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Andrei Khrennikov*
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We present a quantum-like model of sensation–perception dynamics (originated in

Helmholtz theory of unconscious inference) based on the theory of quantum apparatuses

and instruments. We illustrate our approach with the model of bistable perception of a

particular ambiguous figure, the Schröder stair. This is a concrete model for unconscious

and conscious processing of information and their interaction. The starting point of

our quantum-like journey was the observation that perception dynamics is essentially

contextual which implies impossibility of (straightforward) embedding of experimental

statistical data in the classical (Kolmogorov, 1933) framework of probability theory. This

motivates application of nonclassical probabilistic schemes. And the quantum formalism

provides a variety of the well-approved andmathematically elegant probabilistic schemes

to handle results of measurements. The theory of quantum apparatuses and instruments

is the most general quantum scheme describing measurements and it is natural to

explore it to model the sensation–perception dynamics. In particular, this theory provides

the scheme of indirect quantum measurements which we apply to model unconscious

inference leading to transition from sensations to perceptions.

Keywords: sensation, perception, quantum-like model, quantum apparatuses and instruments, bistable

perception, unconscious inference

1. Introduction

In recent years the mathematical formalism of quantum mechanics was applied to a variety of
problems outside of quantum physics: from molecular biology and genetics to cognition and
decision making (see the monographs, Khrennikov, 2010b; Busemeyer and Bruza, 2012; Haven
and Khrennikov, 2012) and the extended lists of references in them as well as in the papers (Aerts
et al., 2014; Khrennikov et al., 2014).

The problem of mathematical modeling of bistable perception and, more generally, unconscious
inference1 is that it can be rather complex and that its nature is not understood well-enough to
allow one to choose the optimal model. In spite of tremendous efforts during the last 200 years,
this problem cannot be considered fully solved (cf. Newman et al., 1996; Laming, 1997). In this
note we apply the theory of quantum apparatuses and instruments (Davies and Lewis, 1970; Busch
et al., 1995; Ozawa, 1997) to quantum-like modeling of sensation–perception dynamics as the
concrete example of unconscious and conscious processing of information and their interaction.Our
model can be applied to general unconscious–conscious information processing. It generalized
the quantum-like model developed in Khrennikov (2004). We also point out that this paper is the

1Unconscious inference (Conclusion) is a term of perceptual psychology invented by von Helmholtz (1866); Boring (1942),

to describe an involuntary, pre-rational and reflex-like mechanism which is part of the formation of visual impressions.
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first attempt to apply the theory of quantum apparatuses and
instruments outside of physics, to cognition and psychology.

Special quantum structures were elaborated in order to
mathematically represent most general measurement schemes
and are applicable both in classical and quantum physics
and, practically, in any domain of science. They generalize
the pioneer quantum measurement representation by operators
of the projection type, also known as von Neumann–Lüders
measurements. In quantum physics, this new general framework
is of vital importance since the projection type measurements
do not completely cover real experimental situations (Davies
and Lewis, 1970; Busch et al., 1995; Ozawa, 1997; Nielsen and
Chuang, 2000). It seems that the same holds true in mathematical
modeling in cognition and psychology (see Asano et al., 2010a,b;
Khrennikov, 2010b; Asano et al., 2011, 2012; Khrennikov and
Basieva, 2014; Khrennikov et al., 2014), although here the
situation is not yet absolutely clear and, obviously, the underlying
reason for using quantum instruments is different.

To motivate the use of the theory of quantum apparatuses
and instruments, we shall compare it first to classical probabilistic
methods and then to simpler quantum-like models of processing
data from cognitive science and psychology based on the
von Neumann–Lüders measurements. A detailed discussion on
violation of laws of classical probability theory by statistical data
collected in cognitive science and psychology can be found in
Khrennikov, 2010b and SS. We can, for example, point to the
order effect (Khrennikov, 2010b; Wang and Busemeyer, 2013)
and the disjunction effect (Khrennikov, 2010b; Busemeyer and
Bruza, 2012). In the probabilistic terms these are just various
exhibitions of violation of the formula of total probability. In
general, during recent years quantum probability and decision
making were successfully applied to describe a variety of
problems, paradoxes, and probability judgment fallacies, such
as Allais paradox (humans violate Von Neumann–Morgenstern
expected utility axioms), Ellsberg paradox (humans violate
Aumann–Savage subjective utility axioms) (see e.g., Haven et al.,
2009; Asano et al., 2010a,b, 2011, 2012; Busemeyer et al., 2011;
Pothos and Busemeyer, 2013; Wang and Busemeyer, 2013; Aerts
et al., 2014; Khrennikov and Basieva, 2014). Psychologists and
economists explore the new way inspired by one simple fact
from physics: quantum probability can work in situations where
classical probability does not. Why? Answers may differ (see
Khrennikov, 2010b). We point to contextuality of data as one
of the main sources of its non-classicality (Khrennikov, 2010b;
Dzhafarov and Kujala, 2012a,b, 2013).

As was pointed out, at the beginning of quantum theory
physicists attempted to represent quantum measurements they
were dealing with by projectors. The same attitude could be
observed in applications of the quantum formalism outside of
physics. Granted, some statistical psychological effects can be
nicely described with the help of the von Neumann–Lüders
measurements (see e.g., Haven et al., 2009; Busemeyer et al.,
2011; Busemeyer and Bruza, 2012; Pothos and Busemeyer, 2013;
Wang and Busemeyer, 2013; Aerts et al., 2014). However, more
detailed analysis showed (Asano et al., 2010a,b; Khrennikov,
2010b; Asano et al., 2011, 2012; Khrennikov and Basieva,
2014; Khrennikov et al., 2014) that, in general, data from

cognitive psychology cannot be embedded into the projection-
measurement scheme. Therefore, it is natural to follow the
development of quantum physics and proceed within a general
theory of measurements.

In this paper we do this by illustrating the general theory
of quantum instruments with one concrete example: bistable
perception of the concrete ambiguous figure, the Schröder stair.
Why do we use a quantum-like model? Here the argument is
more complicated than in the case of the order and disjunction
effects and other probability fallacies mentioned above. The
deviation from classical probability theory is expressed not as a
violation of the formula of total probability, but as a violation
of one of the Bell-type inequalities, namely, the Garg–Leggett
inequality (Asano et al., 2014). We point out that the Bell-type
inequalities play an important role in modern quantum physics.
If such an inequality is violated, then the data cannot fit a
classical probability space. As was shown in our previous study
(Asano et al., 2014), the data collected in a series of experiments
performed at Tokyo University of Science (see Asano et al.,
2014) for details, violate the Garg–Leggett inequality (statistically
significantly)2.

The first step toward creation of a quantum-like model of
bistable perception was done by Atmanspacher and Filk (2012,
2013). We studied this problem in Asano et al. (2014), where
we demonstrated a violation of the Garg–Leggett inequality
for experimental probabilistic data collected for rotating image
of Schröder stair (the experiment was performed at Tokyo
University of Science), in Accardi et al. (in press) we presented a
quantum-like adaptive dynamical model for bistable perception.
The latter is based on a more general formalism than the
theory of quantum instruments—on the theory of adaptive
quantum systems. In the present paper, the traditional approach
to quantummeasurement theory is used for modeling sensation–
perception transition and unconscious inference.

Finally, we point out that violation of laws of classical
probability theory is a statistical exhibition of violation of laws of
classical Boolean logic. Thus, in logical terms the quantum-like
modeling of cognition is modeling of a nonclassical reasoning,
decision making, and problem solving. In particular, in our
model unconscious inference, generation of a perception from
a sensation, is not based on the rules of classical logics. We
also remark that the so called quantum logic corresponding to
the quantum formalism is just one special type of nonclassical
logic. In principle, there are no reasons to assume that human
(mental) cognition, even if it has a non-Boolean structure, can be
modeled completely with the aid of quantum logic and quantum
probability. Still more general models might be explored, see
(Khrennikov and Basieva, 2014) for a discussion.

2We remark that the formula of total probability and the Bell-type inequalities

can be treated as just two special statistical tests of non-classicality of the data

(see Conte et al., 2008; Bruza et al., 2010; Khrennikov, 2010b; Asano et al., 2014;

Dzhafarov and Kujala, 2014) for discussion. This is the “minimal interpretation.”

In quantum physics the standard interpretation of these inequalities is related

to whether we can proceed with a realistic and local model. The Garg–Leggett

inequality is a rather special type of Bell’s inequalities, since it is about time

correlations for a single system and the original Bell’s inequality is about spatial

correlations for pairs of systems.
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2. Advantageousness of Quantum
Instrumental Modeling in Cognitive
Psychology

We emphasize that, as well as quantum physics (Plotnitsky,
2006, 2009), cognitive and social sciences also can be treated as
theories of measurements. A great deal of effort has been put
into the development of measurement formalisms, cf. with, e.g.,
the time-honored Stimulus–Organism–Response (S–O–R) scheme
for explaining cognitive behavior (Woodworth, 1921). Just like
the situation in quantum physics, cognitive and social scientists
cannot approach the mental world directly; they work with
results of observations. Both quantum physics and cognitive
and social sciences are fundamentally based on operational
formalisms for observations.

The basic notions of the operational formalism for the
quantum measurement theory are quantum apparatus and
instrument (Davies and Lewis, 1970; Busch et al., 1995;
Ozawa, 1997). Quantum apparatuses are mathematical structures
representing at a high level of abstraction physical apparatuses
used for measurements. They encode the probabilities of the
results of observations as well as the back-actions of the
measurements on the states of physical systems. Such back-
actions are mathematically represented with the aid of another
important mathematical structure, a quantum instrument.
Our aim is to explore the theory of quantum apparatuses
and instruments and especially its part devoted to indirect
measurements in cognitive and social sciences.

The scheme of indirect measurements is very useful for
applications, both in quantum physics and humanities. In this
scheme, besides the “principle system” S, a probe system S′ is
considered. A measurement on S is composed of the unitary
interaction with S′ and a subsequent measurement on the
latter.

In our cognitive modeling S represents unconscious
information processing and S′ conscious. In the concrete
example of Helmholtz unconscious inference, S represents
processing of sensation (its unconscious nature was emphasized
already by Helmholtz) and S′ represents processing of perception
- conscious representation of sensation.

This approach provides a possibility to extend the class
of quantum measurements which originally were only von
Neumann–Lüders measurements of the projection type. Such
an extension serves not only the natural seeking of generality.
Generalized quantum measurements have some new features.
Here we shall concentrate only on those of them relevant to our
project on quantum-like cognition.

For us, one of the main problems of exploring solely
projective (direct) measurements is their fundamentally invasive
nature: as the feedback of a measurement, the quantum state
is “aggressively modified”—it is projected onto the subspace
corresponding to the result of this measurement. In any event,
this feature is not so natural for the dynamics of sensation and
perception states. Of course, each “perception–creation”modifies
the states of sensation and perception, but these modifications
are not of the collapse type, as they should be in the case of
projections.

Important for our applications is that a variety of different
quantum instruments (describing back-reaction transformations
resulting from measurements) can correspond to one and
the same observable on the principle system S. That is,
measurements having the same statistical results may lead to
very different state transformations (due to very different types
of interaction between the principle and probe systems). In
quantum mechanics (as Ozawa emphasized Ozawa, 1997), the
same observable can be measured by different apparatuses
having different state-transforming quantum instruments. This
is a very important characteristic of the theory of generalized
quantum measurements. It is also very useful for cognitive
modeling, since it reflects the individuality of measurement
apparatuses/instruments which are used by cognitive systems
(e.g., human beings) to generate the same perception.

We point out that the scheme of indirect measurements
accounts for state dynamics in the process of measurement,
which is not just a “yes”/“no” collapse as in the original von
Neumann–Lüders approach. The possibility to mathematically
describe the mental state dynamics in the process of perception–
creation by means of the quantum formalism is very attractive.
A study in this direction was already presented in the work
of Pothos and Busemeyer (2013), although without appealing
to the operational approach to quantum mechanics. In the
series of works of Asano et al. (2010a,b, 2011, 2012), the
process of decision making was described by a novel scheme
of measurements generalizing the standard theory of quantum
apparatuses and instruments (Asano et al., 2010a,b, 2011, 2012).

Now we list once again the main advantageous properties
of the quantum instrument/apparatus modeling in cognitive
psychology:

1. A possibility to model the feedback reaction of a “mental
measurement” (including self-measurements such as decision
making and problem judgment) without collapse-like
projections of mental states (belief states).

2. The same (self-)measurement output can correspond to a
variety of mental state processing.

3. This is the only way to consistently model indirect
measurements in which the output of one psychological
function of the brain is (self-) measured through the output
of another psychological function.

3. Quantum States

We start with a brief introduction to the quantum basics and
define pure and mixed quantum states. The state space of a
quantum system is complex Hilbert space. Denote it byH. This is
a complex linear space endowed with a scalar product, a positive-
definite non-degenerate Hermitian form. Denote the latter by
〈·|·〉. It generates the norm on H: ‖ψ‖ =

√
〈ψ |ψ〉.

A reader who does not feel comfortable in the abstract
framework of functional analysis can simply proceed with the
Hilbert space H = Cn, where C is the set of complex
numbers, and the scalar product 〈u|v〉 =

∑
i uiv̄i, u =

(u1, ..., un), v = (v1, ..., vn). Instead of linear operators, one can
consider matrices.
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Pure quantum states are represented by normalized vectors,
ψ ∈ H : ‖ψ‖ = 1. Two colinear vectors, ψ ′ = λψ, λ ∈
C, |λ| = 1, represent the same pure state. Each pure state can
also be represented as the projection operator Pψ which projects
H onto the one dimensional subspace based on ψ. For a vector
φ ∈ H, Pψφ = 〈φ|ψ〉 ψ. Any projector is a Hermitian and
positive-definite operator3. We also remark that the trace of the
one dimensional projector Pψ equals to 1: Tr Pψ = 1. (We
recall that, for a linear operator A, its trace can be defined as the
sum of diagonal elements of its matrix in any orthonormal basis:
Tr A =

∑
i aii.) We summarize these properties of an operator

(matrix) ρ = Pψ representing a pure state. It is

1. Hermitian,
2. positive-definite,
3. trace one,
4. idempotent: ρ2 = ρ.

A linear operator is an orthogonal projector if and only if
it satisfies (1) and (4); in particular, (2) is a consequence of
(4). The properties (1–4) are characteristic for one dimensional
orthogonal projectors—pure states [for a projector, (3) implies
that it is one dimensional], i.e., any operator satisfying (1–4)
represents a pure state.

The next step in the development of quantum mechanics was
the extension of the class of quantum states, from pure states
represented by one dimensional projectors to states represented
by linear operators (matrices) having the properties (1–3).
Such operators (matrices) are called density operators (density
matrices). (This nontrivial step of extension of the class of
quantum states was based on the efforts of Landau and von
Neumann). One typically distinguish pure states, as represented
by one dimensional projectors, and mixed states, those density
operators which cannot be represented by one dimensional
projectors. The terminology “mixed” has the following origin:
any density operator can be represented as a “mixture” of pure
states (ψi):

ρ =
∑

i

piPψi , pi ∈ [0, 1],
∑

i

pi = 1. (1)

The state is pure if and only if such a mixture is trivial: all
pi, besides one, equal to zero. However, by operating with the
terminology “mixed state” one has to take into account that the
representation in the form Equation (1) is not unique. The same
mixed state can be interpreted as mixtures of different collections
of pure states.

Any operator ρ satisfying (1–3) is diagonalizable (even in the
infinite-dimensional Hilbert space), i.e., in some orthonormal
basis it is represented as a diagonal matrix, ρ = diag(pj), where
pj ∈ [0, 1],

∑
j pj = 1. Thus, it can be represented in the

form Equation (1) with mutually orthogonal one dimensional

3We recall that a linear operator A in H is called Hermitian if it coincides with

its adjoint operator, A = A⋆. If an orthonormal basis in H is fixed, (ei), and A is

represented by its matrix, A = (aij), where aij = 〈Aei|ej〉, then it is Hermitian

if and only if āij = aji. A linear operator is positive-definite if, for any φ ∈ H,

〈Aφ|φ〉 ≥ 0. It is equivalent to positive definiteness of its matrix. We remark that,

for a Hermitian operator, all its eigenvalues are real.

projectors. The property (4) can be used to check whether a
state is pure or not. We point out that pure states are merely
mathematical abstractions; in real experimental situations it is
possible to prepare only mixed states; one defines the degree of
purity as Tr[ρ2 − ρ]. Experimenters are satisfied by getting this
quantity less than some small ǫ.

4. Atomic Instruments/Apparatuses

The notions of instrument and apparatus are based on very
simple and natural consideration. Consider systems of any origin
(physical, biological, social, financial). Suppose that the states of
such systems can be represented by points of some set X. These
are statistical states, i.e., by knowing the state of a system one can
determine the values of observables only with some probabilities.
Then, for each state x ∈ X and observable A and its concrete
value ai, there is defined a map

pi = fA,ai(x) (2)

giving the probability of the result A = ai for systems in the state
x ∈ X. Here fA,ai : X → [0, 1]. Then its is natural to assume
that the measurement modifies the state x, i.e., there is is defined
another map

xi = gA,ai (x), (3)

here gA,ai :X → X. This scheme is applicable both in classical and
quantum physics as well as in psychology—Stimulus–Organism–
Response (S–O–R) scheme for explaining behavior (Woodworth,
1921) of humans and other cognitive systems.

For the fixed observable A, the system of the state
transformation maps (gA,ai) corresponding to all possible values
(ai) of A is called an instrument and the collection of maps
(fA,ai; gA,ai ) is called an apparatus. Of course, this scheme is too
general and, to get something fruitful, one has to select the state
space X having a special structure and special classes of f - and g-
maps. Quantum theory is characterized by selection of the state
space starting with a complex Hilbert space. This choice leads to
theory of quantum instruments and apparatuses.

The general theory of quantum measurements is
mathematically advanced, Section 9. Therefore, it is useful
to illustrate it by a simple example. We consider the simplest
class of quantum instruments extending the class of von
Neumann–Lüders instruments of the projection type. These are
atomic instruments.

Suppose that the range of values of a measurement, spectrum
of an observable, is discrete O = {a1, ..., an}. The main point
of theory of instruments is that each measurement resulting in
a concrete value ai generates the feedback action to the original
state ρ of a quantum system, i.e., ρ is transformed into a new state
ρai , see Equation (3):

ρ → ρai . (4)

We start with the standard von Neumann–Lüders
measurements. which gives us an important class of
quantum instruments/apparatuses (especially from the
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historical viewpoint) . These measurements are mathematically
represented by Hermitian operators,

A =
∑

i

aiPai , (5)

where Pai is the projector onto the eigensubspace corresponding
to the eigenvalue ai. For pure states, the transformation
(Equation 4) is based on the projection Pai :

ψ → Paiψ, (6)

this map is linear and it is convenient to work with it. However,
if Pai 6= I, where I is the unit operator, then ‖Paiψ‖ < 1, so the
output of Equation (6) is not a state. To get a state, it has to be
normalized by its norm:

ψ → Paiψ

‖Paiψ‖
. (7)

This is a map from the space of pure states into the space of pure
states, but it is nonlinear. This type of the feedback reaction to
the result of measurement was postulated by von Neumann. It
is well-known as the projection postulate of quantum mechanics
(the state reduction postulate or the state collapse postulate,
see (Khrennikov and Basieva, 2014) for a psychologist-friendly
discussion on these postulates and their role in quantum physics
and cognitive psychology and psychophysics) 4.

Now, for a pure stateψ, one can consider its representation by
the density operator ρ = Pψ . In such terms, the state transform
(Equation 6) can be written as

ρ → PaiρPai . (8)

This is the simplest example of a transformation which in
quantum measurement theory is called a quantum operation.
It can be extended to the linear map from the space of linear
operators (matrices) to itself—by the same formula (Equation 8).
For a finite spectral set O, the collection of quantum operations
(Equation 8) , ai ∈ O, gives the simplest example of a quantum
instrument.

We are again interested in a map from the space of density
operators (matrices) to itself, see Equation (4). Thus, we again
have to make normalization:

ρ → ρai =
PaiρPai

Tr PaiρPai
. (9)

4It is less known (in fact, practically unknown) that von Neumann sharply

distinguished the case of observables with non-degenerate spectra, i.e., all (Pai )

in the spectral decomposition of A, see Equation (5), are one dimensional

projectors, and degenerate spectra, i.e., some of (Pai ) are projectors onto multi-

dimensional subspaces. In the first case he postulated aforementioned state-

collapse (Equation 7), but in the second case he pointed out that the measurement

feedback can generate state transformations different from one given by Equation

(7); in particular, the output of the initial pure state can be a mixed state.

Later Lüders extended the von Neumann projection postulate even to projectors

with degenerate spectra, i.e., in fact, he reduced the class of possible state

transformations (quantum operations). This simplification was convenient in

theoretical studies and the projection postulate was widely treated as applicable

generally, i.e., even to observables with degenerate spectra. The name of Lüders

was washed out from the majority of foundational works and nowadays the

projection postulate is typically known as the von Neumann projection postulate

(see Khrennikov, 2008) for more details.

It is nonlinear and physicists work with quantum operations
(forming instruments), by making normalization by trace only
at the final step of calculations which can involve a chain of
measurements.

However, we are primarily interested not in the measurement
feedback to the initial quantum state ρ, but in the probabilities to
get the results ai ∈ O. Denote them p(ai|ρ). Here they are given
by Born’s rule. If the initial state is pure ρ = Pψ , then

p(ai|ψ) = 〈Paiψ |ψ〉 = ‖Paiψ‖2. (10)

It is easy to see that

p(ai|ψ) = Tr PaiPψ . (11)

This formula can be easily generalized, e.g., via Equation (1), to
an arbitrary initial state ρ:

p(ai|ρ) = Tr Paiρ. (12)

A quantum apparatus is the combination of feedback state-
transformations, i.e., a quantum instrument, and detection
probabilities.

In the von Neumann–Lüders approach the quantum
instrument is uniquely determined by an observable, the
Hermitian operator A. The latter is the basis of the construction.
However, even in this approach we could start directly with
an instrument determined by a family of mutually orthogonal
projectors (Pai ), i.e.,

∑

i

Pai = I, (13)

where Pai ⊥ Paj , i 6= j, and then define the observable A simply
as this family (Pai ). In quantum information the values ai have
merely the meaning of labels for the results of measurement.
For future generalization, we remark that the normalization
condition (Equation 13) can be written as

∑

i

P⋆aiPai = I, (14)

because, for any orthogonal projector P, P⋆ = P and P2 = P.
Now wemove to general atomic instruments and apparatuses.

Here quantum operations have the form:

ρ → QaiρQai , (15)

where, for each value ai, Qai is a linear operator which is a
contraction (i.e., its norm is bounded by 1). These operators are
constrained by the normalization condition, cf. (Equation 14):

∑

i

Q⋆aiQai = I, (16)

These operations determine an atomic quantum instrument.
Each quantum operation induces the corresponding state
transformation:

ρ → ρai =
QaiρQai

Tr QaiρQai

. (17)
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In particular, pure states are transformed into pure states (similar
to the von Neumann–Lüders measurements):

ψ → Qaiψ

‖Qaiψ‖
. (18)

Probabilities of the results of measurements are given by the
following generalization of Equation (12):

p(ai|ρ) = Tr Maiρ, (19)

where

Mai = Q⋆aiQai . (20)

(We remark that if Qai is a projector, then Q⋆ai = Qai and Q2
ai
=

Qai . Thus, in this case (Equation 19) matches with (Equation 12).
In this way we obtain the corresponding quantum instrument.

The class of atomic instruments and apparatuses is the most
direct generalization of the von Neumann–Lüders class. In
particular, in general quantum instruments do not transfer pure
states into pure states, see Appendix.

5. Bistable Perception of Schröder Stair

The experiment is about perception of on the ambiguous figure,
the Schröder stair, see Figure 1. Here we reproduce data from
paper (Asano et al., 2014), where the reader can find a more
detailed presentation.

A total of 151 subjects participated in the test performed at
Tokyo University of Science. They were divided into three groups
(nA = 55, nB = 48, nC = 48). To the subjects of all three groups,
we showed 11 pictures of the Schröder stair which was leaning at
different angles. Subjects answered L =“I can see that left side is
front,”or R =“I can see that right side is front” for each picture.
Thus, we have a random variable for perception, Xθ = L,R.We
denote the experimental probability that a subject answers “Left
side is front” by p(Xθ = L).

For the first group (A), order of showing pictures is randomly
selected for each subject. For the second group (B), angle θ
changed from 0 to 90 as if the picture was rotating clockwise.

FIGURE 1 | Schröder Stair is an ambiguous figure which may have two

different interpretations, “left part (L) is front and right part (R) is

back,” and its converse. Humans percept either of them, and the

tendency of the perception depends on the roatating angle θ .

Inversely, for the third group (C), the angle θ was changed from
90 to 0. As a result, we obtained perception trends with respect
of angles, see Figure 2. These graphs demonstrate contextuality
of data, its dependence on experimental contexts, (A)–(C), (see
Asano et al., 2014) for numerical estimation of the degree of
contextuality as violation of the Garg–Leggett inequality. As
was discussed in Introduction, contextual statistical data can be
modeled by using the quantum formalism.

6. Mental Apparatuses

We shall proceed with finite dimensional state spaces by making
remarks on the corresponding modifications in the infinite
dimensional case. The symbol D(H) denotes the space of density
operators in the complex Hilbert space H; L(H) the space of
all linear operators in H (bounded operators in the infinite
dimensional case).

The space L(H) can itself be endowed with the structure of the
linear space. We also have to consider linear operators from L(H)
into itself; such maps, T :L(H) → L(H) are called superoperators.
We shall use this notion only in Section 9. Thus, for a moment,
the reader can proceed without it.

Moreover, on the space L(H) it is possible to introduce the
structure of Hilbert space with the scalar product

〈A|B〉 = Tr A⋆B.

Therefore, for each superoperator T : L(H) → L(H), there
is defined its adjoint (super)operator T⋆ : L(H) → L(H),
〈T(A)|B〉 = 〈A|T⋆(B)〉,A,B ∈ L(H).

For reader’s convenience we remind the notion of POVM.
Definition. A positive operator valued measure (POVM) is a

family of positive operators {Mj} such that
∑m

j=1Mj = I, where I

is the unit operator.
Consider a cognitive system, to be concrete consider a human

individual, call her Keiko. She confronts some recognition-
problem, i.e., in our problem of bistable perception of Schröder
stair she has to make the choice between two perception A =
L,R. In the quantum(-like) model the space of her mental states
is represented by complex Hilbert space H (pure states are

FIGURE 2 | Optical illusion is affected by memory bias: subject’s

perception is shifted in response to rotation direction of the figure.
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represented by normalized vectors and mixed states by density
operators).

In the model under construction H is tensor-factorized into
two components, namely, H = H ⊗ K, where H is the space of
sensation-states and K is the space of perception-states. The states
of the latter are open for conscious introspection, but the states of
the former are in general not approachable consciously.We recall
that we model Helmholtz unconscious inference.

In general suppose that Keiko confronts some concrete
recognition problem A with possible perceptions labeled as
ai, i = 1, 2, ...,m. We denote the set of possible values of A
by the symbol O, i.e., O = {a1, .., am}. By interacting with
a figure (in our concrete case the figure is ambiguous) she
generates the the sensation-state ρ (e.g., a pure state, i.e., ρ =
|ψ〉〈ψ |, ψ ∈ H, ‖ψ‖ = 1). The process of generation of ρ can
be mathematically represented as a unitary transformation in the
space H. Denote the pre-recognition state of sensation by ρ0.
Then

ρ = Uρ0U
⋆,

where the unitary operator U : H → H depends on the figure; in
our concrete case U = USchr.

To come to the concrete perception, Keiko uses a “mental
apparatus,” denoted as A, which produces the results
(perceptions) ai randomly with the probabilities p(ai|ρ),
the output probabilities5. An apparatus represents not only
perceptions and the corresponding probabilities, but also the
results of the evolution of the initial sensation-state ρ as induced
by the back-reaction to the concrete perception ai. This is a sort
of the state reduction, “sensation-state collapse” as the result of
creation of the concrete perception ai. Thus, the sensation state
ρ which Keiko created from her visual image is transformed into
the output state ρai .

However, as we shall see, in general this sensation-state update
can be sufficiently peaceful, so our model differs crucially from
the orthodox quantum models of cognition (Busemeyer and
Bruza, 2012) based on the projection-type state update. Thus,
each mental apparatus A corresponding to the recognition-
problem A is mathematically represented by

• probabilities for concrete perceptions p(ai|ρ);
• transformations of the initial sensation-state corresponding to

the concrete results of perception,

ρ → ρai . (21)

The rigorous mathematical description of such state
transformations leads to the notion of a quantum instrument, see
Section 9.

6.1. Mixing Law
In the quantum operational formalism it is assumed that these
probabilities, p(ai|ρ), satisfy the mixing law. We remark that,
for any pair of states (density operators) ρ1, ρ2 and any pair
of probability weights q1, q2 ≥ 0, q1 + q2 = 1, the convex

5We are going toward creation of a cognitive analog of the quantum operational

model of measurements with the aid of physical apparatuses.

combination ρ = q1ρ1 + q2ρ2 is again a state (density operator).
In accordance with the mixing law any apparatus produces
probabilities such that

p(ai|q1ρ1 + q2ρ2) = q1p(ai|ρ1)+ q2p(ai|ρ2). (22)

In our model of bistable perception the mixing law can be
formulated as follows:

A probabilistic mixture of sensations produces the mixture of
probabilities for perception outputs.

In physics this is a very natural assumption. However, in
modeling of cognitive phenomena, in particular, unconscious
inference, an additional analysis of its validity has to be
performed. We have no possibility to do this in this note, so
we postpone such analysis to one of coming publications. Now
we mimic quantum physics explicitly and proceed under the
assumption (Equation 22).

6.2. Composition of the Apparatuses
It is natural to assume that after resolving the recognition-
problem A a person is ready to look at another image B and
proceed to its perception. In general perception of B depends on
the preceding perception of A. Such a sequence of perceptions
represented as a new mental apparatus, the composition of the
apparatuses A and B : BA. Its outputs are ordered pairs of
perceptions (ai, bj). It is postulated that the corresponding output
probabilities and states are determined as

p((ai, bj)|ρ) = p(bj|ρai )p(ai|ρ); (23)

ρ(ai,bj) = (ρai )bj . (24)

The law (Equation 23) can be considered as the quantum
generalization of the Bayes rule. The law (Equation 24) is the
natural composition law.

In our experiment with rotation of the Schröder stair, we
are interested in a sequence of instruments Aθ corresponding
to some sample of angles C = {θ1, ..., θm}. Here C determines
the context of the experiment. Our data from Section 5 can be
represented as the superposition of quantum apparatuses: AC =
Aθm ...Aθ1 . Here AC is the quantum apparatus representing the
context C. In our experimental study we considered not only
deterministic contexts corresponding to clockwise and counter-
clockwise rotations, but even the random context determined by
the uniform probability distribution.

7. Perception through Unitary Interaction
Between the Sensation and
Perception-states

The above operational description of “perception–production”
was formulated solely in terms of sensation-states. However,
a sensation-state is a complex informational state which is
in general unapproachable for conscious introspective. The
operational representation of observables in the space of
sensation-states is not straightforward and in general it cannot
be formulated in terms of mutually exclusive perceptions. For
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example, in our experiment Keiko’s perceptions can be binary
encoded: A = L,R. However, her sensation of the Schröder
stair is a complex information state depending on a variety of
parameters (in particular, we are interested in dependence on
the rotation angle). The subspaces corresponding to sensations
leading to the L-perception and R-perception are in general
not orthogonal. This non-orthogonality of sensation subspaces
for different perceptions is the fundamental feature of bistable
perception, recognition of ambiguous figures.

Therefore, it is more fruitful to define the perception-
observable directly by using an additional state space, the space
of the perception-states K. In the perception space a perception-
observable can be defined as the standard von Neumann–Lüders
projection observable.

Example 1. Consider the simplest case: recognition of the
fixed figure A, with dichotomous output, i.e., there are two
possible outcomes of “perception-measurement,” e.g., L = 0 and
R = 1 for the Schröder stair. This observable can be represented
by the pair of projectors (P0, P1) onto the subspaces K0 and
K1 of the perception space K. Since the perceptions a0 = 0
and a1 = 1 are mutually exclusive, and sharply exclusive, the
subspaces K0 and K1 are orthogonal. Hence, the projectors P0
and P1 can be selected as orthogonal. The perception-observable
A can be represented as the conventional von-Neumann-Lüders
observable Â = a0P0 + a1P1(= P1). However, we emphasize
that this representation is valid only in the perception-state space
K. It is often (but not always!) possible to proceed with one
dimensional projectors, i.e., to represent possible perceptions
just by the basis vectors in the two dimensional perception-state
space, (|0〉, |1〉).Here each perception-state can be represented as
superposition

φ = c0|0〉 + c1|1〉, |c0|2 + |c1|2 = 1. (25)

Measurement of A leads to probabilities of perceptions given by
squared coefficients, p0 = |c0|2, p1 = |c1|2.

In the case of the finite-dimensional perception-state, a
perception-observable A can be represented as

A =
∑

i

aiPi, (26)

where (Pi) is the family of mutually orthogonal projectors in the
space of perception-states K and (ai) are real numbers encoding
possible answers (perceptions).

Now we shall explore the cognitive analog of the standard
scheme of quantum indirect measurements.

In our cognitive framework “indirectness” means that the
sensation-states are in general unapproachable for consicious
introspection. Therefore, it is impossible to perform the direct
measurement on the sensation-state ρ (in particular, on a
pure state ρ = |ψ〉〈ψ |). Moreover, in the sensation-state the
alternatives, say 0/1, encoded in a perception-observer A are not
represented exclusively, they can have overlap. (Mathematically
the overlap is expressed as non-orthogonality of sensation-
subspaces corresponding to various perceptions.)

In the quantum measurement framework, this situation is
described as follows: in the sensation space an observable A

is represented as an unsharp observable of the POVM-type.
Roughly speaking in the H-representation the A-zero contains
partially the A-one and vice versa. The latter is simply a
consequence of interpretation of POVM observables as unsharp
observables.

Remark 1. To map the quantum physics scheme (Ozawa,
1997) of indirect measurements onto the quantum(-like)
cognition scheme, one has to associate the state of the principle
physical system S with the sensation-state and the state of
the probe physical system S′ with the perception-state. We
point out that in the cognitive framework we do not consider
analogs of physical systems. In principle, one can consider
the sensation-system S as a part of the neuronal system
representing sensations and the perception system S′ as another
part of the neuronal system representing possible perceptions.
The latter can be specified: different measurements can be
associated with different neuronal networks responsible for the
corresponding perceptions. However, in principle we need not
associate sensation and perception states with the concrete
physical neuronal networks. In the case of cognition usage
of isolated physical systems as carriers of the corresponding
information states might be ambiguous. The interconnectivity
of neuronal networks is very high. Therefore, the picture of
distributed computational system is more adequate. (Of course,
even in physics the notion of an isolated system is just an
idealization of the real situation). Therefore, it is useful to proceed
in the purely information approach by operating solely with
states, without coupling them to bio-physical systems. This is,
in fact, the quantum information approach, where systems play
the secondary role, and one operates with states; especially for
the information interpretation of quantummechanics (Zeilinger,
2010).

In the simplest model we can assume that at the beginning of
the process of perception-creation the sensation and perception-
states, ρ and σ, are not entangled6. Thus, mathematically, in
accordance with the quantum formalism, the integral sensation–
perception-state, the complete mental state corresponding to the
problem under consideration, can be represented as the tensor
product

R = ρ ⊗ σ.

In the process of perception-creation the sensation and
perception-states (cf. Remark 1) “interacts” and the evolution of
the sensation–perception-state R is mathematically represented
by a unitary operator7 U : H → H:

R → Rout ≡ URU⋆. (27)

In the space of sensation–perception-states H the perception-
observer A is represented by the operator I ⊗ A. Thus, the
probabilities of perceptions are given by

pA⊗I
ai

= Tr Rout(I⊗ Pi) = Tr URU⋆(I⊗ Pi), (28)

6 One can say that they are independent. But one can use this terminology carefully,

since the notion of quantum independence is more complicated than the classical

one and it is characterized by diversity of approaches.
7As was mentioned, in the works of Asano et al. (2010a,b, 2011, 2012) and Accardi

et al. (in press) even non-unitary evolutions were in charge.
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where the projectors (Pi) form the spectral decomposition of the
Hermitian observable A in K, see Equation (26).

Since only the perception-state belonging K is a subject of
conscious introspective, at the conscious level the perception
process can be represented solely in the state space K. The
post-interaction perception-state σout can be (mathematically)
extracted from the integral state Rout with the aid of the operation
of the partial trace:

σout = TrHRout. (29)

Then perceptions can be represented as the results of the A-
measurement (measurement of the projection-type) in the
perception space; measurement on the output state σout. The
probabilities of the concrete perceptions (ai) are given by the
standard Born rule:

pAai = TrKσoutPi = TrK(TrHRout)Pi = TrRout(I⊗ Pi) = pA⊗I
ai

.

(30)
Thus, Equations (28) and (30) match each other.

If the concrete result A = ai was observed, then the state of
perception σ is transformed into

σi;out =
TrHRout(I⊗ Pi)

TrRout(I⊗ Pi)
. (31)

What does happen in the sensation space?
The expression (Equation 28) for the probability of the

perception ai can be represented as

p(ai|ρ) = pA⊗I
ai

= TrRout(I⊗ Pi) = Trρ ⊗ σU⋆(I⊗ Pi)U

= TrHρMai , (32)

where

Mai = TrK(I⊗ σ )U⋆(I⊗ Pi)U. (33)

The operator Mi;H → H can also be represented in the
following useful form (a consequence of the cyclic property of
the trace operation):

Mai = TrKU
⋆(I⊗ Pi)U(I⊗ σ ) (34)

We remark that (Equation 33) implies:

∑

i

Mai = TrK(I⊗ σ )U⋆(I⊗
∑

i

Pi)U = TrKI⊗ σ = (TrKσ )I.

We also remark that each operator Mai is positively defined and
Hermitian.

Thus, in the sensation space the perception-observable of
the projection-type A (acting in K) with the spectral family
(Pi) is represented as POVM M = (Mi). We remark that in
general the operators Mi are not projectors. Such measurement
cannot separate sharply sensations leading to perceptions (ai) for
different i.

The operational formalism also gives the “post-perception
sensation-state,” i.e., the state of sensation created as the feedback
to the consciously recognized perception ai,

ρai =
TrKRout(I⊗ Pi)

TrRout(I⊗ Pi)
. (35)

The output sensation-state depends not only on the initial
sensation-state ρ, but also on the initial perception-state σ,
interaction between believes and possible perceptions given by
U and the question-observable A acting in K.

8. The Indirect Measurement Scheme for
Rotation Contexts for Perception of
Schröder Stair

As at the very end of Section 6.2, we consider contextual
measurements for the Schröder stair: a sequence of perceptions
corresponding to some sample of angles C = {θ1, ..., θm}. Here
C determines the context of the experiment.We apply the scheme
of indirect measurements. We can assume that the perception
space K is two dimensional with the orthogonal basis |L〉, |R〉
representing the “left-faced” and “right-faced” preceptions of the
stair. Thus, projectors Pi, i = L,R, are one dimensional.

We start with the initial sensation state ρ0. By the visual image
rotated at the angle θ1 this state is transformed to

ρθ1 = USch;θ1ρ0U
⋆
Sch;θ1 , (36)

where USch;θ1 represents the unitary dynamics induced by this
image. Then the perception of the image is modeled starting with

Rθ1 = ρθ1 ⊗ σ0, (37)

where σ0 represents the state of perception preceding interaction
with the state of sensation. It is natural to assume that σ0 =
|φ0〉〈φ0|, where

φ0 = (|L〉 + |R〉)/
√
2 (38)

is the neutral composition of the states “left-faced” and “right-
faced.” It represents the deepest state of uncertainty. Suppose
(for simplicity) that independently of the angle the interaction
of sensation and perception states is given by the same unitary
operator U. Then Keiko’s perception of the Schröder stair
observed at the angle θ1 with the fixed result i1 = L or R leads
to the new states of sensation and perception:

σi1;θ1 =
TrHURθ1U

⋆(I⊗ Pi1 )

TrURθ1U
⋆(I⊗ Pi1 )

, ρi1;θ1 =
TrKURθ1U

⋆(I⊗ Pi1 )

TrURθ1U
⋆(I⊗ Pi1 )

.

(39)
The probability of creation of the perception i can be calculated as

pi1;θ1 = TrHρθ1Mi1;θ1 . (40)

Here POVM’s componentMi1;θ1 , i1 = L,R, has the form:

Mi1;θ1 = TrKU
⋆(I⊗ Pi1 )U(I⊗ σ0). (41)
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For the next measurement corresponding to rotation of
Schröder’s stair for the angle θ2, Keiko selects ρi1;θ1 and σi2;θ1 as
the initial states. This means that creation of the fixed perception
i1 leads to disentanglement of her mental state into the product
of two states, the state of sensation and perception. Then

ρθ2 = USch;θ2ρi1;θ1U
⋆
Sch;θ2 , (42)

where USch;θ1 represents the unitary dynamics induced by the
θ2-image. Then

Rθ2 = ρθ2 ⊗ σi1;θ1 , (43)

Then Keiko’s perception of the Schröder stair observed at the
angle θ2 with the fixed result j = L or R leads to the new states of
sensation and perception:

σi2;θ2 =
TrHURθ2U

⋆(I⊗ Pi2 )

TrURθ2U
⋆(I⊗ Pi2 )

, ρi2;θ2 =
TrKURθ2U

⋆(I⊗ Pi2 )

TrURθ2U
⋆(I⊗ Pi2 )

.

(44)
The probability of creation of the perception i2 can be calculated
as

pi2;θ2 = TrHρθ2Mi2;θ2 . (45)

Starting with ρi2;θ2 , σi2;θ2 , Keiko generates the perception of the
θ3-rotated stair and so on. After the last test, Keiko’s states of
sensation and perception ρin;θn , σin;θn depend on the sequence
of angles C and the sequence of her perceptions (i1, i2, ..., in).
The same is valid for the probability pin;θn . If the experiment
is performed for two different contexts C = {θ1, ..., θm} and
C′ = {θ ′1, ..., θ ′m}. Then in general it is impossible to embed the
probabilities of perceptions in a single Kolmogorov probability
space. Therefore, the use of quantum theory of measurement and
“quantum probabilities” can be fruitful. Our approach provides
the possibility to model probabilities of perceptions depending
on a context, a sequence of angles.

9. Representing Perception by Quantum
Instruments

The considered model of perception as the result of unitary
interaction between the sensation-state and the perception-state
describes an important class of transformations of the sensation-
state, see Equation (35). We now turn to the general case which
was considered in Section 6, see Equation (21). Set

E(ai)ρ = p(ai|ρ)ρai (46)

and, for a subset Ŵ of O, where O = {a1, ..., am} is the set of all
possible perceptions, we set

E(Ŵ)ρ =
∑

ai∈Ŵ
E(ai)ρ =

∑

ai∈Ŵ
p(ai|ρ)ρai . (47)

We point to the basic feature of this map:

TrE(O)ρ =
∑

ai∈O
p(ai|ρ)Trρai = 1. (48)

For each concrete perception ai,E(ai) maps density operators to
linear operators (in the infinite dimensional case, these are trace-
class operators, but we proceed in the finite dimensional case,
where all operators have finite traces).

The mixing law implies that, for any Ŵ ⊂ O,

E(Ŵ)(q1ρ1 + q2ρ2) = q1E(Ŵ)ρ1 + q2E(Ŵ)ρ2. (49)

As was shown by Ozawa (1997), under the assumption on the
existence of composition of the apparatuses any such amap E(Ŵ):
D(H) → L(H) can be extended to a linear map (superoperator)

E(Ŵ) : L(H) → L(H) (50)

such that:

• each E(Ŵ) is positive, i.e., it transfers the set of positively
defined operators into itself;

• E(O) =
∑

i E(ai) is trace preserving:

TrE(O)ρ = Trρ. (51)

The latter property is a consequence of Equation (48)8.
Thus, the two very natural and simple assumptions, the

mixing law for probabilities and the existence of composite
apparatuses, have the fundamental mathematical consequence,
the representation of the evolution of the state by a superoperator
(Equation 50).

In quantum physics such maps are known as state
transformers (Busch et al., 1995) or DL (Davis–Levis, Davies and
Lewis, 1970) quantum operations9.

Thus, each perception induces the back-reaction which can be
formally represented as a state transformer. In these terms

ρai =
E(ai)ρ

TrE(ai)ρ
(52)

We remark that the map Ŵ → L(L(H)), from subsets of the
set of possible perceptions O into the space of superoperators, is
additive:

E(Ŵ1 ∪ Ŵ2) = E(Ŵ1)+ E(Ŵ2), Ŵ1 ∩ Ŵ2 = ∅. (53)

This is ameasure with values in the space L(L(H)). Suchmeasures
are called (DL) instruments (Davies and Lewis, 1970). To specify
the domain of applications in our case, we shall call them
perception instruments.

The class of such instruments is essentially wider than the
class of instruments based on the unitary interaction between
sensation and perception components of the mental state, see

8 If one wants to extend E(Ŵ) from the set of density operators to the set of all

linear operators (in the infinite dimensional case it has to be the set of finite-

trace operators) by linearity then it has to be set E(Ŵ)µ = E(Ŵ)Trµ(µ/Trµ) =
Trµ E(Ŵ)(µ/Trµ) and, in particular, E(O)µ = Trµ E(O)(µ/Trµ) = Trµ.
9DL-notion of the quantum operation is more general than the notion used

nowadays. The latter is based on complete positivity, instead of simply positivity

as the DL-notion, see Appendix for the corresponding definition and a discussions

on whether the reasons used in physics to restrict the class of state transformers

can be automatically used in cognitive science.
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Equation (35). The evident generalization of the scheme of
Section 7 is to consider nonunitary interactions between the
components of the mental state; another assumption which
can be evidently violated in modeling of cognition is that
the initial sensation and perception states are not entangled
(“independent”) (see Asano et al., 2010a,b, 2011, 2012) for
generalizations of the aforementioned scheme.

We start with a discussion on possible nonunitarity of
interaction between the sensation and perception states. In
quantum physics the assumption of unitarity of interaction
between the principle system S and the probe system S′

(representing a part of the measurement apparatus interacting
with S) is justified, because the compound system S + S̃′ can
be considered (with a high degree of approximation) as an
isolated quantum system and its evolution can be described (at
least approximately) by the Schrödinger equation. And the latter
induces the unitary evolution of a state.

In cognition the situation is totally different. The main scene
of cognition is not the physical space-time, but the brain.
It is characterized by huge interconnectivity and parallelism
of information processing. Therefore, it is more natural to
consider the sensation and perception states corresponding to
different visual inputs as interacting, especially at the level of
the sensation-states. Thus, the perception-creation model based
on the assumption of isolation of different perception-creation
processes from each other seems to be too idealized, although
it can be used in many applications, where the concentration
on one fixed problem may diminish the influence of other
perception-creation processes.

In physics, the assumption that the initial state of the system
S + S̃′ is factorized is also justified, since the exclusion of the
influence of the state of the measurement device to the state
of a system S prepared for measurement (and vice versa) is
the experimental routine. In cognition the situation is more
complicated. One cannot exclude that in some situations the
initial sensation and perception state are entangled.

The representation of probabilities with the aid of POVMs is
not a feature of only the unitary interaction representation of
apparatuses, see Equation (32). In general, any DL-instrument
generates such a representation. Take an instrument E, where,
for each ai ∈ O,E(ai) : L(H) → L(H) is a superoperator.
Then we can define the adjoint operator E⋆(ai) : L(H) → L(H).
Set Mai = E⋆(ai)I, where I : H → H is the unit operator.
Then, since pai = TrE(ai)ρ = Tr I;E(ai)ρ = 〈I|E(ai)ρ〉 ==
〈E⋆(ai)I|ρ〉 = Tr(E⋆(ai)I)ρ = TrMaiρ. By using the properties of
an instrument it is easy to show that Mai is POVM. Thus, each
mental apparatus can be represented by a POVM. We interpret
this POVM as the mathematical representation of “unconscious"
inference. Such “unconscious measurements” are not sharp, they
cannot separate completely different perceptions ai which are
mutually exclusive at the conscious level. Mathematically, we
have that the subspaces Hai = MiH need not be orthogonal.
Sensation states corresponding to the perceptions ai and aj, say
ψi ∈ Hai and ψj ∈ Haj , in general have nonzero overlap
〈ψi|ψj〉 6= 0.

10. Concluding Remarks

This paper is an attempt to present the theory of generalized
quantum measurements based on quantum apparatuses
and instruments in a humanities-friendly way. This is
a difficult task, since this theory is based on advanced
mathematical apparatus. We hope that the reader can at
least follow our introductory presentation in Sections 3, 4.
Although we applied quantum apparatuses and instruments
to the concrete problem of cognition, modeling bistable
perception and, more generally, Helmholtz unconscious
inference, this approach can be used to model general
unconscious–conscious information processing. We hope
that in future other interesting examples will be presented
with the aid of this formalism (cf. Khrennikov, 2010a,
2014).
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Appendix

Do we Need Complete Positivity?
Nowadays theory of the DL-instruments is considered old-
fashioned; the class of such instruments is considered to be
too general: it contains mathematical artifacts which have no
relation to real physical measurements and state transformations
as back-reactions to these measurements. The modern theory of
instruments is based on the extendability postulate (e.g., Busch
et al., 1995; Ozawa, 1997; Nielsen and Chuang, 2000):

For any apparatus AS corresponding to measurement of
observable A on a system S and any system S̃ noninteracting with
S there exists an apparatus AS+S̃ representing measurement on

the compound system S+ S̃ such that

• p(ai|ρ ⊗ r) = p(ai|ρ);
• (ρ ⊗ r)ai = ρai ⊗ r

for any state ρ of S and any state r of S̃.
In physics this postulate is quite natural: if, besides the

quantum system S which is the object of measurement, there
is (somewhere in the universe) another system S̃ which is not
entangled with S, i.e., their joint pre-measurement state has the
form ρ ⊗ r, then the measurement on S with the result ai can
be considered as measurement on S + S̃ as well with the same
result ai. It is clear that the back-reaction cannot change the state
of S̃. Surprisingly this very trivial assumption has tremendous
mathematical implications.

Since we proceed only in the finite dimensional case,
the corresponding mathematical considerations are simplified.
Consider an instrument ES representing the state update as the
result of the back-reaction from measurement on S. For each Ŵ,
this is a linear map from L(H) → L(H), where H is the state
space of S. LetW be the state space of the system S̃. Then the state
space of the compound system S+S̃ is given by the tensor product
H⊗W.We remark that the space of linear operators in this state
space can be represented as L(H⊗W) = L(H)⊗L(W). Then the
superoperator ES(Ŵ) : L(H) → L(H) can be trivially extended to
the superoperator ES(Ŵ)⊗I :L(H⊗W) → L(H⊗W). It is easy to
prove that the state transformer corresponding to the apparatus
for measurements on S + S̃ has to have this form ES+S̃(ai) =
ES(ai)⊗ I. Hence, this operator also has to be positively defined.
We remark that if the state spaceW has the dimension k, then the
space of linear operators L(W) can be represented as the space of
k× kmatrices which is further denoted as Ck×k.

Formally, a superoperator T : L(H) → L(H) is called
completely positive if it is positive and each its trivial extension
T ⊗ I : L(H) ⊗ Ck×k → L(H) ⊗ Ck×k is also positive. There
are natural examples of positive maps which are not completely
positive (Nielsen and Chuang, 2000).

A CP quantum operation is a DL quantum operation which
is additionally completely positive; a CP instrument is based
on CP quantum operations representing back-reactions to
measurement. As was pointed out, in modern literature only CP

quantum operations and instruments are in the use, so they are
called simply quantum operations and instruments.

Themainmathematical feature of (CP) quantum operations is
that the class of such operations can be described in a simple way,
namely, with the aid of the Kraus representation (Busch et al.,
1995; Ozawa, 1997; Nielsen and Chuang, 2000):

Tρ =
∑

j

V⋆j ρVj, (A1)

where (Vj) are some operators acting in H. Hence, for a (CP)
instrument, we have: for each ai ∈ O, there exist operators (Vaij)
such that

E(ai)ρ =
∑

j

V⋆aijρVaij. (A2)

Thus,

ρai =
∑

j V
⋆
aij
ρVaij∑

j V
⋆
aij
ρVaij

, (A3)

where the trace one condition (Equation 48) implies that

∑

i

∑

j

V⋆aijVaij = I. (A4)

The corresponding POVMsMai can be represented as

Mai =
∑

j

V⋆aijVaij. (A5)

This is a really elegant mathematical representation. However, it
might be that this mathematical elegance, and not a real physical
situation, has contributed to widespread use of CP in quantum
information theory (cf. Shaji and Sudarshan, 2005).

Is the use of the extendability postulate justified in the
operational approach to cognition?

Seemingly, not (although further analysis is required). Any
concrete perception takes place at the conscious level, and it is
based on interaction with the sensation of a visual image. The
state of this sensation corresponds to the state of the system
S in the above considerations. To be able to consider the state
of another sensation, the analog of the state of the system S̃,
the brain has to activate this sensation. Thus, we cannot simply
consider all possible sensations as existing in some kind of the
mental universe simultaneously. Hence, in general, sensations
generated by different visual stimuli cannot be treated as existing
simultaneously.

It is more natural to develop the theory of perception
instruments as the theory of DL instruments and not CP
instruments. In particular, although the Kraus representation can
be used as a powerful analytic tool, we need not to overestimate
its applicability for modeling of cognition.
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