
Adaptive informatics for multi-factorial and high content 
biological data

Bjorn L Millard1, Mario Niepel1, Michael P Menden1,3, Jeremy L Muhlich1, and Peter K 
Sorger1,2

1Center for Cell Decision Processes, Department of Systems Biology, Harvard Medical School, 
Boston, MA 02115, USA

2Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 
02139, USA

Abstract

Whereas genomic data are universally machine-readable, data arising from imaging, multiplex 

biochemistry, flow cytometry and other cell- and tissue-based assays usually reside in loosely 

organized files of poorly documented provenance. This arises because the relational databases 

used in genomic research are difficult to adapt to rapidly evolving experimental designs, data 

formats and analytic algorithms. Here we describe an adaptive approach to managing experimental 

data based on semantically-typed data hypercubes (SDCubes) that combine Hierarchical Data 

Format 5 (HDF5) and Extensible Markup Language (XML) file types. We demonstrate the 

application of SDCube-based storage using ImageRail, a software package for high-throughput 

microscopy. Experimental design and its day-to-day evolution, not rigid standards, determine how 

ImageRail data are organized in SDCubes. We apply ImageRail to the collection and analysis of 

drug dose-response landscapes in human cell lines at the single-cell level.

INTRODUCTION

It is widely accepted that biomedical data should be machine-readable and web-accessible. 

Relational database management systems (RDBMS)1,2 have proven highly effective with 

sequence data that are string-based, invariant in organization and interpretable without 

knowledge of the experiments, instruments or algorithms used to gather them. It has proven 
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more difficult to manage data arising from complex biochemical measurements, imaging, 

flow cytometry and phenotypic assays of cells and tissues. The interpretation of these data, 

which are often unstructured (e.g., images), is critically dependent on experimental context, 

and this context changes frequently. The difficulty in developing satisfactory database 

solutions for “high-content” data is widely ascribed to insufficient standardization or poor 

implementation3, but we believe the problem is more fundamental: it reflects the 

impossibility of fully specifying a priori complex experimental designs. Flexible and 

creative design is the essence of good experimental science, and since design determines 

data structure (the number of time points, repeats, conditions, etc.), structures frequently 

change (Fig. 1a). To accommodate these changes, database schema must be reconfigured 

frequently, a complex and time-consuming task. Thus, most experimental data reside in 

unlinked, loosely annotated spreadsheets that are easily fragmented or lost4,5. When data 

scope and complexity demand a more capable repository, a new database is often created ad 

hoc.

As an illustrative problem in biological data management, we focus here on high-

throughput, high-content microscopy6,7. Microscopy presents two distinct data management 

challenges. One is the sheer size of the data, which can exceed many terabytes per month. 

The second involves the difficulties of working with numerical data extracted by image 

analysis, which can include a large number of data types that have complex relationships to 

each other (e.g., the boundaries and intensities of cells or compartments and computed 

features such as nuclear translocation; Fig. 1b)8. For example, a typical genome-wide RNAi 

screen might generate ~7 × 105 images (~1.3 terabytes of data); analysis would increase the 

size only modestly (by ~100 megabytes), but the number of data entries would increase from 

~106 images to >109 features (Supplementary Fig. 1). Conventional spreadsheets and 

comma-separated value (CSV) files perform poorly with 109 data entities, and relational 

databases impose the organizational costs described above.

In this paper we propose a potential solution to the challenge of managing high-

dimensionality biomedical data based on the use of semantically-typed data hypercubes 

(SDCubes) in which binary data are stored in Hierarchical Data Format 5 (HDF5; http://

www.hdfgroup.org/HDF5/) and metadata and data ontologies are stored in Extensible 

Markup Language (XML; http://www.w3.org/standards/xml). We have created a new open-

source Java library, the SDCube Programming Library (Supplementary Software 1, http://

www.semanticbiology.com/software/sdcube) that can create SDCubes with appropriate 

dimensionality, encode the data model in a machine-readable XML ontology, and reformat 

SDCubes as needed when experiments change (Fig. 2a). To illustrate the use of SDCubes, 

we have created a second program ImageRail (Supplementary Software 2, http://

www.semanticbiology.com/software/imagerail) for high-content microscopy that (i) 

segments images of cells grown in 96- and 384-well plates to extract features such as cell 

shape or nuclear fluorescence, (ii) stores experimental metadata and results of image 

analysis in SDCubes, (iii) computes sets of cellular features from the image (e.g., 

fluorescence and localization metrics), and (iv) displays metadata, images and analysis in 

various formats9. By using SDCubes, ImageRail is able to organize data according to the 

design of an experiment and its day-to-day evolution rather than an inflexible, 
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predetermined schema. We use these tools to characterize the responses of tumor cells to 

therapeutic small molecules and show that the apparent IC50 for receptor inhibitors varies 

with ligand dose, that cell-to-cell variability is maximal as ligands and drugs approach 

concentrations likely to be encountered in vivo, and that variance impacts the shape of dose-

response curves. Our results suggest that monitoring variance will be broadly useful in pre-

clinical pharmacology. Moreover, because flow cytometry and multiplex biochemistry have 

similar workflows to imaging4,10, ImageRail and the SDCube Programming Library 

represent starting points for managing diverse experimental data.

RESULTS

Managing complex and heterogeneous data using SDCubes

HDF5 files can contain both structured and unstructured data, can encode data hierarchically 

using “groups” (analogous to file system folders), are unlimited in size and can be opened 

progressively using software libraries that read and write selected slices of data. The latter 

feature is critical for files that exceed the size of physical memory. To date, HDF5 has been 

used primarily (if not exclusively) in observational sciences (particularly remote Earth-

sensing) involving highly standardized data collection and little or no directed perturbation 

of the system under study. It has been suggested that HDF5 might be applied to biological 

imaging11, but no practical implementations exist and HDF5 alone appears to be insufficient 

to meet the challenges of biological experiments involving complex perturbations such as 

gene knockdown, drug and ligand dose-response, pulse-chase, etc. SDCubes address this 

challenge by encoding the design of perturbation-rich experiments in XML and using the 

design to create HDF5 files of appropriate dimensionality. A two-format solution is needed 

because XML is ill-suited for storage of large numerical datasets and HDF5 lacks easy 

integration with “minimum information” standards such as Minimum Information for 

Biological and Biomedical Investigations (MIBBI)12 and other Web-based ontologies.

The HDF5 component of an SDCube is composed of basic data modules, each of which 

contains the HDF5 groups Data, Meta, Raw and Children (Fig. 2b). Data contains measured 

or computed data stored in N-dimensional arrays; Meta contains metadata such as plate 

address, sample identifiers and the SDCube XML file; and Raw contains original CSV, 

TIFF, FCS and other primary data as byte arrays. The Children group allows creation of 

nested data modules, each containing progressively more detailed information (Fig. 2c). The 

top-level Children group is special in that it is always organized by “sample,” a label 

identical to “experiment” in the Minimum Information About a Cellular Assay (MIACA) 

standard12.

The XML component of SDCubes contains four types of information: (i) standard metadata 

(e.g., investigator and research group); (ii) experimental protocol (e.g., information on cell 

lines and reagents, in formats conforming to MIBBI standards when possible); (iii) 

experimental design (e.g., species and other variables in the protocol, such as time or 

perturbation, that are applicable to each sample); and (iv) the identities of algorithms and 

free parameters used during conversion of raw data into useful experimental measurements 

(see Methods for details). Using methods in the SDCube Programming Library 

(Supplementary Note 1), new samples, dimensions or assays can be appended to or inserted 
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into an existing SDCube simply by modifying the XML file and adding to the Children 

group at the top level of the HDF5 hierarchy (Fig. 2d). SDCubes are adaptable to a variety 

of data types (Supplementary Fig. 2) and can combined to aggregate data from other 

SDCubes or divided up to create subsets of the data..

Implementing the HDF5-XML SDCube standard in ImageRail

ImageRail is a standalone program for high-throughput image analysis that creates and 

manipulates SDCubes and serves as a test of the concepts outlined above. ImageRail has 

four software components. First, formatting tools create and modify SDCubes so that the 

Children group is formatted to create a five-level data hierarchy comprising project, plate, 

well, (image) field and cell and (cellular) compartment (conforming to the entity-

relationship model in Fig. 1b and 2e). Drop-down lists and a GUI for highlighting wells 

make it possible to specify which experimental conditions map to which wells, thereby 

specifying the experimental design and SDCube dimensionality and creating XML 

annotation (Fig. 3a). Second, image analysis tools create and store segmentation masks 

based on standard algorithms for cell monolayers, which can be extended using existing 

software such as ImageJ13 (Fig. 3b). Third, data viewers display raw data and computed 

features as images, line plots, histograms, scatter plots and multi-well plate views. Scatter 

plotting includes multi-dimensional gating similar to that used for analysis of flow 

cytometry data (Fig. 3c). Finally, embedded routines enable dynamic linking of data points 

to specific image features. Dynamic linking allows users to highlight cells in an image that 

correspond to selected data points in a scatter plot (Fig. 3b and Fig. 3c), facilitating the 

identification of outliers and experimental artifacts such as bubbles, tissue culture debris or 

edge effects (Supplementary Fig. 3). Users choose the level of detail at which to store the 

link between segmentation and data; at one extreme, pixel-by-pixel information can be 

stored, but we generally find it more useful to store either the centroid of each cell or a 

bounding box (Fig. 3d).

Although the SDCube data group “Raw” can store image data, we are in the process of 

integrating ImageRail with the Open Microscopy Environment Remote Objects (OMERO) 

image server14. Thus, ImageRail currently stores TIFF files alongside SDCubes and not 

within them. OMERO provides powerful tools for processing and organizes images, is used 

widely in open-source and commercial image management applications14,15 and OME-TIFF 

has found wide acceptance as a file standard for biological microscopy.

Monitoring cell-to-cell variability in drug responses

It is widely hypothesized that variability in cellular responses to drugs and the presence of 

drug-resistant cell subpopulations can impact cancer therapy16. One application of 

ImageRail is to systematize single cell drug-response studies and uncover the origins and 

significance of variability. Our proof-of-principle studies focused on the impact of changes 

in the concentration of epidermal growth factor (EGF) on the IC50 of ATP-competitive EGF 

receptor (EGFR) inhibitors erlotinib and gefitinib17. We assayed inhibition by 

immunofluorescence microscopy, using antibodies specific for the pT202/pY204-modified 

form of the downstream kinase ERK1/2 (henceforth ppERK). EGFR mutation and over-
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expression are implicated in a wide range of tumors18, and erlotinib and gefitinib are used 

clinically to treat lung, colorectal and other cancers19,20.

Here, we exposed cells to EGF at 10 doses over a 104 range in combination with gefitinib at 

8 doses over a 103 range using a simple adaptive design in which each 96-well plate was 

subjected to a different and changeable set of treatments and measurements. To enable 

image segmentation with a standard watershed algorithm, we treated cells with nuclear and 

cytoplasmic stains (Supplementary Fig. 4). The dataset comprised 160 conditions, 1.4×106 

individual cells and an SDCube with 2.8×106 entries (data are available in the supplemental 

materials in SDCube and CSV formats; a 10-fold larger dataset involving more proteins is 

shown in Supplementary Fig. 5). By accessing different slices of the cube, we can view data 

as a series of IC50 curves at differing EGF concentrations ([EGF]), or as a set of EGF dose-

response curves at different drug concentrations ([drug]); cell-to-cell variability can also be 

visualized at any point (Fig. 4a). We observed that average levels of ppERK increased with 

[EGF] and decreased with [gefitinib], and that the apparent IC50 was sensitive to EGF 

concentration, varying ~20-fold as exogenous EGF varied from 0 to 100 ng/mL (Fig. 4b). 

Well-average data computed from images closely matched dose-response data obtained 

using conventional biochemical assays (Supplementary Fig. 6). The relationship between 

IC50 and [EGF] varied substantially with cell type (Fig. 4c): whereas IC50 was strongly 

sensitive to [EGF] in SKBR3 and T47D cells, it was less so in MCF7 cells (Supplementary 

Fig. 7). Data exploration of this type is intuitively simple, but involves the manipulation of 

many data entries; because HDF5 successively loads data, there is no limit a priori to the 

number of entries, and ImageRail has been validated with ~108–109 data points.

On comparing mean ppERK levels with cell-to-cell variance using plate maps (Fig. 5a), we 

observed maximum variability at physiologically relevant doses of drug and ligand 

(estimated to be 0.1–1.5 ng/mL for EGF and 0.4–50 µM for gefitinib21,22). Mean value and 

variance in response changed over time, such that 20 hours post-EGF/gefitinib treatment, 

IC50 was less dependent on [EGF] but the variance increased. By linking back to the 

underlying images, we observed that even in cells exposed to saturating doses of gefitinib 

(10 µM) for 20 hr, a subpopulation of cells (~1%) exhibited elevated ppERK levels. This 

implies not only that these cells were drug-resistant but also that ERK signaling could be 

sustained in the absence of exogenous ligand (a behavior different from that of cells that are 

simply gefitinib-insensitive; Fig. 5a and Fig. 5b). Thus, single-cell data revealed three 

interesting features of cellular responses to gefitinib and EGF. First, IC50 varied with the 

concentration of extracellular ligand, particularly at early time points. Second, the extent of 

cell-to-cell variability was maximal near intermediate, physiologically-relevant 

concentrations; conversely, it was masked when drug or ligand were added at high levels. 

Third, cell-to-cell heterogeneity changed over time, being dominated initially by broad 

distributions and subsequently by rare cells with sustained signaling. Whether the 

differences we observe are genetic23, epigenetic24 or stochastic25 in origin is not yet clear, 

but reversibility implies that some are indeed stochastic, as we have previously 

demonstrated for TNF-responsive apoptosis-inducing ligand (TRAIL)25.

The shape of dose-response curves for drugs and ligands often depends on the agent and cell 

type (Fig. 4c and Supplementary Fig. 7). Gefitinib dose-response of cells exposed to EGF 
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conformed to a sigmoidal shape as expected for simple ligand-receptor binding; however, 

the dose-response for an inhibitor of MEK kinase (PD0325901)26, an enzyme lying 

immediately upstream of ERK1/2 kinases in EGFR signaling, was nearly linear over a 103 

EGF range (Fig. 5c). At the single cell level, responses to gefitinib were bimodal, with low 

ppERK levels in some cells and 100-fold higher levels in other cells (Fig. 5d) but responses 

to PD0325901 were continuous with cells exhibiting a wide range of activities. We conclude 

that the mean-value dose-response curves for PD0325901 and gefitinib differed in shape 

because of variability at the single cell level, and speculate that this might be a general 

explanation for non-sigmoidal dose-response relationships.

DISCUSSION

By creating a lightweight data repository customized to the design of a specific experiment 

and then storing the design in a machine-readable XML format, the SDCube Programming 

Library places experimental design foremost in organizing data for storage. The use of XML 

to encode ontologies simplifies harmonization with existing Web-based standards12, and the 

use of HDF5 allows progressive access to even very large files. As the design changes or 

expands, the dimensionality of SDCubes changes as do the metadata tags that point to 

specific data elements. The result is an approach to data and metadata storage that aim to 

addresses the competing demands of data integrity and flexibility. Little attention has been 

paid to computer-readable experimental designs, and only one public specification exists 

(Minimum Information for Data Analysis in Systems biology; MIDAS)27. However, it is 

possible to document the format of any hypothesis-driven or systematic experiment in XML, 

making it straightforward to use Resource Description Framework (RDF) and Web 

Ontology Language (OWL) to share and analyze experimental designs, a critical step in 

making the results from complex experiments machine-interpretable in light of their purpose 

and context.

Although we demonstrate the application of SDCubes to microscopy data using ImageRail, 

the SDCube format is in principle adaptable to any type of high-dimensional data, and we 

have created preliminary schemata for multi-color flow cytometry10 and multiplex or array-

based biochemical assays28 (see supplementary materials). MATLAB users will recognize 

that some SDCube functionality is already present in MATLAB, which makes extensive 

internal use of multi-dimensional data arrays (indeed, MATLAB can read HDF5 files). 

However, MATLAB files cannot duplicate key features of SDCubes: they cannot be read 

incrementally, their data models cannot be referenced to external ontologies or parsed using 

web-based tools, and MATLAB is not open-source—an important consideration for a data 

standard.

ImageRail is designed to be interoperable with existing open-source image analysis 

software, including ImageJ, CellProfiler and OME 13–15,29 Interoperability is important to 

avoid duplication of effort but ImageRail also needs to function as a stand-alone application; 

hence the inclusion of common segmentation and visualization routines.

The ability of SDCubes and ImageRail to systematize data from complex dose-response 

experiments has made it possible to implement an efficient scheme for single-cell 
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pharmacology. Exposing tumor cells to growth factors and kinase inhibitors in combination 

reveals many examples of cell-to-cell variability; some of these are likely to have non-

genetic origins, by direct analogy to the variability observed in cellular responses to 

TRAIL25, T-cell receptor agonists30 and other ligands31. Variability is maximal at doses 

close to the IC50 of gefitinib or the EC50 of EGF, precisely the doses likely to prevail in real 

patients. It therefore seems reasonable that application of single-cell pharmacology will help 

to uncover the basis of fractional killing by anti-cancer drugs and assist in dissecting the 

origins of intrinsic and acquired drug resistance32.

In many exploratory biological experiments, data collection and analysis are iterative 

processes undertaken by a limited number of people. In this environment, the high-integrity, 

multi-user, read-write operations enabled by conventional databases represent unnecessary 

overhead and SDCubes offer an effective alternative. However, as data become more mature 

or an experiment nears completion, it will often be advantageous to move key results to a 

relational database. One way to accomplish this is to create a specialized summary view of 

an SDCube and then import the summary data into a database. Only data conforming to a 

pre-existing standard would be accessible in the database, but an SDCube containing all 

primary data could easily be called using a Uniform Resource Identifier (URI, akin to a Web 

URL). It is possible that new types of databases will be developed with science in mind 

(e.g., SciDB; http://www.scidb.org/), but we predict that lightweight, adaptable, file-based 

data storage will always co-exist with server-based data management, and that sophisticated 

file formats such as SDCubes will provide a missing link between creative experimentation 

and machine-interpretable data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Challenges in management of multi-dimensional data. (a) The schematic illustrates that 

experimental design is the key determinant of data dimensionality. Different experimental 

protocols result in experiments that yield data with different numbers and types of 

dimensions; in the case of single-cell pharmacology, this includes the selection of drug, 

dose, time and type of assay and number of cells analyzed (represented by axes whose 

length represents magnitude). (b) High-throughput immunofluorescence experiments 

managed by ImageRail have a hierarchy describable in an entity-relationship model, as 

illustrated in the schematic (above). The graph (below) shows the amount of data in 
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Terabytes (black line) during successive steps in the image processing workflow as 

compared to the number of individual data entries (red line).
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Figure 2. 
SDCubes are built from a collection of linked data modules that can encode diverse 

experimental data with varying requirements. (a) The XML metadata maps the experimental 

sampling procedure onto the HDF5 data space; data from each cell are represented by 

colored boxes and different numbers of cells are collected for each condition. (b) The 

SDCube data module is composed of four HDF5 groups, each storing a different type of 

data. (c) The Children group in each module can contain additional data modules, generating 

an arbitrarily complex data tree. (d) A previously defined SDCube can be modified to 
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append a new piece of data to the end of an existing series (orange), insert data into the 

middle of a series (blue) or add a new type of data that requires addition of a new dimension 

(red) (in this case, use of lapatinib rather than gefitinib). All three operations are performed 

by modifying the XML file while recording the data in the appropriate place in the HDF5 

file hierarchy. (e) ImageRail uses a five-level SDCube encoding high-throughput fixed-cell 

imaging data and progressively increasing levels of detail (project, well, field, cell and 

compartment).
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Figure 3. 
Annotated and simplified screen shots from ImageRail software (also see Supplementary 

Note 2). (a) (1) General experiment metadata and (2) computable information derived from 

image analysis across perturbations and measurements are associated with (3) selected wells 

of a microtiter plate. (4) White document icons represent the number of image fields that 

have single-cell data stored in the HDF5 file available for analysis, and (5) numbers 

represent imaged fields and wavelengths. (b) Dynamic linking of extracted data to the 

source images shows which cells gave rise to which measurements and is implemented 

using an image viewer and scatter plot (red box in c). (c) Data visualization includes single-

cell scatter plots with flow cytometry-style gating (left) and plate heat maps of population 

averages along with a representation of the underlying single-cell distributions (right). (d) 
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Results of image segmentation can be stored in different ways, including centroid, outline 

and bounding box. Scale bar = 100µm.
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Figure 4. 
Exploring different dimensions of a multivariate drug and ligand dose-response series using 

SDCubes. (a) Well-mean values are computed from single-cell data recorded from cultured 

SKBR3 cells exposed to exogenous EGF for 10 min over a range of concentrations and then 

stained with antibodies specific for ppERK. Data are plotted to show a series of 

conventional drug dose-response relationships at different ligand concentrations (top). 

Inverting the axes allows the same data to be plotted as a ligand dose-response curve at 

different drug doses (middle). For each mean value in either plot, the underlying single-cell 
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distribution can be visualized as a series of dot-plots (bottom panel shows gefitinib dose-

response at 1 ng/mL EGF). (b) The ppERK response surface for SKBR3 cells treated as in 

(a) and colored according to the degree of cell-to-cell variation; darker blue represents a 

high coefficient of variation. (c) Whisker plots of gefitinib IC10, IC50 and IC90 values for the 

inhibition of ERK phosphorylation by gefitinib in SKBR3, T47D and MCF7 cells treated for 

10 min with a range of EGF concentrations.
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Figure 5. 
Single-cell analysis of drug-ligand dose responses uncovers cell-to-cell heterogeneity. (a) 

ppERK was measured at 10 min and 20 hr in SKBR3 cells treated with a combination of 

EGF and gefitinib at the indicated doses. Shown are heat maps of the mean values (red) and 

coefficients of variation (blue) of the underlying cell population histograms overlaid on 

representation of a standard 96-well microtiter plate. (b) Selected immunofluorescence 

images of ppERK (red) and Hoechst (blue) staining of cells 20 hr after exposure first to 10 

µM gefitinib and then to 100 ng/mL EGF. Scale bar = 100µm. (c) EGF-induced ppERK 
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dose-response curves in SKBR3 cells pretreated with sub-saturating doses of gefitinib or the 

MEK inhibitor PD0325901 (MEKi). Error bars represent the standard error of the mean of 

biological triplicates. (d) Corresponding single-cell distributions for the population mean 

data shown in c.
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