
the presence of Xmv sequences in these species, show
an apparent species-wide distribution [101], suggesting
these variants provided a survival advantage.
Xpr1n is the only one of the 5 Mus Xpr1 alleles to

completely restrict X-MLVs, and its species of origin is
unclear. This laboratory mouse allele has not been
found in any wild mouse [101]. The common inbred
strains of the laboratory mouse represent genomic
mosaics of the various house mouse species, but M.
domesticus is the largest contributor (~92%) to the
inbred mouse genome [69]. The expectation that M.
domesticus would likely carry Xpr1n also makes biologi-
cal sense, as these mice carry endogenous Pmvs but not
Xmvs consistent with Xpr1n receptor function [71].
However, M. domesticus mice trapped at various sites
throughout its western European range and in the
Americas all carry Xpr1sxv (Figure 6). It is thus possible
that Xpr1n arose later, in the fancy mouse progenitors
of laboratory mice. These fancy mouse interspecific
hybrids would have acquired M/Pmvs from domesticus
and Xmvs from musculus and castaneus, and a restric-
tive receptor might have provided a survival advantage
for these mice.
Sequence comparisons of Xpr1 orthologues from Mus

and other rodent species indicate that there is

substantial polymorphism in the short, virus-binding 13
residue ECL4. This region contains 3 residues that are
conserved in all mammalian XPR1 orthologues, but
these residues do not contribute to receptor function
[101]. While ECL4 sequence variation is due largely to
replacement mutations, the three restrictive alleles
found in virus-infected house mice, Xpr1m, Xpr1n,
Xpr1c, all carry deletions in this region (Figure 5)
[101,102]. The deletions are all different and no dele-
tions in this region are found in other mouse or rodent
species, or in any mammalian Xpr1 orthologue. Either
the 6 residues involved in these deletions are critical for
entry as has been shown for some of them, or decreas-
ing the size of the ECL4 loop may effectively disable
receptor function.

XPR1 variants in inbred strains of the laboratory
mouse
The first Xpr1 allele to be recognized, Xpr1n, was identi-
fied in X-MLV resistant laboratory mice, but Xpr1n is
not universal among the common inbred strains of
laboratory mice. These widely used common strains
were developed largely by William Castle and C. C. Lit-
tle from fancy mice provided by hobbyists, especially
Abbie Lathrop [70]. While these Lathrop/Castle/Little
strains have a shared ancestry reflected in their reduced
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Figure 6 Distribution of Xpr1sxv and Xpr1m in mice trapped in
various sites in Europe. The red line represents the 20 km-wide
hybrid zone separating the ranges of M. domesticus and M.
musculus [212]. Symbols indicate the trapping sites of each
sequenced sample [101].
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genetic diversity compared to Mus species [107,108], the
various lineages and strains differ in their susceptibility
to virus induced disease, and in their ability to produce
infectious MLVs or viral proteins (Table 2). While some
of these differences can be explained by the presence of
ERVs with different levels of activity, receptor variations
could also be important factors in these different
phenotypes.
While Xpr1n is carried by the majority of laboratory

mice, Xpr1sxv, which encodes the permissive receptor,
has now been identified in several common inbred
strains. Cells from these strains can be infected with X-
MLV [52]. One of the strains carrying Xpr1sxv, F/St, is
one of the two strains that produce high levels of
X-MLVs throughout life (Table 2). The role of the
receptor in this phenotype is unclear; however, as F/St
viremia requires genes on Chr 17 near the major histo-
compatibility locus and in the segment of distal Chr 1
which carries the active Xmv provirus Bxv1, as well as
Xpr1 [47,54].
Inbred strains derived from various wild mouse spe-

cies are available that carry all 4 of the wild mouse Xpr1
variants as well as Xpr1n. These strains can, in principle,
be used to determine if receptor-mediated secondary
spread affects virus levels in mice carrying active pro-
viruses like Bxv1. These mice can also be used to
develop models to describe the time course, tissue trop-
ism and pathogenic consequences of exogenous infec-
tion by the different X/P-MLV host range subtypes, and
to determine whether receptor variants affect the type of
recombinant viruses that appear.

Transspecies transmission and XMRV
The X/P-MLVs are capable of infecting cells of other
species, including humans. In fact, cells of nearly all
mammals are permissive to infection by X-MLVs, and a
smaller subset of these is also susceptible to P-MLVs
[3,4,77,101] (Table 3). The horizontal transfer of infec-
tious MLVs between individuals has been documented
in wild mouse populations and in laboratory mice
[109,110]. MLV-infected house mouse species have a
worldwide geographic distribution [111], and are consid-
ered important vectors of diseases that infect humans
and their livestock [112]. It is therefore not surprising
that MLV-related ERVs are found in the genomes of
amphibians, reptiles, birds and mammals [113], and that
X/P-MLV-related viruses and viral sequences have now
been reported in humans [114-119].
Infectious virus related to X/P-MLVs has been isolated

from human patients with prostate cancer and chronic
fatigue syndrome [115,117,118]. This virus, termed
XMRV (xenotropic murine leukemia virus-related virus),
shows close sequence homology with X/P-MLVs [114],
uses the XPR1 receptor [115], and has xenotropic

host range [79]. The VP62 isolate of XMRV and the
sequenced DG75 X-MLV genome [120] show overall
94% sequence identity [114]. A more complicated picture
emerges from sequence comparisons of the XMRV cod-
ing and non-coding domains with corresponding regions
of X-, P-, and E-MLVs, as well as the active Bxv1 Xmv
and a full length Mpmv. While XMRV most closely
resembles the X-MLVs in SUenv and LTR, it shows
greater identity to M/Pmvs in gag and pol (Table 4). This,
coupled with the recent finding of M/Pmv related env
and glycogag sequences in human blood donors and
chronic fatigue patients [119] points out the need for
further work to clarify the evolutionary path linking the
human and mouse viruses and to describe the epidemiol-
ogy of this virus family in wild mice [121].
The XMRV virus and X/P-MLV sequences found in

humans may have been acquired directly from mice, or
after transmission from mice to another species in con-
tact with humans. If there is direct transmission from
infected mice, this could be reflected in the geographic
distribution of virus and/or receptor type in mice and
the worldwide incidence of prostate cancer. Studies have
reported very different rates of XMRV detection in pros-
tate cancer patients (reviewed in [122]), and while these
differences may have technical explanations, it is also
possible that some of these differences are due to geo-
graphic differences in exposure to XMRV. The highest
rates of prostate cancer are found in the U.S. and lowest
rates are found in Asian countries like Japan, India and

Table 3 Infectivity of X/P-MLVs and XMRV on cells of
mammalian species

Log10 Titer*

Cells CAST-X
X-MLV XMRV Cz524 CasE#1

MoMCF
P-MLV

M. dunni +++ +++ +++ +++ +++

Human 293 +++ +++ +++ +++ +++

Monkey COS-1 +++ +++ +++ +++ +++

Ferret +++ +++ +++ +++ +++

Rabbit SIRC +++ ++ +++ +++ ++

Cat CRFK +++ +++ +++ +++ +++

Bat Tb-1-Lu +++ ++ +++ +++ -

Guinea pig JH4 +++ ++ ++ - -

Goat +++ ++ + - -

Buffalo +++ + - - -

Dog MDCK +++ ++ - - -

Gerbil GeLu +++ - - - -

Chinese hamster
Lec8

+++ - - - -

*Infectivity measured as the number of b-galactosidase-positive cells in 50 μl
of viral pseudotypes carrying the LacZ reporter. Log10 titer: +++, >3; ++, 2-3;
+, 1-2; -, 0-1. [101]. Hamster Lec8 cells have a glycosylation defect that
relieves resistance to some X-MLVs.
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China [123]. Rates in Europe are lowest in Eastern
European countries. This distribution generally corre-
sponds to the distribution of Xpr1 receptor variants in
mouse populations; the most permissive allele, Xpr1sxv,
is found in high tumor incidence areas, and the most
restrictive allele, Xpr1m, is found in low tumor areas like
Japan and eastern Europe. Mice in low tumor areas of
Asia also carry receptor blocking genes [124] further
indicating that these mice might be poor candidates for
zoonotic transmission to humans. While these observa-
tions are suggestive of direct transmission between mice
and man, it should also be noted that mice in areas of
high tumor incidence are not known to carry infectious
X/P-MLVs or expressed MLV ERVs.
The transmission of XMRV to humans was likely

accompanied by adaptive changes, and the observed
sequence and phenotypic differences of XMRV relative
to the X/P-MLVs have focused particular attention on
the glycogag leader region, LTR and env. XMRV carries
unusual deletions in glycogag, a region that in E-MLV
influences virus release and sensitivity to interferon
[125] and also inhibits the activity of the host cell anti-
retroviral factor APOBEC3 [126]. XMRV differs from
MLVs in its affinity for and efficient replication in pros-
tate cells, and this has been attributed to the glucocorti-
coid response element in the XMRV LTR U3 [127-129].
Finally, XMRV has a novel host range and receptor
requirements that distinquish it from the mouse X/P-
MLVs. Thus, the XPR1 receptor determining residues
K500 and T592 produce equivalent receptors for X-
MLV but not for XMRV [101]. Also, while the mouse
X-MLVs are generally able to infect all mammals,

XMRV is uniquely restricted by Chinese hamster and
gerbil cells (Table 3), a restriction associated with
sequence differences in the receptor determining region
of Xpr1 ECL4 [101]. These multiple XMRV differences
may represent adaptations acquired through contact
with humans or with an as yet undiscovered species
before transmission to humans.

Pathogenesis by MLVs
The detection of XMRV and P-MLVs in various human
patient groups and in blood donors raises questions
about the pathogenic and mutagenic potential of these
viruses in humans and concerns about the safety of the
blood supply. While the involvement of these viruses in
human disease is still under investigation, the MLVs
were recognized as disease-inducing agents in mice
almost 60 years ago [1]. Although most MLVs are gen-
erally non-pathogenic or poorly pathogenic in mice,
MLVs can and do cause disease in their natural hosts,
and the induction of disease can involve X-MLVs and
P-MLVs as well as E-MLVs.
Mouse strains carrying active Emvs, like AKR, HRS,

and C58, have a high incidence of spontaneous lympho-
mas, and mice inoculated with specific MLVs can
develop diseases such as lymphocytic leukemia, erythro-
leukemia, immunodeficiencies, and neurological diseases.
The naturally occurring and induced neoplastic diseases
are generally induced, following a long latency period, by
insertional mutagenesis. In this process, novel virus inte-
grations activate genes involved in growth regulation or
inactivate tumor suppressor genes [130,131]. The estab-
lished role of insertional mutagenesis in MLV-induced

Table 4 Sequence comparisons of coding and non-coding domains of XMRV and 5 full length gammaretrovirus
genomes

DG75 X-MLV AF221065 Bxv1 Xmv AC115959 Mpmv1 Pmv AC127565 MCF1233 P-MLV U13766 AKV E-MLV J01998

U5 90 100 90 99 93

LTR R 95 100 96 99 95

U3 87 94 85 84 84

gag leader 85 86 90 85 85

MA 90 86 98 84 87

gag p12 97 81 99 82 81

CA 99 88 99 89 87

NC 98 96 99 92 92

PR 99 92 99 92 92

pol RT 94 93 95 92 93

IN 92 93 97 89 86

env SU 94 95 89 90 < 75

TM 98 98 98 83 81

Numbers represent percent identity. DG75 is an X-MLV isolated from the human DG-75 lymphoblastoid line [120], MCF1233 and AKV MLV are infectious viruses
isolated from AKR strain mice. Bxv1 is the active endogenous xenotropic ERV found in strains such as C57BL and BALB/c. AKV has a duplicated enhancer in U3
that was not included in the analysis. Mpmv1 is a full-length ERV in the sequenced C57BL genome; it contains a 190 bp LTR insert that was not included in the
analysis. GenBank accession numbers are provided for the 5 sequences; comparisons were done with VP62 XMRV NC_007815.
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disease prompted the characterization of XMRV inser-
tion sites in human prostate cancers [132]. While no
common insertion sites were identified near recognized
proto-oncogenes or tumor suppressor genes, XMRV
integrations were found near cancer breakpoints, com-
mon fragile sites, microRNAs, and cancer-related genes.
In mice, MLV-induced neoplastic disease is often

associated with the de novo generation of infectious and
pathogenic P-MLVs. The disease process generally
begins with the establishment of chronic infection with
E-MLVs. These viruses can recombine with M/Pmvs
and Xmvs to generate recombinant infectious virus with
P-MLV host range and increased virulence [133,134].
These P-MLV recombinants can be cytopathic, which is
why they were initially termed mink cell focus-forming
viruses or MCF MLVs [8]. Although not all virus-
induced diseases are accompanied by the generation of
P-MLV recombinants, the importance of MCF MLVs in
the disease process is supported by the fact that these
recombinants are found in lymphoid tissues of preleuke-
mic mice and can be found in tumors as infectious virus
and novel integrations [135]. Also, inoculation of neona-
tal AKR mice with MCF virus accelerates the appear-
ance of thymomas [136], and disease is restricted in
mice carrying the Rmcf resistance gene that inhibits
replication of P-MLV [137] or in mice inoculated with
genetically altered viruses that cannot participate in
MCF production [138].
The recombinations that generate infectious patho-

genic P-MLVs involve at least two segments of the viral
genome, env and LTR. The LTR sequences are contribu-
ted by the active Xmv, Bxv1 [53,139], and the LTRs of
AKR mouse MCFs have duplicated enhancer regions
not found in the endogenous Bxv1 proviral sequence
[134]. The recombinant env segment in MCF MLVs can
vary due to the sequence of the participating M/Pmv
[35] as well as the size of the recombinant segment.
Recombinational breakpoints in the MCF env tend to
cluster in 2 segments of the 3’ half of SUenv or in the 5’
end of TMenv [82,85,86].
The role of the recombinant env genes in the disease

process is incompletely defined, but these substitutions
can contribute to the target cell specificity and disease
type induced by MCF MLVs. The most well-studied
example of disease mediated by viral Env is the rapid
erythroleukemia induced by Friend SFFV, a replication-
defective MCF-type recombinant. SFFV encodes a
unique 52/55 kDa Env-related protein that functions as
an oncogene and induces disease by activating signal
transduction pathways associated with the erythropoetin
receptor and the receptor tyrosine kinase Stk [140-142].
For other pathogenic MCF MLVs, Env may support the
in vivo progression of tumors by hampering the immune
response. In some cases, Env substitutions may facilitate

virus evasion of the immune system [143], or the ERV-
derived env genes expressed in tumors may contribute
to a T-cell mediated subversion of immune surveillance
that allows for tumor cell proliferation [144,145].
Preleukemic thymuses can contain large amounts of

unintegrated MCF MLV DNA resulting from failure to
establish superinfection interference [135,146]. Such
superinfections have been associated with cytopathic
killing by other pathogenic retroviruses such as HIV and
ALV [147,148], and superinfection by MCF results in
lymphocyte depletion in the thymus of infected mice
[149]. This depletion may result from endoplasmic reti-
culum stress induced apoptosis [150]. The ability of
MCF MLVs to evade superinfection interference is unu-
sual since other MLVs effectively prevent multiple infec-
tions by receptor downregulation. This phenomenon
may be explained by two properties of the MCF Env.
First, like some other pathogenic retroviruses, MCFs
may have lower receptor-binding affinity [45,102]. Sec-
ond, multiple infections can result from the ability of
MCFs to use the E-MLV receptor for entry in the pre-
sence of soluble E-MLV Env [45].

Host factors that restrict replication of X/P-MLVs
and XMRV
The acquisition of MLV ERVs, the time course and tis-
sue specificity of their expression, and the transmission
of these viruses to new hosts are governed by host fac-
tors that restrict or enhance virus replication and
spread. These host factors include the innate and
acquired immune systems, as well as numerous consti-
tutively expressed antiviral factors that inhibit virus
replication, many of which were initially identified in
studies on the mouse gammaretroviruses. These factors
can block or interfere with different stages in the viral
life cycle, such as virus entry, uncoating and reverse
transcription, integration, assembly and release. For this
review, I will focus on the host factors that either speci-
fically target the X/P-MLVs and XMRV, or factors that
have been shown to have significant restrictive effects
on these viruses (Table 5). Among the antiviral factors
that restrict these gamaretroviruses, some, like APOBEC
and tetherin/BST2 are broadly antiviral, whereas Fv1
targets only MLVs, while XPR1, LVIF, and the RMCF-
like interference genes restrict only X/P-MLVs.

Xpr1 receptor polymorphism and glycosylation blocks to
entry
Receptor polymorphisms can clearly provide an espe-
cially effective antiviral defense. As already noted, 4 of
the 5 XPR1 receptor variants in Mus restrict two or
more viruses in the X/P-MLV family. These restrictions
result from deletion mutations or replacements that
have been shown to display a pattern of positive
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selection suggesting an evolutionary history of genetic
conflicts [101]. Furthermore, 3 of the 4 naturally occur-
ring restrictive receptor alleles evolved in virus infected
mice, suggesting that these variants provided a survival
advantage. Additional restrictive Xpr1 variants are found
in non-Mus mammals [101] (Table 3).
Entry can also be blocked by factors that interfere

with receptor function. Glycosylation of cellular proteins
is associated with resistance to E-MLVs in rodent cells
and X-MLVs in Chinese hamster cells [151-153]. The
glycosylation block in hamster cells does not affect all
X/P-MLVs; inhibition of glycosylation relieves resistance
to most X-MLVs, but not to P-MLVs or to XMRV [79].
Although the XPR1 protein contains multiple sites for
N-linked glycosylation including several in the ECL3
receptor determining region, it is not clear whether the
glycosylation entry block affects the receptor or another
as yet unidentified glycoprotein.

Leukemia virus inactivating factor (LVIF)
Mice produce a serum factor, leukemia virus interfering
factor (LVIF), that inactivates X-MLVs [154]. This factor
is stable when exposed to acid pH, ether, proteases and
temperature extremes [155]. LVIF is separable from
immunoglobulin, is found in the lipoprotein fraction of
serum and is sensitive to antiserum to apolipoproteins
[156,157]. This factor inactivates X-MLVs and P-MLVs
but not E-MLVs or the wild mouse amphotropic MLVs.
LVIF is therefore not equivalent to the human serum fac-
tor responsible for the complement-mediated lysis of
MLVs and other retroviruses [158,159]. LVIF is produced
by some but not all mouse strains, and genetic crosses
between these strains show that LVIF is controlled by a
single locus that maps to distal Chr 10 [160]. The gene
responsible for this factor has not been identified.

ERVs that interfere with exogenous infection
The mouse genome contains several resistance genes
associated with production of MLV Env glycoproteins

that are thought to restrict virus through receptor inter-
ference. These genes include Fv4, which blocks E-MLVs
[161], and the genes Rmcf and Rmcf2 which restrict X/
P-MLVs and, in the case of Rmcf, inhibit MCF MLV-
induced disease [124,162-164]. Specific ERVs have been
mapped to these resistance genes all of which are defec-
tive for virus production but have intact env genes: Fv4
and Rmcf have major deletions [161,165], and Rmcf2 has
a stop codon that prematurely terminates integrase
[124]. Fv4, Rcmf, and Rcmf2 reduce or downregulate
activity of their cognate receptors, and Fv4 additionally
has a defect in the fusion peptide of the TMenv, so
incorporation of this Env into virions in virus infected
cells results in their reduced infectivity [166].
There is evidence of additional receptor blocking

genes in M. castaneus. Three breeding lines of this spe-
cies show similar restriction of P-MLV infection. Two of
these lines, CAST/Rp and CAST/EiJ, carry Rmcf2. Back-
cross mice of the third line, CAST/Ncr, show evidence
of two unlinked dominant resistance genes (#resistant/
total = 87/123 = 0.71, c2 = 1.2, p = 0.3), and neither of
these genes maps to Chr 5 (Rmcf) or Chr 18 (Rmcf2)
(unpublished data). These loci, together with Fv4 and
Rmcf2, may therefore be representative of a larger set of
interference genes found in virus infected mouse spe-
cies. That such co-opted Env genes are effective as host
antiviral factors is confirmed by the identification of
comparable interfering env genes in chickens, sheep and
cats [167-169].

Fv1
Fv1 is the oldest known retrovirus resistance gene [170]
and represents a co-opted ERV sequence related to the
gag gene of MuERV-L, a Class III ERV that is active in
mice, but has no infectious virus counterparts [171,172].
The Fv1 sequence is found only in mice, and was
acquired shortly after the origin of the Mus genus [173].
The laboratory mouse Fv1 has three well-characterized
restriction alleles, and there are additional Fv1-like
restrictions found in inbred strains and wild mouse spe-
cies [173-176]. The three major laboratory mouse alleles,
termed Fv1n, Fv1b, and Fv1nr produce characteristic pat-
terns of resistance to N-, B-, and NR-tropic MLVs. Cells
with the Fv1 null allele are nonrestrictive [94,175], and
NB-tropic viruses are not restricted by Fv1. Fv1 targets
the virus capsid; the major determinant that distin-
guishes N- and B-tropic viruses is at CA position 110,
but other target residues in this CA region have also
been identified [176-180].
Because X-MLVs fail to infect cells of many laboratory

mice, early studies used pseudotypes and recombinant
viruses to suggest that X-MLVs are subject to Fv1
restriction [181,182]. Groom and colleagues [183] have
more recently demonstrated that XMRV is unusual in

Table 5 Host restriction factors that inhibit replication of
gammaretroviruses

Restriction*

Restriction Factor X-MLV P-MLV XMRV E-MLV

Xpr1 + + + -

Entry: glycosylation + - - +

Lvif + + ? -

ERV interference ? + (Rmcf genes) ? +(Fv4)

Fv1 + + + +

Apobec3 -? +? + +

Tetherin/BST2 ? ? + +

*+, infectious virus known to be inhibited; determination of Apobec3
restriction of X/P-MLVs based on mutational patterns found in ERVs [25].
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that it is restricted in cells expressing either Fv1n or
Fv1b. Infection of X-MLV susceptible inbred strains sug-
gests that XMRV is somewhat more sensitive to Fv1n,
and also indicates that various mouse X-MLVs can be
restricted by Fv1 [52]. XMRV carries the Fv1n restricted
residue at capsid target site 110, but its sensitivity to
both Fv1n and Fv1b and the presence of additional sub-
stitutions in its CA gene suggest that the Fv1 target is
more complex than previously appreciated.

Apobec3
APOBEC3, like Fv1, is responsible for post-entry restric-
tion of retroviral infection [184,185]. The mouse and
human APOBEC3 genes are under strong positive selec-
tion suggesting an antiviral role in evolution [186,187].
There are 7 human APOBEC3 genes with differing anti-
viral activity against HIV-1 as well as MLVs; the single
mouse APOBEC3 gene blocks HIV-1 and various mouse
retroviruses [188-190]. mAPOBEC3 can restrict E-
MLVs, and this gene maps to the site of the Friend
virus restriction factor Rfv3 [191,192], a gene that influ-
ences the duration of viremia in virus-infected mice
[193]. Pmvs but not Xmvs in the sequenced mouse gen-
ome show mutational patterns consistent with mAPO-
BEC3 silencing at the time of integration [25]. The
sensitivity of infectious X/P-MLVs to APOBEC3 has not
been determined, but XMRV is sensitive to inhibition by
A3G, but is less sensitive or insensitive to A3A, A3B,
A3C, A3F and A3H. XMRV is also more sensitive to
mAPOBEC3 than is Moloney E-MLV [183,194].
The 2 laboratory mouse alleles of mAPOBEC3 vary in

their restriction of Friend E-MLV replication and virus-
induced disease, and differ in protein sequence, splicing
pattern and expression levels [187,191,192,195]. The
more antiviral allele of C57BL mice shows significantly
higher levels of expression in mouse tissues [191,195],
and this allele contains an Xmv LTR inserted into an
intron [187]. This insertion introduces an intact LTR
transcriptional enhancer, and all species and strains with
this LTR show elevated mAPOBEC3 expression. This
Xmv, acquired in virus-infected mice [187], may thus
represent another example of an ERV sequence that is
co-opted by the virus-infected host for an antiviral func-
tion, like Fv1 and Rmcf.

Tetherin/BST2/CD317
Tetherin, also termed BST2, CD317 or HM1.24, is an
interferon-inducible host factor that blocks the release
of enveloped viruses by tethering budding particles to
the cell surface [196]. Tetherin can be antagonized by
the VPU accessory protein of HIV-1 or by the Nef pro-
tein of SIV or by the envelope glycoproteins of various
immunodeficiency viruses [197-201]. The effectiveness
of these viral protein antagonists is species specific

[202], and these viral antagonists target different sites in
tetherin [198]. Mouse E-MLV is subject to restriction by
tetherin [196], and while the sensitivities of mouse X/P-
MLVs to this host factor are unknown, XMRV has now
been shown to be sensitive to human, monkey and
mouse tetherins [183]. XMRV, as a simple gammaretro-
virus, lacks the accessory proteins of the immunodefi-
ciency viruses that antagonize tetherin action, and its
Env glycoprotein does not interfere with tetherin activity
[183].

Conclusions
Multiple examples of xenotropism exist among the ret-
roviruses. In addition to X-MLV, viruses that fail to
infect cells of their apparent “home” species include the
cat RD114-related viruses [203,204], GALV restriction
in mice [205,206], and restrictions of avian leukosis
viruses [207]. However, a half century of work on the
MLVs and the availability of multiple inbred strains and
wild mouse species have provided a unique look at the
natural history of this particular virus-host relationship.
The picture that emerges indicates that these X/P-MLVs
were acquired as endogenous elements by Mus species
with permissive receptors, and subsequent co-evolution-
ary modifications produced, among other adaptive phe-
notypes, “xenotropic” MLVs. The receptor mutations
responsible for resistance to these X-MLVs were only
recently acquired, and these restrictive receptors are
only found among the inbred strains descended from
early 20th century fancy mouse colonies. It is now clear
that the term “xenotropic” is somewhat of a misnomer
for mouse viruses that actually infect cells of all Mus
species and many common strains of laboratory mice,
and that infect more non-Mus mammals than the so-
called broad host range polytropic MLVs.
The interacting interfaces of host and pathogen are

co-evolutionary battlegrounds, and the effects of the
ratchet-like mutational process affecting these entities
are particularly obvious for restriction factors like Xpr1
and Fv1. The battleground at the cell surface has pro-
duced at least 6 host range X/P-MLV variants that
interact with different but overlapping sets of determi-
nants on the XPR1 receptor. At the same time, other
factors likely contribute to diversifying selection on the
X/P-MLV viral Env glycoprotein, such as the Rmcf-type
interfering ERVs and the inactivating LVIF serum factor.
The resulting Envs not only vary in tropism, but these
viruses have also evolved alternative mechanisms of
transmission. Although germline PMV ERVs are effec-
tively silenced, and the Env glycoproteins of infectious
recombinant P-MLVs have narrow receptor require-
ments and reduced receptor binding efficiency, these
multiple mechanisms ensure their transmission and also
contribute to pathogenicity.
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MLV ERVs, as part of the host genome, are also
shaped by evolutionary processes. ERV insertions intro-
duce novel regulatory and protein coding sequences into
the host genome. While most are silenced, some are co-
opted for cellular functions, and the most easily recog-
nized of these domesticated ERVs are those that are
linked to antiviral functions. Such ERVs include the old-
est recognized restriction factor, Fv1, [170] as well as X/
P-MLV ERV insertions that include the multiple Rmcf-
like interference genes, and regulatory elements like the
mAPOBEC associated Xmv LTR.
The worldwide distribution of mice that carry MLVs

and the broad host range of the X-MLVs suggest that we
are only beginning to describe what may be common and
widespread interspecies transmissions. The phenotypic
diversity among the MLVs doubtless influences the likeli-
hood of their transspecies transmission, and the invading
viruses are then subject to additional co-evolutionary
pressures. We do not know the evolutionary path taken
by XMRV to humans, but multiple sequence and func-
tional variations distinguish this virus from its MLV pro-
genitors. The consequences of this transspecies MLV
invasion are unclear, although XMRV pathophysiology is
now being evaluated in other species, including primates
[208] as well as in Mus species, like M. pahari, that are
permissive for X-MLV and XMRV infection [209]. The
fact that all mice carrying infectious X-MLVs have one of
3 restrictive receptors suggests that unchecked X-MLV
infection is likely to be deleterious, and the recognition
that many mice carry permissive receptors now makes it
possible to describe the pathogenic consequences of exo-
genous X-MLV infection in their natural host. Further
characterization of these viruses should further elucidate
their evolutionary past and describe their pathogenic
potential and the adaptations that favor co-existence of
these infectious agents and their new human hosts.
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