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Abstract

Recent pandemic infection caused by SARS-CoV-2 (COVID-19) led the
scientific community to investigate the possible causes contributing to the
physiopathology of this disease. In this context, analyses of the intestinal
microbiota highlighted possible correlation between host-associated bacte-
rial communities and development of the COVID-19. Nevertheless, a
detailed investigation of the role of the human microbiota in the severity of
the symptoms of this disease is still lacking. This study performed a compre-
hensive meta-analysis of 323 faecal samples from public and novel Italian
data sets based on the shotgun metagenomic approach. In detail, the com-
parative analyses revealed possible differences in the microbial biodiversity
related to the individual health status, highlighting a species richness
decrease in COVID-19 patients with a severe prognosis. Moreover, healthy
subjects resulted characterized by a higher abundance of protective and
health-supporting bacterial species, while patients affected by COVID-19
disease displayed a significant increase of opportunistic pathogen bacteria
involved in developing putrefactive dysbiosis. Furthermore, prediction of the
microbiome functional capabilities suggested that individuals affected by
COVID-19 subsist in an unbalanced metabolism characterized by an over-
representation of enzymes involved in the protein metabolism at the
expense of carbohydrates oriented pathways, which can impact on disease
severity and in excessive systemic inflammation.

asymptomatic as well as paucisymptomatic, and
severely symptomatic individuals. The symptoms and

Coronavirus disease (COVID-19) is an ongoing global
pandemic emerged in late 2019 caused by the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) (https://covid19.who.int/). To date, COVID-19 pan-
demic involved more than 450 million cases worldwide
(https://www.ecdc.europa.eu/en/covid-19), including

the severity of COVID-19 disease differ from individual
to individual (Markovic et al., 2021; Vrotsou et al., 2021),
and the underlying causes have not yet been fully clari-
fied (Bohn et al., 2020).

Recent studies highlighted a possible correlation
between COVID-19 disease and intestinal and/or
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respiratory microbiota (Andrade et al., 2022; Sencio
et al., 2022; Wang et al., 2021; Yeoh et al., 2021), sug-
gesting that the resident microbial communities may
serve as a novel therapeutic target for improving the
prognosis of patients (Mcllroy et al., 2020; Wu
et al., 2020). In particular, the intestinal microbiota of
subjects affected by COVID-19 has been reported to
be different to healthy individuals and it was mainly
characterized by a low bacterial richness, diversity, and
uniformity (Wang et al., 2021), along with a decrease of
beneficial bacteria, such as Faecalibacterium, Rose-
buria, and Blautia, in favour of several opportunistic
pathogen bacteria, such as Actinomyces, Rothia, Veil-
lonella, and Streptococcus (Wang et al., 2021; Xu
et al., 2021). In fact, the reduction of these short-chain
fatty acid-producing bacteria could increase oxidative
stress and ROS production that affect the regulation of
the intestinal barrier and contribute to the systemic
inflammation (Wang et al., 2021). These observations
were mainly obtained through the 16S rRNA gene
sequencing analysis (Chen et al., 2022; Mazzarelli
et al., 2021; Romani et al., 2022; Wang et al., 2021; Xu
et al., 2021), whose main limit is to allow a taxonomic
profiling of the microbial communities down to genus
level while being inaccurate at the species level and
preventing the reconstruction of functional impact of the
microbiome.

Moreover, currently published information regarding
the possible correlations between microbiota composi-
tion and COVID-19 disease are generally linked to a
specific nationality (Britton et al., 2021; Liu et al., 2021;
Mazzarelli et al., 2021; Zhang et al., 2022; Zhou
et al., 2022; Zuo et al., 2020). For these reasons, we
decided to perform an in-depth meta-analysis based on
seven public shotgun metagenomics data sets corre-
sponding to 291 faecal samples from North American
and Chinese populations, obtained from healthy and
COVID-19 disease patients, for which metadata regard-
ing disease severity was available. Moreover, in order
to extend the variety of the populations collected in the
meta-analysis, we included a novel data set of faecal
samples, which was collected and analysed in the

framework of this study, encompassing by both healthy
and COVID-19-affected Italian individuals. All the shot-
gun metagenomics data sets included in this study
were employed to achieve a detail taxonomical profile
at species level and to examine the genetic repertoire
of the gut microbiome in relationship to COVID-19 dis-
ease severity.

EXPERIMENTAL PROCEDURES

Selection and collection of samples
included in the meta-analysis

In this meta-analysis-based study, we retrieved six pub-
licly available data sets from studies regarding the pos-
sible correlation between human gut microbiome and
COVID-19 disease, performed in accordance with the
relevant guidelines and regulations. Moreover, in order
to overcome the absence of American samples healthy
control and to be able to exclude possible biases
related to nationality, we retrieved 28 faecal samples
from a publicly available data set. In particular, we
selected only shotgun metagenomic datasets obtained
by an lllumina sequencing platform to avoid the variabil-
ity of the input data as much as possible. In detail, we
selected shotgun metagenomic data sets from 291 sam-
ples from adult healthy or diseased individuals from
China and North America (Table 1). In addition, we
enrolled 32 ltalian hospitalized patients with or without
COVID-19 disease in the framework of the project
COVIDbiome from which faecal samples were col-
lected (Table 1) and submitted to shallow metage-
nomics analyses. In detail, the fresh faecal samples
obtained from the Italian hospitalized patients were
immediately inactivated with DNA/RNA shield buffer
(Zymo Research, USA) and subsequently submitted to
the extraction of bacterial DNA using the protocol previ-
ously described (Mancabelli et al., 2021). The COVID-
biome study was approved as part of a larger project
on the study of respiratory microbiome in COVID-19 by
the local Ethics Committee (Comitato Etico dell’Area

TABLE 1 Data sets included in the meta-analysis
COVID-19

NCBI Bioproject PMID Nation Number of samples Healthy Moderate Severe Total
This study This study Italy 32 11 6 15 21
PRJUNA624223 32442562 China 30 15 10 5 15
PRJNA660883 32909002 North America 31 20 11 31
PRJEB28543 31705027 North America 28
PRJNA689961 34687739 China 136 70 66 - 66
PRJNA740067 35281785 China 26 13 12 1 13
PRJNA762232 34926314 China 2 1 1 - 1
PRJNA792726 China 38 24 14 38
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Vasta Emilia Nord, Emilia-Romagna Region, Italy),
under the ID 1131/2020/TESS/UNIPR.

Shallow shotgun sequencing

According to the manufacturer's instructions, DNA
library preparation was performed using the Nextera
XT DNA sample preparation kit (llumina, San Diego,
CA, USA). First, 1 ng input DNA from each sample was
used for the library preparation, which underwent frag-
mentation, adapter ligation, and amplification. Then,
lllumina libraries were pooled equimolarly, denatured,
and diluted to a concentration of 1.5 pM. Next, DNA
sequencing was performed on a MiSeq instrument
(INlumina) using a 2 x 250 bp Output sequencing Kit
together with a deliberate spike-in of 1% PhiX control
library.

Taxonomic classification of sequence
reads

Taxonomic profiling of sequenced reads was performed
employing the METAnnotatorX2 bioinformatics platform
(Milani et al., 2018, 2021). In detail, the downloaded
fastq files were filtered to remove reads with quality of
<25 and to retain reads with a length of >100 bp. Sub-
sequently, a human host DNA filtering was performed
through bowtie2 software (Langmead et al., 2019;
Langmead & Salzberg, 2012), following the METAnno-
tatorX2 manual (Milani et al., 2021). Afterward, the tax-
onomic classification of 100,000 reads was achieved
by means of MegaBLAST (Chen et al., 2015) employ-
ing a manually curated and pre-processed database of
genomes retrieved from the National Center for Bio-
technology Information (NCBI), following the METAnNno-
tatorX2 manual (Milani et al., 2021).

Functional prediction

Functional profiling of the sequenced reads was per-
formed with the METAnnotatorX2 bioinformatics plat-
form (Milani et al., 2018, 2021). Functional classification
of reads was performed to reveal metabolic pathways
based on the MetaCyc database (release 24.1) (Caspi
et al., 2016) through RAPSearch2 software (Ye
etal., 2011; Zhao et al., 2012).

Statistical analysis

ORIGIN 2021 (https://www.originlab.com/2021) and
SPSS software (www.ibm.com/software/it/analytics/
spss/) were used to compute statistical analyses,
including HCL and Silhouette analyses. EMPeror tool

was used to visualize principal coordinate analysis
(PCoA) (Vazquez-Baeza et al, 2013) calculated
through ORIGIN 2021. PERMANOVA (Permutational
analysis of variance) analyses were performed using
1000 permutations to estimate p values for differences
among populations in PCoA. Furthermore, differential
abundance of bacterial genera was tested by t-test or
ANOVA test analysis. Multiple comparison analyses
were performed through Tukey’s HSD (honestly signifi-
cant difference) test.

RESULTS AND DISCUSSIONS
Dataset selection

In order to retrieve all the publicly available shotgun
metagenomic data sets concerning the microbiota of
COVID-19 patients, an extensive scientific literature
screening was performed. In detalil, the scientific litera-
ture examination allowed us to collect data from six pub-
licly available data sets (Britton et al, 2021; Liu
et al., 2021; Ventura et al.,, 2019; Zhang et al., 2022;
Zhou et al., 2022; Zuo et al.,, 2020), encompassing
healthy and diseased human faecal samples based on
lllumina shotgun metagenomic approaches (Table 1).
Our database of metagenomic data about the gut micro-
biota of COVID-19 patients included only those studies
reporting metagenomic metadata about healthy from dis-
eased individuals. Furthermore, healthy American sam-
ples from a single public bioproject (Ventura et al., 2019)
were selected to overcome the absence of a control
group for that nation (Table 1). Such database was
extended by including metagenomic data of fresh faecal
samples from 32 Italian hospitalized patients with or with-
out COVID-19 disease that were collected in the frame-
work of a local project focusing on the exploration of the
link between gut microbiota composition and severity of
the symptoms named COVIDbiome (Table 1). Thus, the
meta-analysis included a total of 323 samples (Table 1
and Table S1). These include three groups, the group of
healthy subjects that encompasses individuals resulted
negative to SARS-CoV-2 infection, the group of asymp-
tomatic or paucisymptomatic COVID-19 patients, which
includes individuals showing moderate COVID-19 symp-
toms, and finally the group of severely symptomatic
COVID-19 patients, displaying severe COVID-19 symp-
toms (Table 1 and Table S1).

Intra- and inter-individual variability among
healthy individuals and those affected by
COVID-19

The 323 stool samples analysed in this study, involving
the 291 samples from public metagenomic datasets
and the 32 samples collected in the framework of the
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COVIDbiome study, were used to assess the micro-
biota composition through the METAnnotatorX2 soft-
ware (Milani et al., 2021) following the standard filtering
parameters reported in the manual, comprising the
Homo sapiens reads removal. All the fastq files ana-
lysed here were processed with the same bioinformat-
ics pipeline to prevent biases, resulting in a total of
6,183,408,133 reads with an average per sample of
19,143,678 + 15,020,002 after quality and human
sequences filtering (Table S1). In order to optimize the
taxonomical analysis, in accordance with the modern
shallow shotgun metagenomics approach (Hillmann
et al., 2018; Milani et al., 2021), we decided to analyse
a subset of 100,000 reads for each sample, obtaining a
total of 22,021,244 classified reads with an average per
sample of 68,177 + 10,074 (Table S1).

The results obtained through METAnnotatorX2 soft-
ware (Milani et al., 2021) were used to evaluate the
microbial biodiversity of each faecal sample. In detail,
we focused our interest on the comparison of the spe-
cies richness between the three groups based on the
individual health status, that is, healthy, moderate
COVID-19, and severe COVID-19 (Figure 1A). The
analysis revealed a decrease in bacterial species abun-
dance related to the health status of the subjects
included in the meta-analysis, highlighting the smallest
number of average bacterial species in the severe
COVID-19 samples (average of 59 + 24, ANOVA and
Tukey HSD post hoc p value < 0.05) (Figure 1A). Nota-
bly, the species richness values of the healthy and
moderate COVID-19 groups indicated a similar average
number of species of 82 £ 19 and 78 + 22, respec-
tively (Tukey HSD post hoc p value = 0.278). These
results suggested that the simplification of gut micro-
biota and consequently the possible presence of dys-
biosis (Kriss et al., 2018; Mosca et al., 2016) could be
associated with a COVID-19 infections displaying
severe disease symptoms (Wang et al., 2021). More-
over, the analysis of the species richness based on the
geographical origin of the assayed faecal samples con-
firmed the higher microbial biodiversity in the group of
healthy individuals compared to that including COVID-
19 subjects showing severe symptoms (Figure S1a),
excluding a possible bias related to the geographical
origin of the samples.

Furthermore, the evaluation of the inter-individual
differences of the samples within each group (healthy,
moderate, and severe COVID-19 subjects) was
assessed through the beta-diversity calculated by
Bray—Curtis dissimilarity and based on the taxonomical
composition at species level. The beta-diversity was
reported through a three-dimensional PCoA that
showed a subdivision in clustering based on the individ-
ual health status (pairwise Anosim g-value < 0.01;
healthy vs. moderate COVID-19 R = 0.039, healthy
vs. severe COVID-19 R = 0.407). Thus, suggesting
taxonomic differences between the three groups

(Figure 1B). Further PCoA based on individuals’ health
status and geographical origin revealed a partial subdi-
vision correlated with the geographical origin, as
expected but confirmed the separate cluster of severe
COVID-19 subjects (Figure S1b). Moreover, in order to
identify possible correlations between the gut micro-
biota composition and SARS-CoV-2 vaccination
(Brussow, 2021; Chen et al., 2021; Yarza et al., 2014),
a PCoA was performed on the Italian samples
(Figure S2). In fact, the absence of specific metadata
regarding vaccination in the other public datasets did
not allow to perform any comprehensive PCoA. In
detail, the beta-diversity analysis on Italian samples did
not reveal any significant differences in composition
between the vaccinated and unvaccinated individuals
(pairwise Anosim g-value <0.197, R = 0.042)
(Figure S2a). Similarly, the multiple comparisons
between ltalian samples based on health status and
vaccination did not highlight any significant differences
(pairwise Anosim p <0.761, R = —0.052; pairwise
PERMANOVA p value < 0.556, R = 0.125; pseudo-
F = 0.961) (Figure S2b), suggesting no correlation
between vaccination and gut microbiota composition.
However, the low number of samples included in this
preliminary analysis and the low intra-groups vaccina-
tion variability prevented to obtain statistically robust
results, thus requiring further investigations to disentan-
gle the identification of possible relationships between
microbiota composition and vaccines against SARS-
CoV-2.

Species-level taxonomic profiling of the
gut microbiota of COVID-19 and healthy
individuals

The METAnnotatorX2 software (Milani et al., 2021)
allowed to obtain a detailed taxonomical profile at spe-
cies level for each sample assayed, including 291 sam-
ples from public metagenomic datasets and the
32 samples collected in the framework of the COVID-
biome study (Table S2). In detail, the analysis revealed
that the group of patients with severe COVID-19 prog-
nosis showed a higher abundance of species belonging
to the Bacteroidetes phylum (52.79% =+ 31.09%) com-
pared to healthy (31.64% 4+ 29.35%) and moderate
COVID-19 (28.47% + 22.24%) groups (Tukey HSD
post hoc p value < 0.05), and a lower abundance of
species belonging to Firmicutes phylum (33.95% +
27.13%) compared to healthy (48.84% + 23.31%) and
moderate COVID-19 (53.06% + 21.08%) groups
(Tukey HSD post hoc p value < 0.05).

A specific taxonomical analysis based on the preva-
lence and the abundance trend of each bacterial spe-
cies calculated separately for the three groups, also
confirmed by ANOVA statistical analysis, revealed pos-
sible taxonomical differences linked to the level of
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severity of COVID-19 symptoms. In particular, focusing
on the bacterial species with a prevalence higher than
50% in each group (Figure 2A), the healthy individuals
were characterized by four taxa, that is, Faecalibacter-
ium prausnitzii, Faecalibacterium unknown species,
Gemmiger unknown species, and Ruminococcus
unknown species, which resulted more abundant com-
pared to patients with severe COVID-19 disease
(Figure 2A), suggesting a possible role of these micro-
organisms in the protection from the diseases and/or
mitigation of the symptoms thanks to their well-known
immunomodulation features (Yeoh et al., 2021; Zuo
et al., 2020). In fact, species belonging to Faecalibac-
terium and Gemmiger genera are bacteria that produce
butyrate, an important anti-inflammatory compound
(Sang et al., 2022; Yeoh et al., 2021). Remarkably, our

hypothesis is reinforced by the absence of significant
differences for three of the four taxa between healthy
and moderate COVID-19 groups, highlighting the possi-
ble presence of an abundance gradient correlated with
the disease severity (Figure 2A).

Conversely, the microbiota of the group encom-
passing severe COVID-19 patients revealed a signifi-
cant increase (ANOVA and Tukey HSD post hoc
p value < 0.05) of nine species belonging to Bacter-
oides, Parabacteroides, Enterocloster, and Flavoni-
fractor genera compared to microbiota of the healthy
subjects (Figure 2A). These bacteria were typical com-
mensals of the human gastrointestinal tract involved in
several metabolic activities, such as production of
putrefactive compounds derived from protein fermenta-
tion (Mosele et al., 2015), and largely acknowledged as
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FIGURE 2 Taxonomical and functional comparison between healthy and COVID-19 subjects. Panel (A) reports the significantly different
taxa between groups, reporting prevalence, average abundance, trend, and ANOVA and Tukey HSD post hoc p value. Panel (B) indicates the
EC numbers with an increase >400% and a decrease <50% in severe COVID-19 subjects compared to healthy samples. In detail, the panel
reports the average abundance of each group, the trend, the t-test p value, and the bar plot representing the relative percentage difference.
Moreover, EC numbers highlighted in green are related to the metabolism of complex carbohydrates, while EC numbers highlighted in red are
related to the protein metabolism.
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opportunistic pathogens (Zeng et al., 2017). Thus, the
concomitance with an alteration of gut microbiota
homeostasis, suggested by the decrease of the biodi-
versity, could promote an overgrowth of these opportu-
nistic pathogen bacteria that could be responsible for a
putrefactive dysbiosis. In detail, this typology of dysbio-
sis was usually correlated with an excessive intake of
meat and saturated fats with a consequent increase of
putrefying bacteria, such as species belonging to the
Bacteroides genus (Baizabal-Carvallo, 2021), involved
in putrefaction and fermentation of proteins (Kaur
et al., 2017). Therefore, the overgrowth of these bacte-
ria and the concomitant expansion of protein metabo-
lism could increase several disadvantageous
compounds, such as ammonia and amines (Gagliardi
et al., 2018), and further promote the susceptibility to
pathogenic bacteria (Zeng et al., 2017). Intriguingly,
also for these taxa, the moderate COVID-19 subjects
showed an intermediate microbiota and the possible
presence of an abundance gradient correlated with the
disease severity (Figure 2A), confirming a possible cor-
relation between gut microbiota, its metabolism, and
COVID-19 symptoms and severity.

Functional prediction of gut microbiome

The taxonomical comparison between healthy and
severe COVID-19 subjects revealed specific differ-
ences in the bacterial communities, suggesting possi-
ble specific genetic repertoires. In order to explore the
genetic features characterizing each faecal sample col-
lected in this meta-analysis, we performed a screening
of metabolic enzymatic reactions based on the Meta-
Cyc database (Caspi et al.,, 2016) and the Enzyme
Commission (EC) classification.

Overall, the 306 enzymatic reactions that were iden-
tified as significantly different between healthy and
severe COVID-19 subjects display an interesting abun-
dance gradient passing through the moderate group
(Table S3). In fact, the relative abundance comparison
between the healthy, moderate, and severe COVID-19
groups highlighted that 86% of the enzymatic reactions
presented an abundance gradient correlated with dis-
ease severity, probably indicating an intermediate
microbiome of moderate COVID-19 patients, and sug-
gesting the important role of the metabolic capability of
the bacterial communities on the host health status.

Furthermore, our analyses were focused on the main
differences identified between healthy and severe
COVID-19 subjects, particularly on the enzymatic reac-
tions with prevalence higher than 50% in at least one
group. In detail, the analysis revealed a total of 306 enzy-
matic reactions significantly different between healthy
and severe COVID-19 patients (f-test p value < 0.05)
(Table S3). Among these, severe COVID-19 subjects
showed a total of 25 enzymatic reactions with an
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increase higher than 450% in the relative abundance, of
which 11 are involved in protein metabolism (Figure 2B).
This result is in accordance with the above taxonomical
analysis and the increase of species related to putrefac-
tive dysbiosis. Remarkably, several public studies
highlighted the possible correlation between COVID-19
disease severity and the alteration of systemic amino
acid metabolism (Masoodi et al., 2022; Paez-Franco
et al.,, 2021; Rahnavard et al., 2022). In particular, the
enrichment of specific amino acids, such as arginine and
proline, could contribute to excessive systemic inflamma-
tion and a consequent increase in the severity of the dis-
ease (Rahnavard et al., 2022). Therefore, the increased
protein metabolic capability of the intestinal microbiome
observed in this study could suggest the intestinal bacte-
rial communities’ contribution to systemic inflammation.

Conversely, 24 enzymatic reactions showed a
decrease lower than 50% in severe COVID-19 sub-
jects’ relative abundance (Figure 2B) and the 46% of
these resulted related to the metabolism of complex
carbohydrate, such as hexokinase enzyme
(EC 2.7.1.1), indicating a probably shift from a
carbohydrate-oriented to a protein-oriented catabolism,
which further support the onset of putrefactive gut
microbiota dysbiosis in the patients with severe
COVID-19 symptoms. In this context, we could hypoth-
esize a major role of the diet and lifestyle on micro-
biome composition and, consequently, a possible
correlation with disease severity.

However, the absence of specific metadata regard-
ing diet and subject’s lifestyle prevented deeper corre-
lation analyses, proposing the necessity for further
specific analyses concerning the correlation between
diet, microbiome, and COVID-19 disease severity.

CONCLUSION

In order to investigate the impact of microbiome compo-
sition on the severity of the COVID-19 disease, we per-
formed an in-depth meta-analysis of healthy and
diseased individuals from public metagenomic datasets
based on 291 faecal samples and 32 new sampling of
Italian subjects collected through the COVIDbiome
project.

The meta-analysis allowed to identify key differ-
ences in the microbial biodiversity between the gut
microbiota of healthy and severe COVID-19 disease
patients, as well as detailed taxonomic differences that
complete and corroborate recently published data,
highlighting in the microbiota of COVID-19 patients a
decrease abundance of species belonging to Faecali-
bacterium and Gemmiger genera (Yeoh et al., 2021;
Zuo et al., 2020) and an increase of several opportunis-
tic pathogen bacteria (Patel & Roper, 2021). Moreover,
our data clearly evidences the lack and/or high abun-
dance of microbes that could be statistically associated
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with more serious symptoms and thus could be consid-
ered as key microbial markers associated with this dis-
ease. Notably, the high presence in diseased samples
of microorganisms involved in the development of
putrefactive dysbiosis may contribute to increased sys-
temic inflammation by releasing compounds obtained
through protein metabolism. Furthermore, the identifi-
cation of a predominance of enzymatic reactions
involved in protein metabolism in the gut microbiomes
of individuals displaying severe symptoms could sug-
gest that these functional variations together with a
lower presence of anti-inflammatory compounds, such
as butyrate, could favour a putrefactive gut dysbiosis
generating an exacerbation of systemic inflammation.
Such findings clearly highlighted the important role
exploited by gut microbiota in affecting the develop-
ment of the COVID-19 diseases, which might open
novel avenues for the treatment of this disease, not
only through the classical therapeutic protocols but also
by the inclusion of new strategies aimed to modulate
the gut microbiota through the establishment and/or
enhancement of protective bacteria towards COVID-19
disease. In this context, according to recent scientific
publications (Kurian et al., 2021; Nguyen et al., 2022;
Tang et al., 2021), the modulation of gut microbiota with
specific probiotics supplementation could reduce the
severity of COVID-19 morbidity and mortality severity,
improving the health of the patients.
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