
GigaScience, 7, 2018, 1–10

doi: 10.1093/gigascience/giy098
Advance Access Publication Date: 7 August 2018
Review

REVIEW

Bioinformatics applications on Apache Spark
Runxin Guo 1,†, Yi Zhao 2,†, Quan Zou 3,†, Xiaodong Fang 4,* and
Shaoliang Peng 1,5,*

1College of Computer, National University of Defense Technology, No.109, Deya Road, Kaifu District,
Changsha, 410073, China, 2Institute of Computing Technology, Chinese Academy of Sciences, No.6, South
Road of the Academy of Sciences, Haidian District, Beijing, 100190, China, 3School of Computer Science and
Technology, No.135, Yaguan Road, Jinnan District, Tianjin University, Tianjin, 300050, China, 4BGI Genomics,
BGI-Shenzhen, No.21, Mingzhu Road, Yantian District, Shenzhen, 518083, China and 5College of Computer
Science and Electronic Engineering & National Supercomputer Centre in Changsha, Hunan University, No.252,
Shannan Road, Yuelu District, Changsha, 410082, China
∗Correspondence address. Xiaodong Fang, BGI Genomics, BGI-Shenzhen, No.21, Mingzhu Road, Yantian District, Shenzhen, 518083, China. E-mail:
fangxd@bgitechsolutions.com http://orcid.org/0000-0001-7061-3337; Shaoliang Peng, College of Computer, National University of Defense Technology,
No.109, Deya Road, Kaifu District, Changsha, 410073, China. E-mail: pengshaoliang@nudt.edu.cn http://orcid.org/0000-0002-4647-2615
†Equal contributors.

Abstract

With the rapid development of next-generation sequencing technology, ever-increasing quantities of genomic data pose a
tremendous challenge to data processing. Therefore, there is an urgent need for highly scalable and powerful
computational systems. Among the state-of–the-art parallel computing platforms, Apache Spark is a fast, general-purpose,
in-memory, iterative computing framework for large-scale data processing that ensures high fault tolerance and high
scalability by introducing the resilient distributed dataset abstraction. In terms of performance, Spark can be up to 100
times faster in terms of memory access and 10 times faster in terms of disk access than Hadoop. Moreover, it provides
advanced application programming interfaces in Java, Scala, Python, and R. It also supports some advanced components,
including Spark SQL for structured data processing, MLlib for machine learning, GraphX for computing graphs, and Spark
Streaming for stream computing. We surveyed Spark-based applications used in next-generation sequencing and other
biological domains, such as epigenetics, phylogeny, and drug discovery. The results of this survey are used to provide a
comprehensive guideline allowing bioinformatics researchers to apply Spark in their own fields.

Keywords: next-generation sequencing; bioinformatics; Apache Spark; resilient distributed dataset; memory computing

Introduction

Next-generation sequencing (NGS) technology has generated
huge amounts of biological sequence data. To use these data
efficiently, we need accurate and efficient methods of storing
and analyzing such data. However, the existing bioinformatics
tools cannot effectively handle such a large amount of data.
Therefore, there is an urgent need for scalable and powerful dis-
tributed computing tools to solve this problem. In the field of
information technology, MapReduce [1] is a distributed paral-

lel programming model and methodology for processing large-
scale datasets. It splits large-scale datasets into many key-value
pairs through both the map and reduce phases, significantly
improving performance and showing good scalability. By com-
bining the Hadoop Distributed File System (HDFS) and MapRe-
duce, Apache Hadoop can enable distributed processing of large
amounts data in a reliable, efficient, and scalable way. This is
in contrast to HDFS, which is mainly used for distributed stor-
age of massive datasets, and MapReduce, which performs dis-

Received: 11 April 2018; Revised: 1 June 2018; Accepted: 28 July 2018

C© The Author(s) 2018. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

1

http://www.oxfordjournals.org
http://orcid.org/0000-0002-1203-5038
http://orcid.org/0000-0001-6046-8420
http://orcid.org/0000-0001-6406-1142
http://orcid.org/0000-0001-7061-3337
http://orcid.org/0000-0002-4647-2615
mailto:fangxd@bgitechsolutions.com
http://orcid.org/0000-0001-7061-3337
http://orcid.org/0000-0001-7061-3337
mailto:pengshaoliang@nudt.edu.cn
http://orcid.org/0000-0002-4647-2615
http://orcid.org/0000-0002-4647-2615
http://creativecommons.org/licenses/by/4.0/


2 Spark in Bioinformatics

tributed computing on these datasets. As a result, Hadoop has
been adopted by the bioinformatics community in several areas
[2], including alignment [3-6], mapping [7-9], and sequence anal-
ysis [10-13].

Because of Hadoop’s disk-based input output system (I/O) ac-
cess pattern, however, intermediate calculation results are not
cached. Therefore, Hadoop is only suitable for batch data pro-
cessing and shows poor performance for iterative data process-
ing. To resolve this problem, Apache Spark [14] has been pro-
posed; a faster, general-purpose computing framework specifi-
cally designed to handle huge amounts of data. Unlike Hadoop’s
disk-based computing, Spark performs memory computing by
introducing resilient distributed dataset (RDD) abstraction. Since
it is possible to store intermediate results in memory, it is more
efficient for iterative operations. In terms of performance, Spark
can be up to 100 times faster in terms of memory access than
Hadoop [14]. The gap between Spark and Hadoop is more than
10-fold greater, even if we compare between them based on disk
performance [15]. In terms of flexibility, Spark provides high-
level application programming interfaces (APIs) in Java, Scala,
Python, and R, and interactive shell. In terms of generality, Spark
provides structured data processing, machine learning, graph
computing, and stream computing capabilities by supporting
some advanced components. Table 1 summarizes the bioinfor-
matics tools and algorithms based on Apache Spark.

The Spark Framework

Designed and developed by the Algorithms, Machines and Peo-
ple Lab at the University of California, Berkeley, Spark is an open-
source cluster computing environment designed for large-scale
data processing. It provides advanced APIs in Java, Scala, Python,
and R and an optimized engine that supports general execution
graphs. It also supports some advanced components, includ-
ing Spark SQL for structured data processing, MLlib for machine
learning, GraphX for computing graphs, and Spark Streaming for
stream computing.

As shown in Fig. 1, each Spark application runs as an inde-
pendent process on the cluster, coordinated by SparkContext in
the driver program. There are two deploy modes, depending on
where the driver program is running: cluster mode and client
mode. In the former mode, the driver program runs on a worker
node. In the latter, the driver program runs on the client ma-
chine. First, SparkContext requests the executors on the worker
nodes in the cluster from the cluster manager (either Spark’s
own stand-alone cluster manager, Apache Mesos, or Hadoop
YARN). These executors are processes that can run tasks and
store data in memory or on disk for application. Next, Spark-
Context will send tasks to the executors to perform. Finally, the
executors return the results to SparkContext after the tasks are
executed. In Spark, an application generates multiple jobs. A job
is split into several stages. Each stage is a task set containing sev-
eral tasks, which performs calculations and produces interme-
diate results. A task is the smallest unit of work in Spark, com-
pleting a specific job on an executor. As for deployment of the
Spark cluster, the official proposal for hardware requirements
is to have 4–8 disks per node, which configure at least 8 GB of
memory and 8–16 central processing unit (CPU) cores per ma-
chine, and to use a 10-gigabit or higher network.

As the main abstraction in Spark, RDD is a read-only col-
lection of objects partitioned on different nodes in the cluster
so that the data in RDD can be processed in parallel. The data
in RDD are stored in memory by default, but Spark automati-

cally writes RDD data to disk if memory resources are low. RDD
achieves fault tolerance through a notion of lineage [14]; i.e.,
if an RDD partition on a node is lost because of a node fail-
ure, the RDD automatically recalculates the partition from its
own data source. Moreover, Spark provides two types of oper-
ations on RDD: transformation and action. The former defines
a new RDD, and the latter returns a result or writes RDD data
to the storage system. Transformation employs lazy operation
[36], which means that the operation of generating another RDD
from one RDD transformation is not executed immediately, and
the calculation process is not actually started until an action is
performed. Furthermore, each transformation operation gener-
ates a new RDD; the newly generated RDD depends on the orig-
inal RDD. According to the different types of transformation op-
eration, RDD dependencies can be divided into narrow depen-
dency and wide dependency. The former refers to the fact that
each partition in the generated RDD depends only on the parent
RDD fixed partition, and the latter refers to the fact that each
partition of the generated RDD depends on all partitions of the
parent RDD. Figure 2 shows examples of narrow and wide de-
pendencies. In addition, Spark also provides two extensions of
RDD: DataFrame and Dataset. Spark users can seamlessly switch
between these through simple API calls.

Spark also adopts a directed acyclic graph (DAG) [37] to
optimize execution processes by splitting submitted jobs into
several stages according to wide dependency. For narrow de-
pendency, it divides related transformation operations into the
same stage; this is because they can perform pipelining oper-
ations and thus reduce the processing time of submitted jobs.
Figure 3 shows an example of how Spark computes job stages.
In addition, if the partitions on a node are lost because of node
failure, Spark can utilize the DAG to recalculate the lost parti-
tions.

Spark in Alignment and Mapping

The rapid development of NGS technology has generated a large
amount of sequence data (reads), which has a tremendous im-
pact on sequence alignment and mapping processes. Currently,
sequence alignment and mapping remain time consuming.

The Smith–Waterman (SW) algorithm [38], which produces
optimal local alignment between two strings of nucleic acid se-
quences or protein sequences, is widely used in bioinformat-
ics. However, this algorithm has a high computational cost be-
cause of high computational complexity. To speed up the algo-
rithm, Zhao et al. (2015) [16] implemented the SW algorithm on
Spark for the first time, naming this SparkSW. It consisted of
three phases: data preprocessing, SW as map tasks, and top K
records as reduce tasks. Experimental results [16] showed that
SparkSW was load-balancing and scalable with increased com-
puting resources. However, SparkSW merely supports the SW
algorithm without the mapping location and traceback of op-
timal alignment. As a result, SparkSW executes slowly. There-
fore, Xu et al. (2017) proposed DSA [17], which employed single
instruction multiple data (SIMD) to parallel the sequence align-
ment algorithm at each worker node. Experimental results [17]
showed that DSA achieved up to 201 times faster speeds over
SparkSW and almost linearly increased speed with increased
cluster nodes. Subsequently, Xu et al. proposed CloudSW [18],
an efficient distributed SW algorithm that leveraged Spark and
SIMD instructions to accelerate the algorithm and provided API
services in the cloud. Experimental results [18] showed that
CloudSW achieved up to 3.29 times increased speed over DSA



Guo et al. 3

Table 1: Bioinformatics tools and algorithms based on Apache Spark

Name Function Features Pros/Cons Reference

SparkSW Alignment and
mapping

Consists of three phases: data
preprocessing, SW as map tasks, and
top K records as reduce tasks

Load-balancing, scalable, but without
the mapping location and traceback
of optimal alignment

[16]

DSA Alignment and
mapping

Leverages data parallel strategy based
on SIMD instruction

Up to 201 times increased speed over
SparkSW and almost linearly
increased speed with increasing
numbers of cluster nodes

[17]

CloudSW Alignment and
mapping

Leverages SIMD instruction, and
provides API services in the cloud

Up to 3.29 times increased speed over
DSA and 621 times increased speed
over SparkSW; high scalability and
efficiency

[18]

SparkBWA Alignment and
mapping

Consists of three main stages: RDD
creation, map, and reduce phases;
employs two independent software
layers

For shorter reads, averages 1.9x and
1.4x faster than SEAL and pBWA. For
longer reads, averages 1.4x faster
than BigBWA and Halvade, but
requires the data availability in HDFS

[19]

StreamBWA Alignment and
mapping

Input data are streamed into the
cluster directly from a compressed
file

∼2x faster than nonstreaming
approach, and 5x faster than
SparkBWA

[20]

PASTASpark Alignment and
mapping

Employs an in-memory RDD of
key-value pairs to parallel the
calculating MSA phase

Up to 10x faster than single-threaded
PASTA; ensures scalability and fault
tolerance

[21]

PPCAS Alignment and
mapping

Based on the MapReduce processing
paradigm in Spark

Better with a single node and shows
almost linearly increased speeds with
increasing numbers of nodes

[22]

SparkBLAST Alignment and
mapping

Utilizes pipe operator and Spark RDDs
to call BLAST as an external library

Outperforms CloudBLAST in terms of
speed, scalability, and efficiency

[23]

MetaSpark Alignment and
mapping

Consists of five steps: constructing
k-mer RefindexRDD, constructing
k-mer ReadlistRDD, seeding, filtering,
and banded alignment

Recruits significantly more reads
than SOAP2, BWA, and LAST and
more reads by ∼4 than FR-HIT; shows
good scalability and overall high
performance

[24]

Spaler Assembly Employs Spark’s GraphX API; consists
of two main parts: de Bruijn graph
construction and contig generation

Shows better scalability and achieves
comparable or better assembly
quality than ABySS, Ray, and
SWAP-Assembler

[25]

SA-BR-Spark Assembly Under the strategy of finding the
source of reads; based on the Spark
platform

Shows a superior computational
speed than SA-BR-MR

[26]

HiGene Sequence
analysis

Puts forward a dynamic computing
resource scheduler and an efficient
way of mitigating data skew

Reduces total running time from days
to just under nearly an hour; 2x
faster than Halvade

[27]

GATK-Spark Sequence
analysis

Takes full account of compute,
workload, and characteristics

Achieves more than 37 times
increased speed

[28]

SparkSeq Sequence
analysis

Builds and runs genomic analysis
pipelines in an interactive way by
using Spark

Achieves 8.4–9.15 times faster speeds
than SeqPig; accelerates data
querying up to 110 times and reduces
memory consumption by 13 times

[29]

CloudPhylo Phylogeny Evenly distributes entire workloads
between worker nodes

Shows good scalability and high
efficiency; the Spark version is better
than the Hadoop version

[30]

S-CHEMO Drug discovery Intermediate data are immediately
consumed again on the producing
nodes, saving time and bandwidth

Shows almost linearly increased
speeds on up to eight nodes
compared with the original pipeline

[31]

Falco Single-cell RNA
sequencing

Consist of a splitting step, an optional
preprocessing step, and the main
analysis step

At least 2.6x faster than a highly
optimized single-node analysis;
running time decreases with
increasing numbers of nodes

[32]

VariantSpark Variant
association and
population
genetics studies

Parallels population-scale tasks based
on Spark and the associated MLlib

80% faster than ADAM,
Hadoop/Mahout version, and
ADMIXTURE; more than 90% faster
than R and Python implementations

[33]

SEQSpark Variant
association and
population
genetics studies

Splits large-scale datasets into many
small blocks to perform rare variant
association analyses

Always faster than Variant
Association Tools and PLINK/SEQ; in
some cases, running time is reduced
to 1%

[34]



4 Spark in Bioinformatics

Table 1: Continued

Name Function Features Pros/Cons Reference

BioSpark Data-parallel
analysis on large,
numerical
datasets

Consists of a set of Java, C++, and
Python libraries; abstractions for
parallel analysis of standard data
types; some APIs; and file conversion
tools

Convenient, scalable, and useful; has
domain-specific features for
biological applications

[35]

Figure 1: The cluster architecture of Spark.

Figure 2: Examples of narrow and wide dependencies. Each box is an RDD, where the partition is shown as a shaded rectangle.

and 621 times increased speed over SparkSW. CloudSW also
showed excellent scalability and achieved speeds of up to 529
giga cell updates per second in a protein database search with
50 nodes using Aliyun cloud.

The Burrows–Wheeler aligner (BWA) is composed of BWA-
backtrack [39], BWA-SW [40], and BWA-MEM [41] for perform-
ing sequence alignment and mapping in bioinformatics. Be-
fore the advent of Spark-based BWA tools, there were several



Guo et al. 5

Figure 3: An example of how Spark computes job stages. Boxes with solid outlines are RDDs. Partitions are shaded rectangles and are black if they are already in
memory. To run an action on RDD G, we build stages at wide dependencies and pipeline narrow transformation inside each stage. In this case, the output RDD of stage
1 is already in memory, so we run stage 2 and then stage 3.

other BWA tools based on big data technology, including BigBWA
[42], Halvade [43], and SEAL [7]. However, these were based on
Hadoop, which showed limited scalability and complex imple-
mentation. As a result, Al-Ars et al. [(2015) 44] implemented
three versions of BWA-MEM and compared their performance:
a native cluster-based version, a Hadoop version, and a Spark
version. Three implementations were evaluated on the same
IBM Power7 and Intel Xeon servers, with WordCount as an ex-
ample. The results [44] showed that simultaneous multithread-
ing improved the performance of three versions of BWA-MEM,
and the Spark version with 80 threads increased performance
by up to 87% over the native cluster version using 16 threads.
Furthermore, the four-thread Hadoop version increased perfor-
mance by 17%, and the Spark version with even more threads
increased performance by 27%. Then, in 2016, Abuı́n et al. pro-
posed SparkBWA [19], which is composed of three main phases:
the RDDs creation phase, the map phase, and the reduce phase.
Experimental results [19] showed that for the BWA-backtrack al-
gorithm, SparkBWA achieved average increased speeds of 1.9
times and 1.4 times compared with SEAL and pBWA, respec-
tively. For the BWA-MEM algorithm, SparkBWA was, on aver-
age, 1.4 times faster than BigBWA and Halvade tools. However,
SparkBWA required significant time to preprocess the input files
and finally combine the output files. Therefore, in 2017, Mush-
taq et al. proposed StreamBWA [20], in which the input files were
streamed into the Spark cluster. This greatly reduced the time
required to preprocess data and combine the final results. Exper-
imental results [20] showed that this streaming distributed strat-
egy gave roughly double the speed of the nonstreaming strategy.
Furthermore, StreamBWA achieved a five-fold increased speed
over SparkBWA.

Multiple sequence alignment (MSA) refers to the sequence
alignment of three or more biological sequences, such as pro-

tein or nucleic acid sequences. One representative tool for per-
forming MSA is PASTA [45]. PASTA is a derivative of SATé [46],
which produces highly accurate alignments in shared mem-
ory computers. However, PASTA is limited to processing small
and medium datasets because the computing power of shared
memory systems cannot meet the memory and time require-
ments of large-scale datasets. Therefore, in 2017, Abuı́n et al.
proposed PASTASpark [21], which allowed executions on a dis-
tributed memory cluster, taking advantage of Spark. It employed
an in-memory RDD of key-value pairs to parallel the calculat-
ing MSA phase. Experiments were conducted on two d clusters:
Centro de Supercomputación de la Galicia and Amazon Web Ser-
vices (AWS). The results [21] showed that PASTASpark achieved
up to 10 times faster speeds than single-threaded PASTA and
was able to process 200,000 sequences in 24 hours using only
AWS nodes. Therefore, PASTASpark ensured scalability and fault
tolerance, which greatly reduced the time to obtain MSA.

The probabilistic pairwise model [47] is widely used in all
consistency-based MSA tools, such as MAFFT [48], ProbCons [49],
and T-Coffee [50]. However, global distributed memory cannot
meet the demands of ever-increasing sequence datasets, which
leads to the need for specialized distributed databases, such as
HBase or Cassandra. As a result, Lladós et al. (2017) employed
Spark to propose a new tool, PPCAS [22], which could parallel the
probabilistic pairwise model for large-scale protein sequences
and store it in a distributed platform. Experimental results [22]
showed that it was better with a single node and provided al-
most linearly increased speeds with the increased numbers of
nodes. In addition, it could compute more sequences using the
same amount of memory.

The National Center for Biotechnology Information’s (NCBI’s)
Basic Local Alignment Search Tool (BLAST) tool [51, 52] is widely
used to implement algorithms for sequence comparison. Before



6 Spark in Bioinformatics

the Spark-based BLAST was created, several other BLAST tools
had been proposed, including mpiBLAST [53], GPU-BLAST [54],
and CloudBLAST [55]. However, with the increasing amount of
genomic data, these tools showed limited scalability and effi-
ciency. As a result, Castro et al. (2017) proposed SparkBLAST [23],
which utilized cloud computing and the Spark framework to par-
allel BLAST. In SparkBLAST, Spark’s pipe operator and RDDs were
utilized to call BLAST as an external library and perform scalable
sequence alignment. It was compared with CloudBLAST on both
Google and Microsoft Azure clouds. Experimental results [23]
showed that SparkBLAST outperformed CloudBLAST in terms of
speed, scalability, and efficiency.

Metagenomics is crucial for directly studying genetic mate-
rial from environmental samples. Fragment recruitment is the
process of aligning reads to reference genomes in metagenomics
data analysis. In 2017, Zhou et al. proposed MetaSpark [24],
which employed Spark to recruit metagenomics reads to refer-
ence genomes. MetaSpark utilized the RDD of Spark to cache
datasets in memory and scaled well along dataset size incre-
ments. It consisted of five steps, including constructing k-mer
RefindexRDD, constructing k-mer ReadlistRDD, seeding, filter-
ing, and banded alignment. It was evaluated on a 10-node clus-
ter, working under the Spark stand-alone module, in which
each node contained an eight-core CPU and 16 GB random ac-
cess memory. It employed about 1 million 75 bp Illumina read
datasets and two references: 194 human gut genomes and bac-
terial genomes that were 0.616 Gb and 1.3 Gb in size, respectively.
Experimental results [24] showed that MetaSpark recruited more
reads than FR-HIT [56] with the same parameters and 1 mil-
lion reads. MetaSpark recruited 501,856 reads to 0.616 Gb hu-
man gut genome references, while FR-HIT recruited 489,638
reads. MetaSpark increased recruited reads by 2.5%. When ref-
erences changed to a 1.3 Gb bacterial genome, MetaSpark re-
cruited 463,862 reads, while FR-HIT recruited 444,671 reads.
MetaSpark increased recruited reads by 4%. Moreover, the re-
sults also showed that MetaSpark offered good scalability. Un-
der a 0.616 Gb reference, the run time for 100,000 reads was 51
minutes under four nodes and decreased slightly to 23.5 min-
utes under 10 nodes. For the 1 million read datasets, MetaSpark
would crash under four nodes because of limited memory. Un-
der six nodes, it finished running after 312 minutes and would
sharply decrease to 201 minutes under 10 nodes.

Spark in Assembly

Because NGS read lengths are short (<500 bp), they must be
assembled before further analysis, which is another important
phase in the sequence analysis workflow. In general, there are
two types of assembly: the reference assembly and de novo as-
sembly. The assembly algorithm includes two categories: the
overlap–layout–consensus (OLC) algorithm and the de Bruijn
graph algorithm. The former is generally employed to assemble
longer reads, while the latter performs well in assembling short
reads.

Before Spark-based distributed memory de novo assemblers
were created, although there were some assemblers (such as
Ray [57], AbySS [58], and SWAP-Assembler [59]) based on mes-
sage passing interface (MPI), they showed limited scalability, ac-
curacy, and computational efficiency. Therefore, in 2015, Abu-
Doleh et al. proposed Spaler [25], taking advantage of Spark and
GraphX APIs. It consisted of two main parts: de Bruijn graph con-
struction and contig generation. It was evaluated against other
MPI-based tools in terms of quality, execution time, and scalabil-

ity. Experimental results [25] showed that Spaler had better scal-
ability and could achieve comparable or better assembly quality.

To resolve the large memory requirement problem of most
OLC de novo assemblers, Paul et al. (2017) [60] employed string
graph reduction algorithms, taking advantage of Spark. The pro-
posed Spark algorithms were evaluated against a very large sam-
ple dataset. The results showed that this dataset was assembled
by the proposed Spark algorithms using 15 virtual machines in
0.5 hours compared with the 7.5 hours achieved by the OLC-
based Omega [61] assembler.

In addition, some new assembly algorithms have also been
proposed, based on the Spark platform itself. In 2016, Pan et al.
[62] put forward a new assembling algorithm based on Spark,
which employed the method of matching K-2 bit to simplify
the de Bruijn graph. This algorithm was evaluated using six
groups of DNA data in the NCBI database. Experimental results
[62] showed that this strategy not only solved the problem of
low efficiency based on the MapReduce algorithm but also op-
timized the algorithm itself. The combination of these two as-
pects was very suitable for the large-scale assembly of DNA se-
quences. Moreover, the results also showed that the new Spark-
based sequence-assembling algorithm ensured the accuracy of
assembling results.

To address the problem of poor assembling precision and low
efficiency, Dong et al. (2017) [26] proposed SA-BR-Spark, a new
sequence assembly algorithm based on Spark. The authors first
designed a precise assembling algorithm using the strategy of
finding the source of reads based on the MapReduce and Eu-
lerian path algorithm (SA-BR-MR). SA-BR-MR calculated 54 se-
quences, randomly selected from animal, plant, and microor-
ganism sequences in the NCBI database, with base lengths rang-
ing from hundreds to tens of thousands. The matching rates
of all 54 sequences were 100%. For each species, the algorithm
also summarized the range of K that made the matching rates
100%. To verify the range of K values of hepatitis C virus and
related variants, the K values of eight randomly selected hepati-
tis C virus variants were calculated. The results confirmed that
the range of K of hepatitis C and related variants in NCBI were
correct. After that, SA-BR-Spark was put forward. Experimental
results [26] showed that SA-BR-Spark provided superior compu-
tational speed compared with SA-BR-MR.

Spark in Sequence Analysis

The GATK (Genome Analysis Toolkit) DNA analysis pipeline is
widely used in genomic data analysis. Before Spark-based GATK
tools were created, while several other tools had been developed
to address the issue of scalability in the pipeline (such as Hal-
vade [43] and Churchill [63]), they showed limited scalability, ac-
curacy, and computational efficiency.

Therefore, in 2015, Mushtaq et al. [64] utilized Spark to pro-
pose a cluster-based GATK pipeline. To reduce the execution
time, this approach kept data active in the memory between
the map and reduce phases. By using active workload runtime
statistics, it achieved a dynamic load-balancing algorithm that
could better utilize system performance. Experimental results
[64] showed that this method achieved 4.5 times increased speed
compared with the multithreaded GATK pipeline on a single
node. In addition, when executed on a four-node cluster, this
approach was 63% faster than Halvade.

Then, in 2016, Deng et al. proposed HiGene [27], which em-
ployed Spark to enable multicore and multinode parallelization
of the GATK pipeline. HiGene put forward a dynamic comput-



Guo et al. 7

ing resource scheduler and an efficient data-skew mitigation
method to improve performance. Experiments were conducted
with the NA12878 whole human genome dataset. The results
[27] showed that HiGene reduced the total running time from
days to just under 1 hour. Furthermore, compared with Halvade,
HiGene was also two times faster. Meanwhile, Li et al. employed
Spark to propose GATK-Spark [28]. This paralleled the GATK
pipeline by taking full account of compute, workload, and I/O
characteristics. It was built on top of the ADAM format [65]. Ex-
perimental results [28] showed that GATK-Spark decreased the
total running time from 20 hours to 30 minutes on 256 CPU cores,
which achieved more than 37-fold increased speeds.

Spark provides the opportunity for interactive NGS data pro-
cessing. In 2014, Wiewiórka et al. proposed SparkSeq [29] to build
and run genomic analysis pipelines in an interactive way by us-
ing Spark. Experimental results showed that SparkSeq achieved
8.4–9.15 times faster speeds than SeqPig. Moreover, it could ac-
celerate data querying by up to 110 times and reduce memory
consumption by 13 times.

Spark in Other Biological Applications
Spark in epigenetics

CpG islands are important markers that are essential in epi-
genetics [66]. However, investigation of CpG islands and their
structures remains challenging. Before Spark-based applica-
tions were developed, while several methods had been proposed
to determine the CpG islands (such as bisulfite modification-
based methods), they were time consuming and prohibitively
expensive. Thus, Yu et al. [67] utilized Spark to propose a novel
CpG box model and a Markov model to redefine and inves-
tigate the CpG island, which could greatly accelerate the an-
alytic process. Experiments were conducted with human and
mouse chromosome sequences; 24 chromosomes and 21 chro-
mosomes, respectively. The results [67] showed that this cloud-
assisted method had considerable accuracy and faster process-
ing power (6–7 times faster with 10 cores) compared with se-
quential processing.

Spark in phylogeny

Phylogeny reconstruction is important in molecular evolution-
ary studies but faces significant computational challenges. Be-
fore Spark-based tools were created, while several tools had
been put forward for phylogeny reconstruction, they did not
scale well, and there was a significant increase in the number of
datasets. Therefore, in 2016, Xu et al. proposed CloudPhylo [30], a
fast and scalable phylogeny reconstruction tool that made use of
Spark. It evenly distributed the entire computational workload
between working nodes. An experiment was conducted using
5,220 bacteria whole-genome DNA sequences. The results [30]
showed that CloudPhylo took 24,508 seconds with one worker
node, and it was able to scale well with increasing numbers of
worker nodes. Moreover, CloudPhylo performed better than sev-
eral existing tools when using more worker nodes. In addition,
CloudPhylo achieved faster speeds on a larger dataset of about
100 Gb generated by simulation.

Spark in drug discovery

The identification of candidate molecules that affect disease-
related proteins is crucial in drug discovery. Although the
Chemogenomics Project tries to identify candidate molecules

using machine-learning predictor programs [68-70], these pro-
grams are slow and cannot be easily extended to multiple nodes.
To migrate existing programs to multinode clusters without
changing the original programs, Harnie et al. proposed S-CHEMO
[31], using Spark. In S-CHEMO, the intermediate data are imme-
diately consumed again on the nodes that generated the data,
reducing time and network bandwidth consumption. Experi-
ments [31] compared S-CHEMO with the original pipeline and
showed almost linearly increased speeds on up to eight nodes.
Moreover, this implementation also allowed easier monitoring.

Spark in single-cell RNA sequencing

Single-cell RNA sequencing (scRNA-seq) is crucial for under-
standing biological processes. Compared with standard bulk
RNA-seq experiments, scRNA-seq experiments typically gener-
ate a greater number of cell profiles. Although several RNA-seq
processing pipelines are available (such as Halvade, SparkSeq,
and SparkBWA), they cannot process large numbers of profiles.
Therefore, Falco [32] was created to process large-scale tran-
scriptomic data in parallel by using Hadoop and Spark. Exper-
iments were conducted with two public scRNA-seq datasets.
The results [32] showed that, compared with a highly optimized
single-node analysis, Falco was at least 2.6 times faster. More-
over, as the number of computing nodes increased, running time
decreased. Furthermore, it allowed users to employ the low-cost
spot instances of AWS, which reduced the cost of analysis by
65%.

Spark in variant association and population genetics
studies

Effectively analyzing thousands of individuals and millions of
variants is a computationally intensive problem. Traditional
parallel strategies such as MPI/OpenMP show poor scalability.
While Hadoop provides an efficient and scalable computing
framework, it is heavily dependent on disk operations. There-
fore, in 2015, O’Brien et al. proposed VariantSpark [33] to par-
allel population-scale tasks based on Spark and an associated
machine-learning library, MLlib. Experiments that were con-
ducted on 3,000 individuals with 80 million variants showed that
VariantSpark was 80% faster than ADAM, the Hadoop/Mahout
implementation, and ADMIXTURE [71]. Moreover, compared
with R and Python implementations, it was more than 90%
faster. In 2017, Di et al. proposed SEQSpark [34] to perform rare
variant association analysis using Spark. It was evaluated with
whole-genome and simulated exome sequence data. The for-
mer was completed in 1.5 hours and the latter in 1.75 hours.
Moreover, it was always faster than Variant Association Tools
and PLINK/SEQ; in some cases, running time was reduced to 1%.

Spark in other works

Biological simulations and experiments produce a large number
of numerical datasets, and in 2017, Klein et al. proposed Biospark
[35] to process these data. Biospark was based on Hadoop and
Spark, comprising a set of Java, C++, and Python libraries. In ad-
dition, it provided the abstractions for parallel analysis of stan-
dard data types, including multidimensional arrays and images.
To facilitate parallel analysis of some common datasets, it also
provided APIs and file conversion tools, including Monte Carlo,
molecular dynamics simulations, and time-lapse microscopy.



8 Spark in Bioinformatics

Discussion

Spark is an in-memory iterative computing framework designed
for large-scale data processing. It is suitable for applications that
require iterative operations on specific datasets; the greater the
amount of data, the higher the computational intensity and the
greater the benefits. When the data volume is small but the com-
putational intensity is large, the benefit is relatively small. In ad-
dition, Spark is also suitable for applications where the amount
of data is not particularly large, but real-time statistical analyses
are required.

However, the nature of RDD means that Spark is not suit-
able for applications requiring asynchronous, fine-grained up-
dates in execution, such as web service storage or incremental
web crawlers and indexes. In addition, we must consider the po-
tential complexity of creating and maintaining a Spark cluster.
Moreover, when Spark runs on a commercial cloud-computing
platform such as AWS, there is a certain delay in the transmis-
sion of large-scale datasets over the Internet. This issue does not
exist when Spark runs on a local computer cluster. Furthermore,
we need to learn a new API and perhaps even a new language (es-
pecially given the functional programming nature of the API).

Although Spark has been applied in some areas of bioinfor-
matics and has achieved good results, its use in other areas, –
such as proteomics, biomedical texts, and metabolomics, has
not yet been explored. Moreover, as cloud computing and some
web servers become more available, some issues must be con-
sidered, such as the time cost of large amounts of input data
from local to remote servers in slow networks, cloud computing
fees, data security, and privacy.

Conclusion

With the rapid development of NGS technology, a large number
of genomic datasets have been generated, which poses a great
challenge to traditional bioinformatics tools. For this reason,
we have summarized relevant works about the use of Spark in
bioinformatics and have created a guideline on this topic. First,
we make a comparison between Spark and Hadoop and then
outline the Spark cluster architecture, programming model, and
processing mechanism. Then, we survey the use of Spark-based
applications in NGS and other biological domains. Our survey
means that researchers who wish to become involved in this
field can now obtain a general understanding of the use of Spark
in bioinformatics.

In summary, Spark is a fast and general-purpose computing
framework designed for large-scale data processing. It ensures
high fault tolerance and high scalability by introducing RDD ab-
straction and DAG scheduling. We believe that bioinformatics
applications based on Spark will show promise in terms of per-
formance for biological researchers in the future.

Abbreviations

API: application programming interface; AWS: Amazon Web Ser-
vices; BLAST: Basic Local Alignment Search Tool; BWA: Burrows–
Wheeler aligner; CPU: central processing unit; DAG: directed
acyclic graph; GATK: Genome Analysis Toolkit; HDFS: Hadoop
Distributed File System; I/O: input output system; MPI: mes-
sage passing interface; MSA: multiple sequence alignment;
NCBI: National Center for Biotechnology Information; NGS: next-
generation sequencing; OLC: overlap–layout–consensus; RDD:
resilient distributed dataset; scRNA-seq: single-cell RNA se-

quencing; SIMD: single instruction multiple data; SW: Smith-
Waterman algorithm.

Competing interests

The authors declare that they have no competing interests.

Funding

This work was supported by the National Key R&D Pro-
gram of China (grants 2018YFC090002, 2017YFB0202602,
2017YFC1311003, 2017YFB0202104, 2016YFC1302500, and
2016YFB0200400), the National Natural Science Foundation
of China (grants 61772543, U1435222, 61625202, 61272056,
and 61771331), the Funds of State Key Laboratory of
Chemo/Biosensing and Chemometrics, the Fundamental
Research Funds for the Central Universities, and the Guang-
dong Provincial Department of Science and Technology (grant
2016B090918122).

Author contributions

R.G. and S.P. conceived the project and organized the work. All
authors wrote parts of the manuscript, and all authors read and
approved the final manuscript.

Acknowledgements

The authors thank the executive editor and the reviewers whose
comments and constructive criticism helped in improving the
quality of the manuscript. In addition, the authors thank Xi-
angke Liao and Kenli Li for their useful discussions and sugges-
tions.

References

1. Dean J, Ghemawat S. MapReduce: simplified data processing
on large clusters. Commun ACM 2008;51(1):107–13.

2. Zou Q, Li X-B, Jiang W-R, et al. Survey of MapReduce frame
operation in bioinformatics. Brief Bioinform 2013;15(4):637–
47.

3. Zou Q, Hu Q, Guo M, et al. HAlign: fast multiple simi-
lar DNA/RNA sequence alignment based on the centre star
strategy. Bioinformatics 2015;31(15):2475–81.

4. Gaggero M, Leo S, Manca S, et al. Parallelizing bioinformat-
ics applications with MapReduce. Cloud Computing and Its
Applications 2008;12(18):22–23.

5. Leo S, Santoni F, Zanetti G. Biodoop: bioinformatics on
hadoop. In: Parallel Processing Workshops, 2009 ICPPW’09
International Conference on: 2009. IEEE: 415–22.

6. Yang X-L, Liu Y-L, Yuan C-F, et al. Parallelization of BLAST
with MapReduce for long sequence alignment. In: Paral-
lel Architectures, Algorithms and Programming (PAAP), 2011
Fourth International Symposium on: 2011. IEEE: 241–6.

7. Pireddu L, Leo S, Zanetti G. SEAL: a distributed short
read mapping and duplicate removal tool. Bioinformatics
2011;27(15):2159.

8. Schatz MC. CloudBurst: highly sensitive read mapping with
MapReduce. Bioinformatics 2009;25(11):1363–9.

9. Nguyen T, Shi W, Ruden D. CloudAligner: a fast and full-
featured MapReduce based tool for sequence mapping. BMC
Research Notes 2011;4(1):171.

10. Nordberg H, Bhatia K, Wang K, et al. BioPig: a Hadoop-based



Guo et al. 9

analytic toolkit for large-scale sequence data. Bioinformatics
2013;29(23):3014–9.

11. Langmead B, Schatz MC, Lin J, et al. Searching for SNPs with
cloud computing. Genome Biol 2009;10(11):R134.

12. Kim D-K, Yoon J-H, Kong J-H, et al. Cloud-scale SNP detection
from RNA-Seq data. In: Data Mining and Intelligent Informa-
tion Technology Applications (ICMiA), 2011 3rd International
Conference on: 2011. IEEE: 321–3.

13. Hung C-L, Lin Y-L, Hua G-J, et al. CloudTSS: a TagSNP selec-
tion approach on cloud computing. In: Grid and Distributed
Computing. Springer; 2011;12(13):525–34.

14. Zaharia M, Chowdhury M, Franklin MJ, et al. Spark: cluster
computing with working sets. HotCloud 2010;10(10-10):95.

15. Han Z, Zhang Y. Spark: a Big Data processing platform based
on memory computing. In: Seventh International Sympo-
sium on Parallel Architectures, Algorithms and Program-
ming: 2016. 172–6.

16. Zhao G, Ling C, Sun D. SparkSW: scalable distributed com-
puting system for large-Sscale Bbiological sequence align-
ment. In: Ieee/acm International Symposium on Cluster,
Cloud and Grid Computing: 2015. 845–52.

17. Xu B, Li C, Zhuang H, et al. DSA: scalable distributed
sequence alignment system using SIMD instructions. In:
Ieee/acm International Symposium on Cluster, Cloud and
Grid Computing: 2017. 758–61.

18. Xu B, Li C, Zhuang H, et al. Efficient distributed Smith-
Waterman algorithm based on Apache Spark. In: IEEE Inter-
national Conference on Cloud Computing: 2017. 608–15.

19. Abuı́n JM, Pichel JC, Pena TF, et al. SparkBWA: speeding up
the alignment of high-throughput DNA sequencing data.
PLoS One 2016;11(5):e0155461.

20. Alars HMA. Streaming Distributed DNA Sequence Alignment
Using Apache Spark. 2017.

21. Abuı́n JM, Pena TF, Pichel JC. PASTASpark: multiple sequence
alignment meets Big Data. Bioinformatics 2017;33(18):2948–
50.

22. Lladós J, Guirado F, Cores F, et al. PPCAS: Implementation of a
Probabilistic Pairwise Model for Consistency-Based Multiple
Alignment in Apache Spark; 2017.

23. Castro MRD, Tostes CDS, Dávila AMR, et al. SparkBLAST: scal-
able BLAST processing using in-memory operations. BMC
Bioinformatics 2017;18(1):318.

24. Zhou W, Li R, Yuan S, et al. MetaSpark: a Spark-based dis-
tributed processing tool to recruit metagenomic reads to ref-
erence genomes. Bioinformatics 2017;33(7):1090–2.

25. Abu-Doleh A, Çatalyürek ÜV. Spaler: Spark and GraphX
based de novo genome assembler. In: IEEE International Con-
ference on Big Data: 2015. 1013–8.

26. Dong G, Fu X, Li H, et al. An accurate sequence as-
sembly algorithm for livestock, plants and microorgan-
ism based on Spark. Intern J Pattern Recognit Artif Intell
2017;31(8):1750024.

27. Deng L, Huang G, Zhuang Y, et al. HiGene: a high-
performance platform for genomic data analysis. In: IEEE In-
ternational Conference on Bioinformatics and Biomedicine:
2016. 576–83.

28. Li X, Tan G, Zhang C, et al. Accelerating large-scale genomic
analysis with Spark. In: Bioinformatics and Biomedicine
(BIBM), 2016 IEEE International Conference on: 2016. IEEE:
747–51.

29. Wiewiórka MS, Messina A, Pacholewska A, et al. SparkSeq:
fast, scalable and cloud-ready tool for the interactive ge-
nomic data analysis with nucleotide precision. Bioinformat-
ics 2014;30(18):2652–3.

30. Xu X, Ji Z, Zhang Z. CloudPhylo: a fast and scalable tool for
phylogeny reconstruction. Bioinformatics 2016;33(3):438–40.

31. Harnie D, Saey M, Vapirev AE, et al. Scaling machine learning
for target prediction in drug discovery using Apache Spark.
Future Generation Computer Systems 2017;67:409–17.

32. Yang A, Troup M, Lin P, et al. Falco: a quick and flexible single-
cell RNA-seq processing framework on the cloud. Bioinfor-
matics 2016;33(5):767–9.

33. O’Brien AR, Saunders NFW, Guo Y, et al. VariantSpark: pop-
ulation scale clustering of genotype information. BMC Ge-
nomics 2015;16(1):1–9.

34. Di Z, Zhao L, Li B, et al. SEQSpark: a complete analysis
tool for large-scale rare variant association studies using
whole-genome and exome sequence data. Am J Hum Genet
2017;101(1):115.

35. Klein M, Sharma R, Bohrer CH, et al. Biospark: scalable anal-
ysis of large numerical datasets from biological simulations
and experiments using Hadoop and Spark. Bioinformatics
2017;33(2):303–5.

36. Zaharia M, Chowdhury M, Das T, et al. Resilient distributed
datasets: a fault-tolerant abstraction for in-memory cluster
computing. In: Proceedings of the 9th USENIX conference
on Networked Systems Design and Implementation: 2012.
USENIX Association: 2–2.

37. Convolbo MW, Chou J. Cost-aware DAG scheduling algo-
rithms for minimizing execution cost on cloud resources. J
Supercomputing 2016;72(3):985–1012.

38. Smith TF, Waterman MS. Identification of common molecu-
lar subsequences. J Mol Biol 1981;147(1):195–7.

39. Li H, Durbin R. Fast and Accurate Short Read Alignment with
Burrows–Wheeler Transform. Oxford University Press; 2009.

40. Li H, Durbin R. Fast and accurate long-read alignment with
Burrows–Wheeler transform. Bioinformatics 2010;26(5):589–
95.

41. Li H. Aligning sequence reads, clone sequences and assem-
bly contigs with BWA-MEM. 2013, 1303.

42. Abuı́n JM, Pichel JC, Pena TF, et al. BigBWA: approaching the
Burrows–Wheeler aligner to Big Data technologies. Bioinfor-
matics 2015;31(24):4003.

43. Decap D, Reumers J, Herzeel C, et al. Halvade: scal-
able sequence analysis with MapReduce. Bioinformatics
2015;31(15):2482–8.

44. Al-Ars Z, Mushtaq H. Scalability potential of BWA DNA map-
ping algorithm on Apache Spark. In: SIMBig: 2015. 85–88.

45. Mirarab S, Nguyen N, Warnow T. PASTA: ultra-large multi-
ple sequence alignment. In: International Conference on Re-
search in Computational Molecular Biology: 2014. Springer:
177–91.

46. Liu K, Warnow TJ, Holder MT, et al. SATe-II: very fast and ac-
curate simultaneous estimation of multiple sequence align-
ments and phylogenetic trees. Syst Biol 2011;61(1):90–106.

47. Miyazawa S. A reliable sequence alignment method based
on probabilities of residue correspondences. Protein Eng
1995;8(10):999.

48. Katoh K, Standley DM. MAFFT multiple sequence alignment
software Version 7: improvements in performance and us-
ability. Molecular Biology & Evolution 2013;30(4):772–80.

49. Do CB, Mahabhashyam MS, Brudno M, et al. ProbCons: prob-
abilistic consistency-based multiple sequence alignment.
Genome Res 2005;15(2):330.

50. Tommaso PD, Moretti S, Xenarios I, et al. T-Coffee: a web
server for the multiple sequence alignment of protein and
RNA sequences using structural information and homology
extension. Nucleic Acids Res 2011;39(Web Server issue):13–



10 Spark in Bioinformatics

17.
51. Altschul S, Gish W, Miller W, et al. Basic local alignment

search tool. J Mol Biol 1990;215:403–10.
52. Camacho C, Coulouris G, Avagyan V et al. BLAST+: architec-

ture and applications. BMC Bioinformatics 2009;10(1):421.
53. Darling AE, Carey L, Feng WC. The design, implementation,

and evaluation of mpiBLAST. In: Los Alamos National Labo-
ratory; 2003;16(3):197–6.

54. Vouzis PD, Sahinidis NV. GPU-BLAST: using graphics proces-
sors to accelerate protein sequence alignment. Bioinformat-
ics 2010;27(2):182–8.

55. Matsunaga A, Tsugawa M, Fortes J. Cloudblast: combining
mapreduce and virtualization on distributed resources for
bioinformatics applications. In: eScience’08 IEEE Fourth In-
ternational Conference on: 2008. IEEE: 222–9.

56. Niu B, Zhu Z, Fu L, et al. FR-HIT, a very fast program to re-
cruit metagenomic reads to homologous reference genomes.
Bioinformatics 2011;27(12):1704–5.

57. Boisvert S, Laviolette F, Corbeil J. Ray: simultaneous assem-
bly of reads from a mix of high-throughput sequencing tech-
nologies. J Comput Biol 2010;17(11):1519.

58. Simpson JT, Wong K, Jackman SD, et al. ABySS: a paral-
lel assembler for short read sequence data. Genome Res
2009;19(6):1117.

59. Meng J, Wang B, Wei Y, et al. SWAP-Assembler: scalable and
efficient genome assembly towards thousands of cores. BMC
Bioinformatics 2014;15(S9):S2.

60. Paul AJ, Lawrence D, Ahn TH. Overlap graph reduction for
genome assembly using Apache Spark. In: The ACM Inter-
national Conference: 2017. 613–.

61. Haider B, Ahn TH, Bushnell B, et al. Omega: an overlap-
graph de novo assembler for metagenomics. Bioinformatics
2014;30(19):2717–22.

62. Pan X, Fu X-L, Dong G-F, et al. DNA sequence splicing algo-
rithm based on Spark. In: Industrial Informatics-Computing
Technology, Intelligent Technology, Industrial Information
Integration (ICIICII), 2016 International Conference on: 2016.

IEEE: 52–56.
63. Kelly BJ, Fitch JR, Hu Y, et al. Churchill: an ultra-fast, deter-

ministic, highly scalable and balanced parallelization strat-
egy for the discovery of human genetic variation in clinical
and population-scale genomics. Genome Biol 2015;16(1):6.

64. Mushtaq H, Al-Ars Z. Cluster-based Apache Spark imple-
mentation of the GATK DNA analysis pipeline. In: Bioinfor-
matics and Biomedicine (BIBM), 2015 IEEE International Con-
ference on: 2015. IEEE: 1471–7.

65. Massie M, Nothaft F, Hartl C, et al. Adam: genomics for-
mats and processing patterns for cloud scale computing.
EECS Department, University of California, Berkeley, Tech
Rep UCB/EECS-2013-207, 2013.

66. Erkek S, Hisano M, Liang C-Y, et al. Molecular determinants
of nucleosome retention at CpG-rich sequences in mouse
spermatozoa. Nature Structural & Molecular Biology 2013,
20(7):868–75.

67. Yu N, Li B, Pan Y. A cloud-assisted application over Apache
Spark for investigating epigenetic markers on DNA genome
sequences. In: Big Data and Cloud Computing (BDCloud),
Social Computing and Networking (SocialCom), Sustainable
Computing and Communications (SustainCom)(BDCloud-
SocialCom-SustainCom), 2016 IEEE International Confer-
ences on: 2016. IEEE: 67–74.

68. Wale N. Machine learning in drug discovery and develop-
ment. Drug Dev Res 2011;72(1):112–9.

69. Costello JC, Heiser LM, Georgii E, et al. A community effort to
assess and improve drug sensitivity prediction algorithms.
Nat Biotechnol 2014;32(12):1202–12.

70. Sastry GM, Inakollu VS, Sherman W. Boosting virtual screen-
ing enrichments with data fusion: coalescing hits from two-
dimensional fingerprints, shape, and docking. J Chem Inf
Model 2013;53(7):1531–42.

71. Alexander DH, Novembre J, Lange K. Fast model-based es-
timation of ancestry in unrelated individuals. Genome Res
2009;19(9):1655.


