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Abstract: Biological therapies have changed the face of oncology by targeting cancerous cells while
reducing the effect on normal tissue. This publication focuses mainly on new therapies that have con-
tributed to the advances in treatment of certain malignancies. Immunotherapy, which has repeatedly
proven to be a breakthrough therapy in melanoma, as well as B-ALL therapy with CAR T cells, are of
great merit in this progress. These therapies are currently being developed by modifying bispecific
antibodies and CAR T cells to improve their efficiency and bioavailability. Work on improving the
therapy with oncolytic viruses is also progressing, and efforts are being made to improve the immuno-
genicity and stability of cancer vaccines. Combining various biological therapies, immunotherapy
with oncolytic viruses or cancer vaccines is gaining importance in cancer therapy. New therapeutic
targets are intensively sought among neoantigens, which are not immunocompromised, or antigens
associated with tumor stroma cells. An example is fibroblast activation protein α (FAPα), the overex-
pression of which is observed in the case of tumor progression. Universal therapeutic targets are also
sought, such as the neurotrophic receptor tyrosine kinase (NTRK) gene fusion, a key genetic driver
present in many types of cancer. This review also raises the problem of the tumor microenvironment.
Stromal cells can protect tumor cells from chemotherapy and contribute to relapse and progression.
This publication also addresses the problem of cancer stem cells resistance to treatment and presents
attempts to avoid this phenomenon. This review focuses on the most important strategies used to
improve the selectivity of biological therapies.

Keywords: biological therapy; cancer; recombinant antibodies; CAR T cells; oncolytic viruses; cancer
vaccines; cancer microenvironment

1. Introduction

Cancer is one of the leading causes of death in the world, generates enormous costs
and is a major burden on humanity. According to the GLOBOCAN online database report
from 2020, it is forecast that the annual number of cancer cases in the world will increase
from 19.3 million in 2020 to 28.4 million in 2025 (an increase of 47% compared to 2020) [1].
Oncologists emphasize that classical chemotherapy is already reaching the limits of its
effectiveness, therefore, other methods are needed that would enable progress in the
treatment of many types of cancer [2]. This problem particularly affects older patients, who
most often suffer from these diseases and, at the same time, due to their age and other
loads, tolerate chemotherapy much less well than young patients. The hope is in biological
therapies that can reduce side effects by acting more selectively on cancer cells.

Biological cancer therapy involves treatment with natural molecules made by the
body or made in a laboratory. These therapies either help the immune system fight the
cancer or attack the cancer directly. These include treatment with monoclonal antibodies,
adoptive cell transfer, gene therapy, treatment with cytokines, cancer vaccines, oncolytic
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viruses, immunoconjugates and the use of targeted therapy. Biological therapies used
in cancer treatment are currently booming and are targeted therapies that fit perfectly
into the emerging trend of precision oncology, which uses the results obtained by next-
generation sequencing (NGS) methods to detect new, rare mutations in cancer cells in
order to tailor treatment to a specific patient [3]. In the biological therapy of cancer,
molecules that target genetic aberrations in oncogenes and tumor suppressor genes leading
to tumor development are essential. Classic examples of such molecules are: imatinib,
a BCR-ABL tyrosine kinase inhibitor used in chronic myeloid leukemia; vemurafenib, a
BRAF seronine/threonine kinase inhibitor for the treatment of melanoma; or osimertinib,
approved by the FDA and the EC in 2017 for the treatment of non-small cell lung cancer in
the presence of the EGFR T790M mutation [4–7].

Monoclonal antibodies play a huge role in cancer therapy. The first data on the
effectiveness of the use of murine monoclonal antibodies against antigens overexpressed in
neoplastic cells came from studies in laboratory animals [8]. The problem with the use of
these antibodies was that they were multi-species and thus not very effective because they
did not work well with the components of the human immune system, and in addition,
they were immunogenic and were neutralized by the human immune system [9]. Only
the development of the methods of obtaining recombinant antibodies opened the way to
therapy, which has already contributed to success in oncology many times, see review [10].
These recombinant antibodies were created by combining the variable part of the murine
antibody with the constant part of the human [11]. Chimeric antibodies with reduced
immunogenicity were obtained, which, thanks to the human Fc fragment, could cooperate
with cells of the human immune system and with complement components. Then, by
further reducing the proportion of the murine variable part, humanized antibodies were
obtained that are 85–90% human [9,12].

It is important to look at cancer in a multidirectional way, in the development of which
the microenvironment also participates, with numerous modulating factors affecting the
adhesion, migration, proliferation and drug resistance of cancer cells. The combination
of strategies targeting tumor cells and normal tumor-associated cells may have greater
therapeutic effects. This study concerns not only the biological therapies already devel-
oped but also informs about the directions of research based on the increasingly better
understood cancer biology, which may lead to the development of a much more effective
anti-cancer treatment.

2. A Strategy for Treating Cancer by Unblocking Effector Lymphocytes as a Type
of Immunotherapy

In the organism, the action of the activating mechanism is controlled by an opposing
inhibitory mechanism that prevents over-activation. In the immune system, such brakes are
the control points of the immune response. These include receptors on defense cells, which
under physiological conditions prevent autoaggression and tissue damage by overactive
T lymphocytes during the immune response [13]. Neoplastic cells use this mechanism
to switch off effector T lymphocytes by exposing on their surface ligands for receptors
belonging to the immune checkpoints, such as PD-1 [14]. Although lymphocytes infiltrate
the tumor, they are not able to destroy cancer cells. Another important receptor taking part
in the negative regulation of T lymphocytes is CTLA-4 expressed on dendritic cells [15]
(Table 1). After the discovery of this mechanism and the production of antibodies neu-
tralizing these receptors, the effector T lymphocytes in the tumor microenvironment were
unblocked and allowed to cause the lysis of neoplastic cells [16]. This method has become
a real revolution in the treatment of certain types of cancer.
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Table 1. Immune checkpoints and their inhibitors. CTLA-4—Cytotoxic T-Lymphocyte-associated Antigen 4, PD-1—
Programmed Death 1, PD-L1—Programmed Death-Ligand 1.

Type of Immune
Checkpoint

Stage of the Immune
Response Place of Action Presence on Cells Inhibitors of Immune

Checkpoint

CTLA-4 Early activation phase Lymph nodes Activated T and B cells Ipilimumab

PD-1 The effector phase Periferal tissue, cancer
imcroenvironment

T and B cells, natural
killer cells,

myeloid-derived
suppressor cells

Nivolumab,
Pembrolizumab,

PD-L1 The effector phase Periferal tissue, cancer
imcroenvironment

Antigen presenting
cells, T and B cells,
natural killer cells,
myeloid-derived
suppressor cells,

hematopoietic cells,
cancer cells

Atezolizumab,
Durvalumab,

Avelumab

Melanoma is a model cancer in which such therapy has brought a breakthrough in
treatment in the last decade. Compared to dacarbazine, which was previously used as one
of the primary cytostatic drugs for the treatment of melanoma, the annual overall survival
rate increased approximately twofold after ipilimumab anti-CTLA-4 therapy compared
to dacarbazine, threefold after treatment with nivolumab or pembrolizumab anti-PD-1
therapy and fourfold after combining the two therapies [17]. Following the introduction of
therapies with these antibodies, it was thought that they would only be effective against
immunogenic tumors such as melanoma. In the course of the research, however, it was
found that they also have positive therapeutic effects in the case of non-immunogenic
neoplasms, which include, for example, lung cancer [18]. Applications of this therapy
have also been approved for cancers of the kidneys, head and neck, Hodgkin’s lymphoma,
urinary tract, colon, rectal, hepatocellular carcinoma of the breast, cervix, lung, skin and
stomach [19].

It should be added that the possibilities of therapy based on the suppression of im-
mune checkpoints have not been exhausted yet, as many other molecules inhibiting the
function of cytotoxic lymphocytes present within the immune synapse are not known.
Inhibitors are under development for lymphocyte activation gene 3 (LAG-3; CD223), which
compete for TCR binding with MHC II molecules, thereby inhibiting the proliferation and
differentiation of T lymphocytes. Potential therapeutic targets are also another compo-
nent of immune synapse, e.g., T cell immunoglobulin and mucin-3 (TIM-3), band T-cell
lymphocyte attenuator (BTLA), V-domain Ig suppressor of T-cell activation (VISTA) and
TIGIT [20].

3. Recombinant Antibodies in the Treatment of Cancer

The first generation of bispecific antibodies is the product of the quadrome, a cell
line generated by the fusion of two hybridomas, see review [21]. The resulting molecules
are a combination of the heavy and light chains of the two antibodies (Figure 1). When
hybridomas from two different species are fused, light and heavy chains of the same
species are preferentially bound [22]. Such cell lines hardly produce antibodies with chain
mismatches. On the other hand, the fusion of two single-species hybridomas leads to
the production of mismatched antibodies that cannot fulfill the expected functions [21].
In such a situation, only 1 molecule out of 10 is a hybrid antibody. These antibodies
are extracted with protein A by chromatography [23]. The antibodies produced by the
quadrome are bispecific and trifunctional [23–25]. This means that one variable fragment of
an antibody recognizes one antigen, most often a CD3 molecule on the surface of a cytotoxic
T lymphocyte, and the other fragment binds another antigen, which is a tumor cell marker.
Therefore, these antibodies are used to attract a cytotoxic lymphocyte to a neoplastic cell,
which enables the activation of this defense cell and neoplastic lysis [26]. This results in
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a more effective stimulation of the host’s immune system to destroy cancer cells. This is
a completely unique property of antibodies. Due to the fact that these antibodies have
the classic structure of the IgG molecule and contain the constant Fc fragment, they can
bind to the receptor for this fragment, which is present on granulocytes, macrophages and
dendritic cells [26]. The third function of these antibodies is therefore to bind and activate an
additional cell. As a result, the T-lymphocyte is co-activated by contact with the neoplastic
cell and with the participation of an accessory cell that produces stimulating cytokines.
Finally, an activated accessory cell can phagocyte a neoplastic cell [27]. This property
of bispecific antibodies significantly increases their effectiveness. By creating bispecific
antibodies, molecules with unique properties were obtained which allow them to obtain
an effect unattainable for other known therapies. Among the trifunctional antibodies for
therapy, for example, catumaxomab specific for CD3 and EpCAM, which is used to reduce
peritoneal exudate in exudative ovarian cancer, has been introduced [28,29]. Similarly,
ertumaxomab (Rexomun®, Fresenius Biotech GmbH, Bad Homburg, Germany) targeting
CD3 and the HER-2-neu oncogene significantly increased the number of lymphocytes
targeting tumor cells in peritoneal carcinomatosis [30]. Ertumaxomab has also proven
to be effective in Phase 1 and 2 clinical trials in HER-2 positive breast cancer, also in the
case of low expression of this receptor [31,32]. The administration of mosunetuzumab,
the bispecific monoclonal IgG1 antibody against CD3 and CD20, has been shown to
result in a sustained response in patients with B cells non-Hodgkin lymphoma (NHL).
Mosunetuzumab is effective in patients with poor prognosis and relapsed and refractory
NHL to CAR T cells therapy [9].

Figure 1. Selected recombinant antibodies developed for anti-cancer therapies. BITE—bispecific T-cell engager, DART—Dual
affinity retargeting.

However, the first generation of bispecific antibodies have drawbacks that make
them ineffective in treating solid tumors. Problems with these antibodies are discussed
extensively in the review by Chames et al. (2009) [33]. First of all, the problem is the size of
the antibody molecule with the structure of the classic IgG molecule [34–37]. It is known
that the size of the molecule is decisive for diffusion. Therefore, these particles have little
penetration into the tissue of tumors with tortuous heterogeneous vascularization and
high interstitial fluid pressure [34]. Appropriate affinity for the antigen is also essential
for the good penetration of the tumor tissue by antibodies. Too high affinity causes the
so-called binding site barrier effect [35,36,38]. The antibody binds with great force to the
first antigen it encounters at the periphery of the tumor, close to the blood vessels, and
does not penetrate further. On the other hand, moderate affinity antibodies dissociate
easily from the first antigen encountered and penetrate deep into the tissue, leading to
an even distribution in the tumor. There is also a problem with the binding of antibodies
to the activating receptor for the Fc fragment, as approximately 80% of the population
have a low affinity variant of this essential receptor for antibody-dependent cell-mediated
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cytotoxicity (ADCC) [39]. Consequently, these individuals will not fully benefit from the
effects of the therapeutic antibodies. Moreover, IgG1 are glycosylated in the CH2 domain
of the Fc region, which further modulates the Fc affinity for FcγRIIIa, thereby modifying
the in vivo efficacy of the antibodies [40]. Another problem is the high concentration
of the patient’s natural antibodies. Therapeutic antibodies must compete with the high
concentration of the patient’s IgG in binding to FcγRIIIa, hence the necessity to use high
concentrations of these antibodies [41]. The effectiveness of therapeutic antibodies may be
adversely affected by their affinity for inhibitory Fc receptors, such as FcγRIIb, expressed in
B lymphocytes, macrophages, dendritic cells and neutrophils [9]. One of the main strategies
used to improve the effectiveness of antibodies in the fight against cancer is increasing their
affinity for activating receptors and reducing their interaction with the inhibitory FcγRIIb
receptor [42].

A great achievement was the development of second-generation bispecific antibodies,
which are antibody fragments. Single-chain scFv variable fragments containing variable
domains of VH–VL heavy and light chains joined by a flexible linker (Figure 1) were used.
Based on this technology, antibody fragments of various sizes are created, which retain
the binding activity of IgG antibodies [43]. The problem with the size of the molecule was
thus solved by removing the Fc fragment of antibody, and the binding affinity and stability
were optimized [43].

Examples of such fragments are diabodies, i.e., small dimeric, bivalent or bispecific
antibody fragments (Figure 1). Two single-chain VH–VL fragments were cross-linked, and
the linker length between VH–VL was reduced from 15–20 to 5 amino acids [44,45]. In the
case of bivalent diabodies, being a combination of identical VH–VL chains (homodimers),
an increase in affinity was achieved due to two antigen binding sites [45]. A variant of
these recombinant antibodies are Bispecific Diabodies (BsDbs), which contain two VH
and VL domains derived from two different antibodies, specific for different antigens [46]
(Figure 1). The compact structure of such a molecule ensures rapid tumor penetration, good
solubility and improves stability. In preclinical studies, CD19xCD3 (BlincytoTM, Amgen,
Breda , Holand) and CD19xCD16 bsDbs exerted a synergistic effect in non-Hodgkin’s
lymphoma [47]. Various modifications to these recombinant bispecific molecules have been
developed to improve their stability and affinity. For example, an additional middle linker
has been used to join two fragments of polypeptide chains, joining all domains in a single
polypeptide, thereby forming Single-chain Diabodies (ScDbs) (Figure 1) [48]. In preclinical
studies, scBsDb CD3xPSCA proved to be effective in prostate cancer cells [49]. Finally,
the tandem scFvs (TaFvs) was developed (Figure 1). In this case, two scFv molecules
were linked by a short linker to give a very flexible structure. Anti-PSMAxCD3 scBsTaFvs
antibodies stimulate T cells to eliminate prostate cancer cells [20].

A major achievement was the use of tandem bispecific T-cell engager molecules
(BiTE®, Amgen, Southend Oaks, CA, USA) consisting of an anti-CD3 domain and an
anti-tumor-associated antigen (TAA) connected by a short peptide linker (Figure 1). The
advantage of the molecules produced by the BiTE technology is a significant reduction in
the intercellular space between the lymphocyte linked to this antibody and the neoplastic
cell, which facilitates the formation of an immune synapse and the activation of lympho-
cytes without MHC class I participation [50]. After binding to the neoplastic cell, the BiTE
antibody attracts T lymphocytes to this target cell, stimulating them to form adhesins
and cytolytic substances such as granzyme, perforin and cytokines [51]. Neoplastic cell
death may also occur through the activation of caspases or death receptors [52]. Within
the synapse, a junction is made between two cells via the adhesins ICAM-1 on the tumor
cell and LFA-1 on T cells [53]. The TCR and MHC-I receptor do not participate in the
interaction between these cells. The first BiTE antibody introduced into clinical practice
was blinatumomab [54]. In 2014, the FDA granted blinatumomab breakthrough therapy
status and is implementing an accelerated registration procedure for the treatment of
relapsed or refractory Philadelphia chromosome-negative cellular acute lymphoblastic
leukemia (ALL) with CD19 expression, indicating that the drug may be more effective than
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other standard drugs used in indicated cases [55]. The use of this antibody also caused
fewer side effects than conventional treatment [56]. The complete remission (or cRh) rate
with blinatumomab in Phase 2 studies was 69%. This molecule binds to the CD19 receptor
on leukemic cells and to the CD3 receptor on T lymphocytes [23]. Due to the fact that
the CD19 antigen is present on most B-type ALL leukemia cells and is absent on normal
plasma cells and on hematopoietic stem HSCs, it is a very good therapeutic target [56].
The examination of the cells of patients treated with blinatumomab showed that their
number of T lymphocytes increases, which lead to the lysis of B lymphocytes, including
cancer-transformed CD19 [56]. Within a few days after starting blinatumomab therapy, the
number of B lymphocytes falls below detection [57]. This condition persists throughout
the administration of this drug. The advantage of blinatumomab is its anti-cancer effect at
low doses [58]. As an adverse effect, it may rarely induce a cytokine storm or neurotoxicity,
such as other BsAb [59,60]. Blinatumomab is also used in people with minimal residual
disease after B-cell ALL treatment.

There are currently many BiTE-type molecules in preclinical and clinical research. An
example is pasotuxizumab AMG 212/BAY 2010112 recognizing CD3 and prostate-specific
membrane antigen (PSMA), highly expressed in prostate cancer cells and not expressed
on normal cells [61]. Clinical studies of this antibody indicate that it has an acceptable
safety profile and shows dose-dependent anti-tumor activity and has managed to achieve
long-term response in two cases. Thus, evidence has been obtained that BiTE can be
effective in solid tumors [62].

Bispecific and Trispecific Killer Cell Engagers, BiKE and TriKE antibodies, respectively,
that kill cancer cells without prior sensitization also seem to be future-oriented. An example
is the CD16/CD19/CD22 antibody, which binds two target molecules, CD19 and CD22 on
a tumor-transformed B-cell, which enhances the specificity of its action [63,64].

Various modifications of the BiTE molecules have contributed to the improvement of
their pharmacokinetics. Due to their small size and the lack of an Fc fragment, they show
better and faster tumor penetration than antibodies with the classical structure of the IgG
molecule [65]. A problem with the use of small antibody molecules may be the short serum
half-life of 2 to 4 h, leading to reduced uptake by tumor tissue and requiring continuous
intravenous infusion [66]. Therefore, modified BiTEs with extended half-life (HLE) have
been developed, which are canonical BiTEs fused to an Fc domain with an activity similar
to canonical BiTE [67]. Thanks to this modification, the half-life of a single dose of HLE
BiTE is 210 h, which allows the drug to be used once a week [67].

Another modification of the second-generation bispecific molecules is the dual affinity
retargeting (DART) technology (Figure 1). It is a type of diabody with two non-covalently
linked polypeptide chains. A modification in this case is the introduction of a C-terminal
disulfide bridge between two VH subunits, which ensures structural stability. In vitro
studies showed that the anti-CD19 and CD3 DART antibody was more effective than BiTE
targeting the same antigens. The DART® format was found to cross-link T and B cells more
efficiently than BiTE [68].

4. Targeted Immunotherapy Based on Genetically Modified T Cells

Among the different types of adoptive cell transfer (ACT), CAR T cell therapy is the
most advanced. Thanks to modern methods of genetic engineering, we can obtain custom
defense cells programmed to fight specific cancer cells. The recombinant T-cell receptor
(TCR) that is introduced into T cells via viral vectors is specific for the patient’s cancer
antigens. The reprogrammed T cells with the chimeric antigenic receptor (CAR T) obtained
in this way search for and attack tumor cells.

CARs contain a single-chain Fv domain fragment for the tumor antigen, a membrane
fragment of the CD3ζ receptor and a costimulatory moiety of the T cell receptor [69].
These interconnected molecules are expressed in the CAR T cell membrane. The costim-
ulatory molecules are, e.g., CD28, 4-1BB, OX40, ICOS, NKG2D, DAP10 and 2B4 (CD244)
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(Figure 2) [70]. Recombinant receptors recognize the tumor antigen independently of MHC
class I.

Figure 2. Structure of the first, second and third generation chimeric antigen receptors (CAR) constructed from the variable
scFv fragment of a monoclonal antibody and from the cytoplasmic CD3ζ fragment of the T lymphocyte receptor (TCR). D 1
and D2—costimulatory domains.

First generation CAR T cells lacking costimulatory molecules did not expand suf-
ficiently after CAR stimulation [70]. Only the creation of the second-generation CAR T
cells with attached costimulatory molecules were capable of both the cytotoxic effect and
expansion [71]. Additionally, in the third generation CAR, two domains of costimulatory
molecules are turned on, which should result in the enhancement of the stimulating effect
of CAR T lymphocytes [72]. The solutions used in the third generation in practice give
ambiguous results in terms of the effectiveness of their operation compared to the second
generation [73]. The reasons for the observed effect are as yet unclear. High therapeutic
efficacy was obtained when using two signaling domains (CD28 and CD3z) in combina-
tion with the 4-1BB ligand [73]. Such a combination of signaling domains allows for a
balance between duration and antitumor activity, which was accompanied by an increase
in the CD8/CD4 ratio [74]. Thanks to the latter modification, CAR T cells are not only
programmed to destroy specific neoplastic cells but also have a longer life span [75].

Side effects that may arise from this therapy include tumor lysis syndrome or cytokine
storm, the effects of which, however, can be eliminated using the anti-interleukin-6 re-
ceptor antibody tocilizumab [76]. Neurotoxicity, a decrease in the number of normal B
lymphocytes in the case of CAR-T (CD19) therapy, hypotension and tachycardia may also
occur. Sometimes, the side effects are so severe that they require intensive care, and rare
cases of death have been reported [77]. An elimination gene such as the truncated form
of epidermal growth factor receptor (EGFRt) has been developed to prevent serious side
effects. EGFRt cannot bind to its natural ligand but has the ability to bind cetuximab, which
triggers CAR T cell death by a variety of mechanisms [78]. Currently, other mechanisms
are being worked on for the regulation of CAR T cells’ function, trying to use the switch
ON/OFF strategy [79]. This developed system allows you to control the activity of CAR
T cells by deliberately turning them off in the event of a threat and turning them back
on when the threat is resolved. A method developed and tested in mice is to administer
a compound that turns off the CAR-T cell when it binds to an antigen on a tumor cell.
This effect disappears when the administration of the compound is discontinued, allowing
cells to resume anti-tumor activity [80,81]. Other modifications of CAR T cells consist, for
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example, in switching on suicidal genes such as inducible caspase 9 in order to eliminate
these cells after fulfilling their role in the body [81,82].

In 2017, the FDA approved the first cell-based gene therapy for the treatment of refrac-
tory, relapsed B-cell precursor ALL in children and young adults. The genetically modified
cells are the patient’s own T cells into which genes for the chimeric antigen receptor, in
this case, directed to the CD19 surface antigen on leukemic cells, are inserted [75]. Com-
plete remission was achieved in approximately 90% of patients with relapsed or refractory
ALL, as well as failure after bone marrow transplantation. Permanent remission has been
followed for up to 24 months [83]. The advantage of this therapy is that CAR T cells
proliferate in the patient’s organism up to 1000 times more than that implanted in the
patient [75]. They have been detected in the blood, bone marrow and cerebrospinal fluid
of patients [84]. In addition, persistent CAR T cells may characterize immune memory.
This treatment approach shows promise in relapsed leukemias. The efficacy of CAR T cells
therapy targeting the CD19 antigen has also been demonstrated in highly resistant and
massive chronic lymphocytic leukemia (CLL) disease [85]. A meta-analysis conducted on
the results of studies published between 1991 and 2014 showed that CAR T CD19 therapy
gave the highest response rate in patients with ALL (93%, 95% CI: 65–100%) compared
to patients with CML (62%, 95%). % CI: 27–93% and indolent B-cell lymphomas (36%,
95% CI: 1–83%) [85]. The analysis also confirmed the high response rate to treatment
with CD19-CAR T cells in treatment-refractory B-cell tumors. Importantly, the analysis
showed that the key factors for a better clinical response were lymph reduction and not
administering IL-2 to patients [86].

So far, CAR T cell therapy has been successfully used only in hematological neo-
plasms [87]. So far, an unsolved problem is the effective treatment of solid tumors with this
method. The reason for this is the lack of identified tumor-specific antigens that would be
highly expressed and present on majority neoplastic cells. Antigens that are overexpressed
on some neoplastic cells are also present at low concentrations on normal cells, which can
lead to high toxicity [88,89]. Solid tumor cells are much less homogeneous in the expression
of a known specific antigen compared to hematological CD19 + tumors. There is a need to
search for tumor-associated antigens that could be a suitable therapeutic target. The hope is
that neoantigens, which are highly immunogenic and are not present in normal cells, arise
in neoplastic cells as a result of mutations or, less frequently, are derived from oncogenic
viruses [90], whose presence is still being investigated. The search for neoantigens with
appropriate traits useful in treatment, such as an appropriate amount and expression in
the changing environment of the tumor, may become the target of personalized therapy in
the future [91].

A serious problem is the limited access of CAR T cells to neoplastic cells due to the
specific tumor microenvironment. One of the many ways to overcome this obstacle may be
to stimulate CAR T cells to produce and secrete heparanase (HPSE). CAR T cells appear
to be deficient in the ability to produce HPSE and therefore cannot efficiently degrade
the extracellular matrix in a tumor [91]. Modifying CAR T cells to produce HPSE enables
them to degrade ECM and improves tumor mass infiltration and enhances antitumor
activity [92]. Moreover, tumor-associated stromal cells secrete indoleamine 2,3 dioxygenase
(IDO) which contributes to acidification of the microenvironment and reduces the anti-
tumor activity of CAR T cells [93,94] and promotes the induction of Treg lymphocytes. A
serious problem is the immunosuppressive environment of the tumor, which consists of
adenosine-PGE2 signaling, contributing to a strong inhibition of proliferation and activation
of T effector lymphocytes, NK and TAM cells and promotes the activation of Treg, creating
favorable conditions for tumor growth [95]. Other immunosuppressive agents in the tumor
microenvironment that may be therapeutic targets are IL-4 and IL-10 [96,97]. Additionally
important for the therapy would be the inhibition of TGFbeta secreted by both tumor cells
and tumor associated cells.

Ways to increase the efficacy of CAR T cells in solid tumors, inter alia, by enhancing
the migration of these modified cells to the tumor, improving survival and proliferation,
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improving specificity, bypassing the immunosuppressive environment and reducing the
side effects of cytokine storms are discussed in an extensive review [98]. On the other hand,
TCRs rather than CARs seem to be more useful in the recognition of neoantigens due to the
fact that the former can recognize many more antigens, also processed intracellularly [99].
By contrast, CAR T cells can only recognize extracellular antigens. On the other hand,
a limitation in TCR therapy is the downregulation of MHC on tumor cells necessary for
antigen recognition by TCR.

The use of autologous tumor infiltrating lymphocytes (TILs) is also considered as
a type of immunotherapy [99]. Phase II clinical trials have shown that half of patients
with metastatic melanoma showed an objective response (OR) after TILs application [100].
This therapy has proved ineffective in non-immunogenic tumors due to the low amount
of polyclonal tumor-specific T cells obtained after ex vivo expansion [97]. Increasing its
effectiveness in treatment is associated with the improvement of the technique of isolation
of these cells from tumor tissue [101] using appropriate markers, e.g., co-stimulatory
surface receptor CD137 (4-1BB), which appears on T lymphocytes with a high capacity to
recognize and respond to neoplastic cells [102].

Research also aims to develop bispecific CAR T cells for CD19 and CD22 simulta-
neously for the treatment of refractory and relapsed ALL [102]. Although most cells in
B-ALL have the CD19 antigen, there are cells lacking this antigen and responsible for
frequent relapses. CD19/CD22 CAR T cells would prevent these relapses and lead to a
further improvement in the treatment efficacy of this leukemia. Based on the first phase of
clinical trials, it is already known that improvement was also obtained, but the problem
of the presence of blast cells with negative or low expression of these two antigens has
not yet been solved [103]. A problem with this downregulation of CD19 and CD22 is
their endocytosis after crosslinking [104,105]. A way around the obstacle is to use the
Lym-1 epitope of the HLA-DR antigen, which is not endocytosed after cross-linking [106]
and is highly expressed on most human leukemia B cells [105]. Additionally, to improve
the expansion, a new DAP signaling domain was used instead of the classic 4-1BB and
CD3z (BB3z) [107]. Thus, huLym-1-B DAP CAR T cells were obtained, which, in ex vivo
and in vivo tests, has better expansion and shows higher cytotoxicity towards tumor cells.
The new huLym-1-B DAP CAR T cells therefore seem to be a promising therapy worth
further research.

The CAR-NK therapy cannot be ignored, as it may be more effective and safer than
CAR T cells. NK cells use the Natural killer group 2D (NKG2D) receptor to recognize neo-
plastic cells. It appears that, in vitro and in vivo, the NKG2D transduction of activated and
expanded (NKAE) NK cells results in an increase in their antitumor activity in comparison
to autologous NKG2D-CAR CD45RA T cells [108]. CAR-NKAE cells also performed very
well in toxicity tests, as they showed no toxicity to autologous PBMCs [107].

5. Oncolytic Viruses

The idea to use viruses to fight cancer first appeared several decades ago. However,
only the development of genetic engineering made it possible to implement the original
plans. Oncolytic viruses are a type of immunotherapy designed to selectively attack and
kill cancer cells and enhance anti-cancer immunity [108]. Neoplastic cells infected with an
oncolytic virus return under immunological surveillance, as they begin to express major
histocompatibility complex class I (MHC I) molecules on their surface [109].

Research on oncolytic viruses uses both naturally occurring oncolytic viruses and
modified viruses in such a way that they have an affinity only for neoplastic cells [110,111].
Viruses with natural tropism to neoplastic cells include natural oncolytic viruses are re-
oviruses, Newcastle disease virus (NDV) and vesicular stomatitis virus (VSV) [112]. Modi-
fied oncolytic viruses are altered so that they can be picked up selectively only by mutant
tumor cell receptors, or a deletion is used that allows the virus to selectively replicate in
tumor cells [112–114].
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The advantage of oncolytic viruses is also their ability to replicate in neoplastic cells,
thanks to which they can infect other cells [112,115]. Moreover, if they infect normal cells,
they have reduced pathogenicity in these cells [116]. The most commonly modified viruses
for anti-cancer therapy are adenoviruses, vaccinia (vaccinia) and HSV [115–117]. In the
treatment of patients with advanced, unresectable melanoma without metastases to internal
organs the oncolytic virus talimogene laherparepvec—T-VEC—is powerful [118]. T-VEC
results from the modification of HSV-1, for example, two viral genes were deleted: the
ICP34.5 gene, in order to prevent neurovirulence and improves viral selectivity in against
neoplastic cells, and the ICP47 gene, which blocks the presentation of viral antigens by
infected cells to CD8 T cells [119]. By deleting the ICP47 gene, the immune response against
infected tumor cells is enhanced. The FDA approved the T-VEC based on studies that
confirmed the overall durable response rate of 16.3% of patients, compared with 2.1% of
the reference group treated with GM-CSF [120]. The drug is well tolerated and may cause
mild to moderate flu-like symptoms.

Strategies that are used in the creation of oncolytic viruses rely on the deletion of
specific genes, such as genes essential for the replication of the virus in normal cells. An
example is the deletion of genes responsible for inactivating cell suppressor genes, such
as the p53 or rb gene, so that the cell cycle does not stop after infection and the virus
replicates freely in the cell [121–123]. Viruses with such a defect can replicate only in tumor
cells with mutations that inactivate these genes. Another strategy is to replace the viral
promoter with a tissue-specific one to limit viral replication to cells expressing specific
antigens, e.g., hypoxia-induced factor 2 (HIF-2) or prostate-specific antigen (PSA), which
are overexpressed in certain types of cancer cells [124,125].

With the use of viruses, “suicidal genes” are introduced which sensitize neoplastic cells
to a cytostatic, e.g., thymidine kinase gene, purine nucleoside phosphorylase, cytochrome
p450, cytosine deaminase [126]. The introduced enzymes convert the inactive substance
into a cytotoxic drug whose activity is limited to the infected tumor cells. In the case of the
T-VEC virus, a gene for GM-CSF was introduced to improve the anti-tumor response by
activating dendritic cells. This strategy increases the presentation of tumor antigens, which
leads to the activation of cytotoxic T lymphocytes and stimulates the immune system to a
systemic response, leading to the elimination of distant metastases [127].

Another advantage of HSV-1 oncolytic viruses is the stimulation of cancer cells to
secrete IL-12, which cytokine supports the immune response against persistent cancer cells,
which increases the anti-cancer effect of the therapy (Figure 3). Elevated levels of IL-12 can
also exert an anti-angiogenic effect by inhibiting the production of new blood vessels that
allow cancer cells to grow and differentiate.

However, the problem in this therapy is the reaction of the immune system to the
antigens of the oncolytic viruses themselves, which leads to their neutralization [128]. This
is prevented by the use of carrier cells, e.g., T lymphocytes, which can deliver the oncolytic
virus to the neoplastic cells, preventing them from being neutralized earlier [129].

Clinical trials are currently underway on a number of oncoviruses with potential
application in cancer therapy such as, e.g., GL-ONC1 Vaccinia oncolytic virus; LOAd703
oncolytic adenovirus administered to patients with pancreatic cancer; or ADV/HSV-tk
oncolytic therapy involving the thymidine kinase expression of the herpes simplex virus
with adenovirus and valaciclovir therapy in patients with triple-negative metastatic breast
cancer and small cell lung cancer (NSCLC) metastases. In Japan, several oncolytic viruses
have been developed from 2018 to date, some of which have been introduced into clinical
trials. An example is G47∆, a third-generation oncolytic virus of HSV-1, included in Phase
I and II clinical trials against neoplasms such as glioblastoma, prostate cancer and olfactory
neuroblastoma [130]. Three forms of it have entered clinical trials: HSV1716 showing clini-
cal efficacy in high-grade glioma, as well as in solid brain tumors of pediatric patients [131],
G207 in recurrent malignant glioma [132] and self-replicating herpes virus—MO32 recom-
mended especially in progressive, malignant glioma [133] or G47∆ (with an additional α47
deletion attached to G207) as the only third-generation HSV-1 showing clinical efficacy
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in Phase I and II clinical trials in patients with recurrent glioblastoma, prostate cancer or
mesothelioma approved for use in 2016 in Japan by the Japanese Pharmaceuticals and
Medical Devices Agency (PMDA).

Figure 3. The effects of oncovirus therapy. Oncolytic viruses selectively replicate and lyse cancer cells compared to normal
cells which lack these effects.

Despite the admiration of the scientific world, the response from the human body
affected by cancer to the introduction of an oncolytic virus into its organism is still usually
ineffective. On the one hand, it is hindered by the tumor’s protective mechanisms and
its diverse phenotype, and on the other hand, the introduction of an oncolytic virus into
the body stimulates the host’s immune system to respond, thereby limiting the replication
of the virus [134]. Hence, the combination immunotherapies aimed at multiple goals
seem promising. For example, introducing an oncolytic virus prior to tumor removal
surgery may alter the body’s immune response and enhance the effects of subsequent
checkpoint inhibitor treatment. The current research interests are focused on combined
cancer treatment [135]. Hence, the current clinical trials using oncolytic viruses in cancer
therapy emphasize the importance of combining them with checkpoint inhibitors, which
leads to the enhancement of the final effect by simultaneous elimination of cancer cells
and dramatic changes in its microenvironment. It seems important here—as in the case of
bispecific antibodies—to develop a technology of combining various types of viruses with
checkpoint inhibitors (Figure 4).

Preclinical and clinical data show that oncolytic viruses can induce anti-tumor immu-
nity and significantly increase the infiltration of immune cells (including CD8 + cytotoxic
lymphocytes) into the local tumor microenvironment. The influx of viral infection changes
the tumor microenvironment, resulting in the continuous activation of many different cells
of the immune system and a cascade of proinflammatory cytokines which is a target for
checkpoint inhibitors as they are most effective in environments with large lymphocytic
infiltration [136,137]. An example of a clinical trial that combines oncolytic viruses with
checkpoint inhibitors is CAPTIVE CAPRA, in which patients with advanced melanoma
were injected with multiple CVA21, with multiple doses of pembrolizumab [138]. The
effectiveness of the proposed combination therapy was 73%, which seems to revolutionize
combination therapy in many types of cancer. In other studies, the combination of T-VEC
with ipilimumab in patients with inoperable stage IIIB-IV melanoma in Phase Ib/II studies



Int. J. Mol. Sci. 2021, 22, 11694 12 of 31

(NCT01740297) was more effective than ipilimumab alone and was well tolerated [139]. An-
other example of high effectiveness seems to be the aforementioned HF10 polytherapy with
ipilimumab, an anti-CTLA-4 checkpoint inhibitor in patients with inoperable or metastatic
melanoma (in 2014 in the USA—NCT02272855; in 2018 in Japan—NCT03153085).

Figure 4. The diagram shows combining oncolytic virus therapy and immune checkpoint inhibitors. As a result of the action
of oncolytic viruses, neoplastic cells are lysed and the immune response is induced, and thanks to the use of checkpoint
inhibitors, the immune defense of the organism is strengthened. Ndv—Newcastle disease virus, Ads—Adenovirus,
HSV—Herpes simplex virus, MV—Measles virus, VV—Vaccinia virus, H-1PV—H-1 protoparvovirus.

6. Cancer Vaccines

Tumor vaccines aim to stimulate an immune response against tumor associated anti-
gens (TAAs) or tumor strand associated antigens (TSAAs) after immunization with purified,
recombinant or synthetically produced epitopes.

Various methods are used to expose the patient’s immune system to tumor anti-
gens. Hence, attempts are being made to develop peptide (protein/peptide) anti-tumor
vaccines, DNA- or RNA-based genetic vaccines and whole tumor vaccines based on den-
dritic cells [140–145] (Table 2). In the case of genetic vaccines, DNA or RNA for TAAs is
introduced via a plasmid or viral vector [146,147].
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Table 2. Cancer vaccines investigated in preclinical and clinical studies.

Type of Vaccine Problems in Applicaion Clinical Application Origin

Dendritic cells Huge cost PROVENGE®, castration-resistant prostate
cancer, approved by FDA

From patient’s PBMCs

Peptide/protein Limited efficacy (intracellular
processing) No application Synthetic peptides

DNA Risk of insertional
mutagenesis, limited efficacy No application From autologus tumor cells

mRNA Instability (enzymatic
degradation) No application From autologus tumor cells,

tumor cRNA libraries

A problem with DNA-based vaccines may be the risk of insertional mutagenesis [146].
In this regard, RNA vaccines may be safer. Additionally, they are present only transiently
in cells due to enzymatic degradation. RNA is obtained from autologous tumor cells, and
tumor cRNA libraries are produced, which provide a large amount of tumor RNA [148].
RNA therapy allows the exposure of tumor cells to a variety of tumor antigens TAAs and
TSAAs [149]. The latter advantage is important in the context of the relationship between
the tumor stroma and tumor cells in the anti-neoplastic response [143,150]. However,
the efficacy of the anti-cancer genetic vaccine has not been demonstrated in clinical tri-
als [151,152]. The problem is the instability of RNA and therefore low efficiency, that is
why, so far, DC cells have been exposed to neoplastic RNA ex vivo, by electroporation [153],
the use of nanoparticles [154], liposomes or synthetic polymers [155]. One of the devel-
oped DNA vaccines, which was administered to DC by electroporation, showed increased
regression of cervical neoplasia in the phase 2b clinical trials [156].

Currently, various methods of mRNA stabilization have been developed, including
the creation of analogous mRNA caps, which extend the duration of this molecule in the
body, increase the level of protein expression in dendritic cells several dozen times and
allow it to be used directly in vivo [157–159]. The modification consists in replacing one
oxygen atom with a sulfur atom (beta S-ARCA analog) or with a BH3 group (beta B-ARCA
analog) in the triphosphate bridge cap 5. In this way, the duration of the mRNA molecule
in the organism is tripled. The affinity of mRNA to the factor initiating the biosynthesis
of the eIF4E protein also increases. Therefore, it can be expected that there will be a new
generation of mRNA anti-cancer vaccines that will have positive results in clinical trials.

In the case of peptide vaccines, the quality of the peptide used is of importance.
Not only is the selection of the appropriate peptide important but so is the length of this
molecule, which must be optimal to induce an immune response [156]. In order to increase
the immune response to vaccines, attempts are made to use immunoadjuvants such as
GM-CSF or interleukin-2 or toll-like TLR agonists [160]. Cytokines enhance the immune
response to cancer vaccines by stimulating dendritic cells, NK and T cells. The basis of the
action of cancer vaccines is the presence of activated DC cells capable of presenting the
antigen. It is known that, in neoplastic disease, the phenomenon of immunosuppression
leads to the inhibition of DCs function [161]. Therefore, cancer vaccines, especially peptide
vaccines, are often combined with immunoadjuvants, which are primarily used to unblock
DCs. Following such stimulation, DCs express on their surface not only vaccine antigens
but also costimulatory molecules that are essential for T cell activation and migrate to
lymph nodes [162]. TLR agonists are adjuvants that strongly stimulate DC cells in clinical
trials [145,163].

To date, peptide vaccines have shown limited efficacy in clinical trials. The reason
for these failures is the intracellular processing of peptide molecules, which negatively
affects antigenicity. The tumor microenvironment, which promotes immunosuppression,
should also be taken into account. A solution to this problem may be the simultaneous use
of several therapies with different goals, e.g., combining peptide vaccines with adjuvants,
cytostatics and immune checkpoint inhibitors.

So far, only one dendritic-cell-based cancer vaccine (PROVENGE®, Dendreon Cor-
poration, Seal Beach, CA, USA) has been approved by the FDA for therapy and is used
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only in the USA for the treatment of castration-resistant prostate cancer [164]. Apart from
the huge cost of this therapy, its effectiveness is not high, as it improves the median sur-
vival by an average of 4.1 months compared to placebo (25.8 vs. 21.7 months) and does
not affect the time of progression [165]. The dendritic cells in this vaccine are derived
from the patient’s PBMCs and are incubated with the PA2024 fusion protein consisting of
prostate acid phosphatase and GM-CSF. Its advantage is good tolerance. Little effective
dendritic vaccines are being combined with checkpoint inhibitors or oncolytic viruses.
Inhibition of immune checkpoints may increase the immune response to the vaccine. If
the synergism of anti-cancer activity was achieved, it could be a promising direction of
therapy. An example is the combination therapy of MG1-MAGEA3 oncolytic virus with
Ad-MAGEA3 vaccine and pembrolizumab targeting non-small cell lung cancer of pa-
tients who have undergone 1 course of standard cisplatin chemotherapy and at least one
treatment with an antibody targeting programmed cell death 1 receptor (anti-PD-1, e.g.,
pembrolizumab) or (anti-PD-L1) (in 2017 in Canada—NCT02879760) [166]. Another good
example is the recombinant carcinoma-induced ovarian cancer (CEA) vaccine containing
measles virus (MV-CEA) or measles oncolytic virus encoding sodium thyrotropic sym-
porter (MV-NIS), recommended for the treatment of patients with progressive, relapsed
or refractory treatment of ovarian or primary peritoneal cancer (under recruitment at
Mayo Clinic—NCT00408590). Another example of a vaccine that is part of a combination
therapy that has seen the light of day with the possibility of introduction in humans is
MG1-MAGEA3 with Ad-MAGEA3 and pembrolizumab (composed of: Ad-MAGEA3—an
adenoviral vaccine expressing melanoma-associated antigen 3 (MAGEA3), a tumor antigen;
MG1-MAGEA3 MG1 Maraba oncolytic virus expressing melanoma-associated antigen
3 (MAGEA3), a tumor antigen; Pembrolizumab—monoclonal antibody; PD1 checkpoint
inhibitor; chemotherapy with cyclophosphamide) recommended for patients with previ-
ously treated metastatic melanoma or cutaneous squamous cell carcinoma (Pelican) not yet
recruited but planned at Turnstone Biologics, Inc.—NCT03773744. MG1-E6E7 vaccine with
Ad-E6E7 and Atezolizumab recommended in patenty with HPV-related cancers (recruit-
ment from December 2018 in Florida, University of Miami—NCT03618953). The problem
with the effectiveness of genetic vaccines may be also the lack of identified appropriate
tumor antigens that could induce a strong and specific immune response.

7. Research on Improving the Effectiveness of Biological Therapies
7.1. Searching for Neo-Antigens

Tumor-associated antigens (TAAs) used to develop immunotherapy did not bring the
expected results in solid tumors. The reason for these failures may be the poor recognition
of these antigens on tumor cells. Moreover, their presence also on normal cells can generate
severe side effects in healthy tissues, as has been observed in CAR T cell therapy [167,168].

Tumor antigens to be targeted by new biological therapies for solid tumors should
meet certain conditions. They should be unique to neoplastic transformed cells and be ex-
pressed on most neoplastic cells, should not be subject to the mechanism of central immune
tolerance and should induce a specific and strong immune response when recognized as
foreign antigens [169].

Therefore, recent research on the search for antigens for biological therapies focuses
on neoantigens/neoepitopes (tumor specific antigens, TSAs), which arise in neoplastic cells
as a result of mutations or epigenetic phenomena, leading to the formation of an altered
protein with a unique structure, characteristic for a given patient [170]. The advantage of
neoantigens is that they are not presented in the thymus and therefore are not immuno-
compromised. The strategy of using neoantigens is the path to personalized therapy. Much
progress in the search for such antigens is possible thanks to the development of the NGS
technique, which allows the detection of all mutations in a tumor. Clinical trials provide
arguments for the use of neoantigens. The use of neoepitope-specific TILs as part of adop-
tive T target therapy has shown positive therapeutic results in clinical trials [171]. It has
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been shown that the administration of neoantigens in the form of a vaccine results in the
stimulation of neoantigen-specific T lymphocytes [172,173].

7.2. Tumor Stroma-Associated Antigens as a Target of Anticancer Therapy

Tumor stroma-associated antigens (TSAAs) are also a subject of research for future
cancer therapies, as they occur on normal cells that can support tumor cells in their
proliferation, support the process of metastasis, participate in tumor angiogenesis [174].
Tumor stroma-associated cells overexpress specific TSAAs [175]. One can also observe
functional characteristics different of these some cells in normal tissue [176]. Tumor-
associated fibroblasts overexpress fibroblast activation protein α (FAPα; seprase). FAPα
overexpression has been shown to correlate with increased tumor development [177].
The proteins produced by endothelial cells within a neoplastic tumor are TEM1 and
TEM8 [177,178]. Other proteins that are upregulated in the tumor microenvironment
are the matrix metalloproteinases (MMPs) secreted by stromal cells such as fibroblasts
and endothelial cells, which assist tumor cells in producing these proteins essential for
extracellular matrix remodeling [179]. TSAAs also includes PSMA, secreted not only by
prostate cancer cells but also by the stoma endothelial cells of some types of carcinomas,
such as kidney, bladder, breast and non-small lung cell carcinoma [180].

7.3. Universal Therapeutic Goals

Currently, the trend in cancer therapy research is the search for a universal biological
therapeutic target for various types of cancer. An example of this strategy is the FDA-
approved accelerated drug Vitrakvi (larotrectinib) in 2018, which targets the key cancer
genetic driver, present in various types of cancer, the neurotrophic receptor tyrosine kinase
(NTRK) gene fusion. The NTRK genes encode the transmembrane receptor proteins TRK A,
B and C [181]. It is expressed in nervous tissue, and the physiological role of this receptor
is to regulate the development and function of the human nervous system [182]. In cancer
cells, NTRK genes can be fused with other genes, and the resulting fusion genes act as
constitutively activated kinases, overexpressed and promoting tumor growth [181]. This
mutation is rare but is present in various types of cancer, such as mammary analogue secre-
tory carcinoma, cellular or mixed congenital mesoblastic nephroma, soft tissue sarcoma,
salivary gland cancer, thyroid cancer, lung cancer and infantile fibrosarcoma (Figure 5).
Vitrakvi gave a durable overall response rate in 75% of people with various types of
treatment-resistant solid tumors. In 73%, this response lasted for at least 6 months [183].

Other therapeutic targets common to various cancers are also being sought. Such
therapies are becoming possible thanks to the growing knowledge of the basics of cancer
cell biology. The LPCAT1 enzyme, under the influence of which there are changes in the
lipid composition of the cancer cell membrane, may be an effective target in the future.
The activity of this enzyme is enhanced in many types of cancer cells, it stimulates tumor
growth and is important for its survival [184].

7.4. Cancer Stem Cells

One of the major problems in the fight against cancer is that cancer stem cells can
survive treatment by slowly dividing, being resistant to cytostatic drugs and escaping the
immune system. Until we deal with cancer stem cells, we will not be able to effectively
treat this disease.

Finding the therapeutic targets of key importance for managing the behavior of
cancer stem cells among a multitude of different pathways could effectively block the
development of the disease. The example of CML stem cells shows that in these cells,
unlike in CML progenitor cells, there is cooperation between BCR-ABL and many growth
factors, tumor suppressors, as well as factors that govern the quiescence and maintenance
of CML stem cells [185]. The co-operations of various factors with BCR-ABL modulate the
signaling of this fusion protein and lead to resistance to TK inhibitors. Epigenetic modifiers
and metabolic reprogramming of stem cells and the role of microRNAs in their survival
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should also be taken into account [186]. Another approach is to identify tumor-specific
surface markers for individual cancer stem cells and to develop monoclonal antibodies for
them [187]. The listed exemplary concepts of new therapeutic strategies represent a rather
distant perspective in cancer therapy.

Figure 5. Diagram showing potential therapeutic targets on cancer cells. TSA—Tumor-specific antigen, TSAAs—Tumor
Stroma-Associated Antigens, FAPα—Fibroblast activation protein α, MMPs—Matrix metalloproteinases, TEM 8—Tumor
endothelial marker 8, PSMA—Prostate-specific membrane antigen, TRK—tyrosine kinase, TAM—Tumor-associated
macrophage, CAF—Cancer-associated fibroblast, M2—Macrophage 2, CXCL12—C-X-C motif chemokine 12, CXCR4—
chemokine receptor for CXCL12, OSCC—Oral squamous cell carcinoma, CSC-like—Cancer stem-like cell.

Nanostructured toxins can also be an effective alternative. An example of such a
therapeutic strategy under development is the combination of a ligand for the CXCR4
receptor with diphtheria toxin (DITOX) and the Pseudomonas aeruginosa exotoxin (PE24)
molecules, which are ribosome-inactivating proteins (RIPs) that inhibit the eukaryotic
elongation factor 2 (eEF-2). They were applied to colorectal cancer stem cells overexpressing
the CXC4 chemokine receptor, which is involved in drug resistance. These cancer cells
administered to mice were successfully killed after the administration of this therapy [188].
This toxin caused the death of apoptosis-resistant cells by pyroptosis.

One important factor that manages the stemness of CSCs in renal cancer is the Notch
pathway [189]. Blocking Notch 1 and 2 with inhibitors leads to the loss of stem cell char-
acteristics, including self-renewal, migration, invasiveness and chemoresistance and the
ability to induce cancer in vivo. In contrast, overexpression of Notch1 leads to an in-
crease in CXCR4 expression and an increase in the C-X-C-induced chemokine 12 (CXCL12)
chemotaxis of renal cancer CSCs.

7.5. Cancer Microenvironment

An important therapeutic strategy is to influence the tumor microenvironment, which
is essential at every stage of tumor development. It protects stem cells from chemotherapy
and participates in the regulation of quiescence. Normal cells with overexpression of



Int. J. Mol. Sci. 2021, 22, 11694 17 of 31

specific proteins characteristic of the tumor microenvironment may also be a universal
therapeutic target, as they support tumor growth.

CAFs and TAMs are particularly important components of the tumor microenviron-
ment. These cells promote the proliferation of neoplastic transformed cells, invasion and
metastasis [190,191]. By studying the microenvironment of the human oral squamous cell
carcinoma (OSCC), CAFs have been shown to attract monocytes to the tumor by secret-
ing the CXCL12 chemoattractant that binds to the CXCR4 monocyte receptor [192]. In
response to this stimulation, monocytes differentiate into M2 macrophages and lead to
the conversion of the OSCC-derived cell line into CSC-like cells, which increases their
proliferation and migration and protects against apoptosis (Figure 5) [192]. The CXCL12
molecule produced by the bone marrow niche cells and its CXCR4 receptor on leukemic
cells are also responsible for drug resistance in myeloid leukemia [193]. The use of the
CXCR4 inhibitor sensitizes leukemic cells to chemotherapy and inhibits the homing of
myeloid leukemia cells to the corresponding niches in the bone marrow [194].

Leukemic stem cells (LSCs) are associated with a microenvironment that contributes to
their resistance to treatment and to initiate relapse. LSCs transform the microenvironment
in the bone marrow to their advantage, making it unfavorable for HSCs, which causes these
cancer cells to gain an advantage over HSC [195]. They are kept in a quiescent state and
receive protection against chemotherapy from the microenvironment [196,197]. CXCR4
may be a new therapeutic target for many types of solid tumors and leukemias. Apart from
the complex and not yet well-known interactions of the bone marrow microenvironment
and LSCs, the role of growth differentiation factor 15 (GDF15) produced by CAFs also
deserves attention [198]. Similarly, a decrease in the expression of the lumican gene in
bone marrow mesenchymal stem cells (BM-MSCs) leads to the chemotherapy resistance of
LSCs [199].

One should take into account that therapies targeting cancer stem cells can also affect
normal stem cells due to the many similarities between transformed and normal cells. The
design of therapies against cancer stem cells should target cancer stem cells as precisely as
possible and should also overcome the conditions of a specific tumor microenvironment
with poor vascularization and low oxygen levels not conducive to drug penetration [200].

7.6. Release of LSCs from a Natural Niche as a Therapeutic Strategy

In the case of leukemias or lymphomas, the method of elimination of cancer stem cells
may be their mobilization into the peripheral blood, followed by isolation by modified
leukapheresis combined with the capture of these cells with an antibody specific for their
markers. The search for such markers is still ongoing.

A second strategy that is now being investigated is the mobilization of bone marrow
stem cells, including LSC and HSC, into the bloodstream in combination with the use
of chemotherapy. This strategy is based on the assumption that LSCs “torn” from their
niche in the bone marrow can more easily enter the cell cycle and undergo chemotherapy-
induced apoptosis.

Currently, strategies to disrupt the CXCL12/CXCR4 interactions that control homing
and retention of LSC by administration of G-CSF are used to mobilize hematopoietic stem
cells into the peripheral blood [201]. Improving the effectiveness of this strategy could
contribute to the release of a large enough pool of LSCs to be removed from the body and
obtain a therapeutic effect.

Many inhibitors are in development, such as plerixafor (AMD3100), an FDA-approved
CXCR4 antagonist for the mobilization of HSC in combination with G-CSF. Plerixafor was
tested in Phase I and II clinical trials (NCT01435343) in patients with relapsed and refractory
AML in combination with G-CSF, fludarabine, cytarabine and idarubicin, achieving a high
CR/CRi of 49%, of which 61% of patients underwent allogeneic HSC transplantation, but
the OS after this treatment was only 9.9 months, and the DFS was 13 months [202]. More
effective antagonists of CXCR4 are still being sought, and noteworthy is the synthetic
peptide BL-8040, having a high affinity for CXCR4 [203]. In clinical trials in patients with
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AML (NCT01838395), BL-8040 peptide used as monotherapy strongly mobilized AML
progenitor cells and induced their apoptosis. However, when combined with cytarabine,
this peptide induced 38% CR and significantly improved OS in AML patients compared to
cytarabine alone [204].

They also pay attention to other factors involved in LSC adhesion to the cells of
the bone marrow microenvironment. An example is selectins, which are involved in the
interaction between LSC and vascular niche [205]. The E-selectin antagonist GMI-1271
(uproleselan) mobilizes AML blasts into the circulating blood [205]. Promising results have
been obtained in clinical trials (NCT02306291) in patients with relapsed and refractory AML
treated with uproleselan in combination with chemotherapy (mitoxantrone, etoposide,
cytarabine) [206]. The improvement in survival time and the occurrence of remissions
in these patients correlated with high expression of E-selectin-ligand on AML blasts and
on LSC.

Integrins, which are activated by CXCL12, also participate in the binding of CD34+
cells to ligands in the bone marrow niche [207]. The very late antygen-4 (VLA-4) is an
integrin which plays a special role in AML, binding to fibronectin intercellular adhesion
molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1). VLA-4 expression
is associated with shorter survival in AML patients [208]. In addition, the use of anti-JAM-C
antibodies inhibits HSC homing and induces their mobilization to the blood in mice [209].

Given the complexity of LSCs interactions with the microenvironment, acting on these
cell populations by disrupting their interactions with the niche and inducing their mobi-
lization into the bloodstream is still an open path to developing new therapies for AML.

7.7. The Problem of Cancer Cell Heterogeneity

The heterogeneity of neoplastic cells may contribute to the failure of treatment with
inhibitors that target single molecular targets, despite the previous positive response
of neoplastic cells to treatment [210]. An example would be NSCLC therapy with the
third-generation EGFR inhibitor osimertinib. It has been observed that when osimertinib
is administered to patients with EGFR mutant NSCLC who have previously received
treatment with at least one line of therapy, a significantly shorter time to progression
(PFS = 8.2 months) is observed [211] compared to the use of the drug in first lines of
therapy (PFS = 18.9 months) [212]. It is presumed that this decrease in the effectiveness
of osimertinib may be due to the increase in the heterogeneity of the population of cancer
cells caused by the use of previous therapies [210]. This is an argument for not only the use
of combination therapy but also for personalized treatment, modified at various stages of
the disease.

8. Directed Enzyme Prodrug Therapy in Treatment of Cancer

An interesting strategy is the antibody-directed enzyme prodrug therapy (ADEPT)
therapy being developed. The idea of ADEPT technology is related to the use of monoclonal
antibodies that can be used as carriers of unique enzymes and binding specifically to tumors,
where they can transform many prodrug molecules into potent cytotoxic agents within
tumors [213]. This enables attaining higher drug concentrations than in the case of direct
administration. Drug is thus produced extracellularly, and being a small molecule, it can
diffuse through the mass of the tumor and also kill cells through transitive effect [214].
ADEPT is a less toxic chemotherapy for normal tissue and thus it can be combined with
other methods, including immune therapy, in order to obtain better clinical benefits [215].

ADEPT using G2 (CPG2) carboxypeptidase, a bacterial enzyme isolated from Pseu-
domonas sp. [216], has been applied clinically, and it has no human analogue, catalyzing
the degradation of reduced and non-reduced folates. Preclinical studies of CPG2 conju-
gated to non-internalizing antibodies targeting secreted tumor-associated antigens, such
as human chorionic gonadotropin (hCG) and carcinoembryonic antigen (CEA), were per-
formed in a mouse model with human choriocarcinoma xenografts-CMDA prodrug. They
demonstrated complete or partial regression of tumor in the mouse [217,218].
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The clinical trial uses CPG2 chemically conjugated to the F(ab)SD fragments of the
murine anti-CEA A5B7 monoclonal antibody. In addition, another murine monoclonal
antibody (SB43) targeting CPG2 has been developed. SB43 inactivates CPG2 and, to avoid
the inactivation of CPG2 in tumors, it has been chemically galactosylated (SB43gal), thus it
is quickly cleared from the circulation via carbohydrate receptors in the liver [219].

9. The Progress of Targeted Therapy

Current methods in research on anti-cancer drugs such as NGS and advanced compu-
tational methods allow for accelerating the rate in the search for small molecule targeted
drugs, such as inhibitors of protein kinases or inhibitors of the mTOR pathway.

Protein kinases modify the activity of other proteins involved in various cell functions
through a phosphorylation reaction. Impairment of their functions is observed in various
neoplasms [4]. The therapeutic success achieved with the use of the mutant BCR-ABL
kinase inhibitor mentioned in the introduction in patients with CML prompts research on
inhibitors of other kinases involved in tumorigenesis. In search of protein kinase inhibitors,
the first targeted therapy was developed in the treatment of AML with midostaurin in
patients with the FMS-like tyrosine kinase 3 (FLT3) mutation, which occurs in 15–35% of
patients with AML. There was a significant extension of OS compared to placebo [220].
Currently, inhibitors are tested for many protein kinases, including PIM serine-threonine
kinases 1, 2 and 3. PIM kinases are overexpressed in AML and solid tumors such as colon
cancer or prostate tumor, which is associated with poor prognosis [221–223]. Pan-Pim
kinase inhibitors from the imidazopyridazine-thiazolidinediones group have been shown
to exert anti-neoplastic activity in various neoplastic types in vitro and in vivo [224].

The advanced computational methods currently used make it much easier to precisely
determine the structure of active sites for molecular targets, necessary to bind molecules and
inhibit their activity or activation. In this case, computational techniques are helpful based
on bioinformatics and cheminformatics, which deal with the development of databases
and statistical algorithms that enable the analysis of data from biological and chemical
research [225]. Thanks to them, it is possible to identify molecules that are the best drug
candidates among many others. Molecular docking methods and ADMET research make it
possible to analyze the interactions of these emerging candidate molecules with being the
target of macromolecules and determine which of them have the best features of a potential
drug [226].

10. Applications and Potential of Biological Therapies

Of the different biological therapies, recombinant antibodies have so far played the
most important role in the treatment of cancer, some of which have proven to be break-
through therapies such as checkpoint inhibitors. That is why such therapies are still
intensively developed. The FDA has recently approved not only blinatumomab but also
some other antibodies. The anti-EGFR/cMET antibody, amivantamab, approved by FDA
in 2021 through an accelerated procedure, is intended for NSCLC patients with an EGFR
exon 20 mutation in disease progression following platinum therapy [227]. The EGFR
inhibitors available so far have not brought positive therapeutic results in patients with an
exon 20 mutation, while, following amivantamab, the ORR was 40% and the mean duration
of response (DOR) was 11.1 months. Treatment was discontinued in 11% of patients due
to adverse reactions. The most common adverse effects included rash, dyspnea, fatigue,
muscle and skeletal pain or edema [228]. Another humanized BsAb approved by the FDA
in 2021 along the fast-track is zenocutuzumab (MCLA-128). The target of this BsAb is
HER2 on another epitope than trastuzumab and HER3. This drug appears promising in
the monotherapy in patients with gastric cancer, with progression following an earlier
treatment [229]. It is furthermore characterized by good tolerance. This drug is also subject
to testing in terms of combined therapy with hormonal therapy with trastuzumab and
vinorelbine [230].
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Since 2011, when the FDA approved ipilimumab, the first antibody targeting immune
checkpoints, other antibodies currently used in the clinic have appeared, such as pem-
brolizumab, nivolumab, as well as durvalumab and atezolizumab [231] (Table 1). In the
USA, they are used both as monotherapy and in combination therapy with conventional an-
ticancer drugs for about 70 types of cancer [232]. Immunotherapy is usually well tolerated,
the most common side effects are rash, fatigue or diarrhea. Importantly, immuno-oncology
therapies provide documented clinical benefits in comparison with chemotherapy. They
provide information on applications and clinical potential, helping clinicians understand
the importance of newer therapeutic options. Immune checkpoint inhibitors used in the
treatment of brain tumors may facilitate the presentation of tumor-associated antigens,
resulting in an improved response in patients treated for brain glioma [233]. Consequently,
the pre-operative approach used may enhance antigen presentation as well as allow the im-
mune checkpoint inhibitor to penetrate the blood–brain and blood–tumor barrier, thereby
increasing immune cell infiltration to further sensitize brain tumors and micrometastases
to immunotherapies [234].

However, many patients still fail to respond to these effective antibody therapies
due to primary or secondary resistance associated with the tumor cells, e.g., induction of
alternative intracellular pathways, reduced expression of therapeutic target particles [231].
The phenomenon of resistance to treatment with antibodies may also be related to the
cancer microenvironmental effect, as discussed in Section 7.

Almost all CAR T cell therapies used in the clinic are dedicated mainly to B-cell
leukemia and target the CD19 antigen. Several therapies have been developed for this
leukemia: tisagenlecleucel has been approved for the treatment of pediatric patients with
refractory B-ALL [235], then for patients up to 25 years of age with relapsed B-ALL and
for adults with diffuse large B-cell lymphoma [236]. Axicabtagene ciloleucel [237] has also
been approved for adults with refractory diffuse large B cell lymphoma. In 2020, the FDA
approved brexucabtagene autoleucel for patients with mantle cell lymphoma [238,239]
while, in 2021, it approved B-cell maturation antigen (BCMA)-directed autologous CAR T
cells (idecabtagene vicleucel) for patients with multiple myeloma [240]. Characteristic of
this type of therapy are the high response rates, and, despite the fact that it may even cause
serious side effects, as mentioned in chapter 4, it is of great interest among clinicians due to
its high therapeutic potential.

The situation is different in the case of solid tumors, for which this therapy is ineffec-
tive. One problem is that CAR T cells can only recognize extracellular antigens. Improving
the effects of therapy in solid tumors may be achieved after the development of CAR T
cells targeting multiple therapeutic targets or by finding suitable neoantigens. Another
obstacle in using this therapy on a large scale is its high cost, which makes the therapies
unattainable for poorer societies.

Of the oncolytic viruses studied so far, one of the aforementioned T-VECs (IMLYGIC®,
Amgen Inc., Southend Oaks, CA, USA) has been used, which has proved to be relatively
effective in the treatment of melanoma as an alternative to other therapies. Clinical studies
show that the use of oncolytic viruses together with other therapies may improve the
prognosis of patients [241]. The activity of viruses consisting in causing the lysis of tumor-
specific cells together with the stimulation of the immune system acts as a potential in
situ anti-cancer vaccine. In the case of therapy with oncolytic viruses, the risks associated
with the use of potential pathogenic particles should be taken into account, and despite the
“devirulence” of oncolytic viruses, care should be taken when using them. Moreover, one
type of oncolytic virus is not sufficient to destroy all cancer cells due to the heterogeneity
of cancerous tissues and the complexity of cancer cells. Selected cancer cells and non-
transformed support cells may be resistant to certain oncolytic viruses, indicating that
one type of virotherapeutic agent may not be effective for all types of cancer. Limited
identification of the virus and methods of its delivery to an individual patient vary [242].
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11. Conclusions

Reaching the limits of the effectiveness of chemotherapy and its toxicity to normal
tissues prompts the search for new treatment regimens based on personalized and com-
bination therapy, which are the future of medicine. The evolution of cancer therapies is
ensured by modern methods of molecular biology, enabling a better understanding of the
biology of cancer and finding an appropriate therapeutic target, such as the NGS method.
This progress is also possible thanks to the use of better and better bioinformatics methods,
which enable the precise adjustment of the drug to the therapeutic target.

It can be assumed that biological therapy in the broad sense will play an increasingly
important role in the treatment of neoplasms. In the review of selected studies, we present
a number of methods for modifying CAR T cells therapy, anti-cancer vaccines, and anti-
body structure to improve their bioavailability, binding strength or stability. Moreover,
attention was drawn to the directions of research that may contribute to the improvement
of biological therapy effectiveness. In particular, the need to look at cancer in the context
of the microenvironment, which is justified in the research results, was emphasized. The
benefits of combining various biological therapies, e.g., immune checkpoint inhibitors with
oncolytic viruses and anti-cancer vaccines, have been demonstrated.
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