
RESEARCH ARTICLE

Easy and effective analytical method of

carbendazim, dimethomorph, and fenoxanil

from Protaetia brevitarsis seulensis using

LC-MS/MS

Sujin Baek, Hyun Ho Noh, Chang Jo Kim, Kyungae Son, Hee-Dong Lee, Leesun Kim*

Residual Agrochemical Assessment Division, National Institute of Agricultural Sciences, Rural Development

Administration, Wanju, Republic of Korea

* twosuns@korea.kr

Abstract

Traditionally in Korea, Protaetia brevitarsis seulensis (white-spotted flower chafer) has been

used as a medicine, and recently has attracted increased attention due to its antithrombotic

efficacy. Some of spent mushroom compost or fermented oak sawdust, a feedstock for P.

brevitarsis, were contaminated with three fungicides, carbendazim, dimethomorph, and

fenoxanil, which could be transferred to the insect. This study was aimed to optimize a sim-

ple extraction method combined with liquid chromatography tandem mass spectrometry

and apply it to the real samples. After the pulverized samples (5 g) were extracted with ace-

tonitrile (10 mL) and formic acid (100 μL), fat and lipids in the samples were slowly precipi-

tated at -20˚C for 24 hours. After eight different clean-up methods were investigated, the

mixture of 150 mg MgSO4/25 mg PSA/25 mg C18 was selected due to optimal recovery of

the target compounds. Recovery (77.9%–80.8% for carbendazim, 111.2%–116.7% for

dimethomorph, and 111.9%–112.5% for fenoxanil) was achieved with reasonable relative

standard deviation (<5.5%) The analytical method developed in this study was used to ana-

lyze three compounds in the 24 insect samples donated by the insect farm owners but no

target compounds were detected. These results can provide important data for establishing

the pesticide safety standards for P. brevitarsis before the medical applications.

1. Introduction

Edible insects have attracted attention as a future food source due to their high nutritional

value of fat (11.88–25.14%) and proteins (44.23–58.32%) [1]. However, the priority issue of

food safety of edible insects must be addressed such that the insects may be considered as a

safe protein source or healthy supplements in future food industries. Possible contamination

by pollutants and pesticide residues derived from their feed is a concern. Our previous studies

optimized the analytical method for recovery of several pesticides from Tenebrio molitor larva

(mealworms) [2, 3]. However, an analytical method has not been developed for pesticide anal-

ysis in Protaetia brevitarsis seulensis (white spotted flower chafer).
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P. brevitarsis is one of several edible insects including beetles, grasshoppers, honeybees,

mealworms, and silkworms that have received the Korean government support as a promis-

ing future protein source or for medicinal purposes [4]. In particular, P. brevitarsis has been

used in Korean traditional medicines [5]. Recently, this insect has attracted more attention

because it has been reported in several Asian countries that insect-derived protein hydroly-

sates have anticancer, antidiabetic, antiobesity, antioxidative, and hepatoprotective effects [6,

7]. It was also demonstrated to have antithrombotic efficacy [8] to prevent neurodegenera-

tive disease [9]. Due to its medical effect, the fast analytical method of pesticide residue in P.

brevitarsis is required in order to use the insect as nutritional supplements or medicine. It is

challenging to extract pesticides from the flower chafer because P. brevitarsis contains fat

(15–17%), protein (44%–58%) [1, 10], and various minerals including phosphorus, calcium,

magnesium, sodium, and potassium [11], which also can be interference during instrumental

analysis.

In combination with liquid chromatography tandem mass spectrometry (LC-MS/MS)

and gas chromatography tandem mass spectrometry (GC-MS/MS), modified QuEChERS

(quick, easy, cheap, effective, rugged, and safe) methods have been reported for extraction of

pesticide multiresidues from different type of matrices [12–14]. Many studies used a single

sorbent, sorbent mixture, and low-temperature precipitation to effectively eliminate fat and

lipids from a wide range of fatty samples such as avocado [15], edible insects [2, 3], meat

[16], honey bees [17], peanut oil [18], soybean-based products [19], and vegetable oils [20].

Our previous study used low temperature precipitation (-20˚C) to remove large amount of

fat and lipids derived from mealworms to analyze fenoxanil, deltamethrin, and chlorpyrifos

[2]. In the clean-up procedure, C18 mixture with magnesium sulfate (MgSO4) and primary

secondary amine (PSA) gave the best recoveries after various sorbents (C18, Zirconia based

sorbent (Z-sep), Z-sep+, and EMR lipid) were investigated. However, some issues derived

from high fat contents still remain due to the different behaviors of each pesticide in diverse

samples [21]. Previous studies improved the recovery of lipophilic compounds by changing

the ratio of solvent/sample to reduce matrix effects derived from a wide range of food matri-

ces [20].

In this study, three fungicides, carbendazim, dimethomorph, and fenoxanil were selected as

target compounds. After screening 320 pesticides in the feed made from spent mushroom

compost or fermented oak sawdust for P. brevitarsis, three compounds were detected in the

several feeds from the insect farms (not published yet). Of these fungicides, carbendazim has

been applied as a broad-spectrum fungicide, to control fungal diseases in agriculture (e.g.,

cereals, grapes, lettuce, and pome and stone fruits), forestry, and veterinary medicines [22].

Dimethomorph is also widely used in more than 100 fruits and vegetables including wheat,

onions, gingers, and cucumbers and fenoxanil is generally applied for rice in Korea based on

the 2020 Pesticide Handbook [23]. However, carbendazim has been classified in the hazardous

category of chemicals by the World Health Organization [22] and appears on the priority list

of endocrine-disrupting chemicals from the European Commission [24]. Recently, it was

reported that the nondegradable nature and extensive use of carbendazim have led to accumu-

lation of carbendazim residues in the environment. In this regard, carbendazim monitoring in

food commodities is urgently required [22, 25, 26]

This study was designed to optimize the analytical method of fenoxanil, dimethomorph,

and carbendazim in P. brevitarsis using liquid chromatography tandem mass spectrometry

(LC-MS/MS). Eight different clean-up procedures were investigated to remove the large

amount of protein, fat, and minerals derived from the sample matrices. The optimized method

was applied to the 24 real samples donated by the insect farms across the nation.

PLOS ONE Easy and effective analytical method of three pesticides from Protaetia brevitarsis seulensis using LC-MS/MS

PLOS ONE | https://doi.org/10.1371/journal.pone.0258266 October 14, 2021 2 / 12

https://doi.org/10.1371/journal.pone.0258266


2. Materials and methods

2.1. Chemicals and solvents

Individual standards of carbendazim (98.5%), dimethomorph (98.1%), and fenoxanil (98.5%)

were obtained from Dr. Ehrenstöfer (London, UK). High performance liquid chromatography

(HPLC)-grade of methanol (MeOH), acetonitrile (MeCN), distilled water (DW), and formic

acid (CH2O2) were purchased from Merck KGaA (Darmstadt, Germany). Extraction packets

containing 4 g MgSO4, 1 g sodium chloride (NaCl), 1 g sodium citrate, 0.5 g disodium citrate

sesquihydrate and dispersive solid phase extraction (d-SPE) containing 1) Fatty-EN (150 mg

MgSO4/25 mg PSA/25 mg C18), 2) Fatty-AOAC (150 mg MgSO4/50 mg PSA/50 mg C18), 3)

d-SPE-graphitized carbon black (GCB) (150 mg MgSO4/25 mg PSA/25 mg C18/25 mg GCB),

mixture of 4) C18 20 mg/20 mg Z-sep, 5) 75 mg Z-sep alone, and 6) 75 mg Z-sep+ alone were

obtained from Supelco (Bellefonte, PA, USA). Captiva EMR-lipidTM (1 mL, 40 mg) cartridge

was from Agilent Technologies (Santa Clara, CA, USA). OASIS and a PRiME hydrophilic-

lipophilic balance (HLB) cartridge (1 cc, 30 mg) were from Waters (MA, USA). The contents

of the two cartridges are not revealed by the company.

Spiking and working calibration solutions for LC-MS/MS analysis were prepared through

dilution of the stock solutions with MeCN. All the prepared standard solutions were kept in a

freezer (-20˚C) for the analysis.

2.2. LC-MS/MS analysis

A liquid chromatograph (AB SCIEX Exion LC) equipped with tandem mass spectrometers MS/

MS (AB SCIEX TQ5500) was operated for analysis of the target compounds. The analytes were

separated on a non-polar column (Halo1 C18 2.1 mm i.d. × 100 mm L, 2.7 μm particle size,

Waters, MA, USA) using mobile phase A (0.1% formic acid in DW) and mobile phase B (0.1% for-

mic acid in MeOH). Injection volume was 1 μL. The column oven temperature was operated at

40˚C. The first program started with 85% of mobile phase A for 18 min. The program for fenoxa-

nil started with 75% of mobile phase B for 20 min. Detains of two different mobile phase gradient

programs displayed in S1 Table were used for analysis of carbendazim/dimethomorph (S1A

Table) and fenoxanil (S1B Table), respectively. The MS/MS was operated in negative electrospray

ionization mode and multiple reaction monitoring conditions for LC-MS/MS, as listed at Table 1.

The MS conditions were as follows: ionspray voltage of 5,500 V, nebulizer gas of 50 psi, curtain gas

of 25 psi, drying gas of 50 psi, collision gas of 10 psi, and drying gas temperature of 500˚C.

2.3. Sample extraction and clean-up procedure

The sample extraction in this study was modified based on the QuEChERS method [12]. Five

grams of sample was added in a 50-mL tube and 10 mL of DW was added to the samples for

Table 1. Multiple reaction monitoring conditions of each target compound for LC-MS/MS analysis.

Target Compounds Retention Time (min) Qualitative Ion/ Confirmation Ion (m/z) CE� (V)

Carbendazim 3.4 192.1>160.1 25

192.1>132.0 41

Dimethomorph 7.1/7.6 388.0>301.0 24

388.0>165.0 14

Fenoxanil 17.0 329.0>302.1 17

329.0>86.0 31

�CE: collision energy.

https://doi.org/10.1371/journal.pone.0258266.t001
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moisturizing. The samples were left for half an hour before adding 10 mL of MeCN. Then,

samples were vigorously shaken by a Geno grinder (SPEX. Centiprep 1600 Mini G) for 1 min.

The extraction packet was added to the sample and vigorously shaken by the grinder for 1

min. After the samples were centrifuged at 3,500 rpm for 15 min, they were stored at -20˚C for

24 hours to effectively remove fat and lipid before further clean-up.

Several different clean-up procedures were compared by obtaining recovery rates. Spiking

level was at 0.05 mg/kg. The eight methods are described as follows: 1) d-SPE Fatty-EN; 2) d-

SPE Fatty-AOAC; 3) d-SPE-GCB; 4) dSPE Z-sep/C18; 5) d-SPE Z-sep; 6) Z-sep+; 7) SPE

EMR-lipid; and 8) SPE PRiME HLB. For clean-up, 1 mL of the extract upper layer was trans-

ferred into d-SPE (from 1 to 7 clean-up procedure) tube containing the mixture and shaken by

vortexing for 1 min. Then, the samples were centrifuged at 12,000 rpm in 15 min. For SPE

clean-up (7 and 8), 1 mL of the extract upper layer was transferred into a SPE cartridge and

eluted into the 2-mL tube. All of the samples were filtered using a 0.22-μm syringe filter (PTFE

filter membrane, Techno Plastic Products, Switzerland) before the analysis by LC-MS/MS. Fig

1 shows the final optimized method in this study.

2.4. Analytical method validation

The analytical method developed in this study was validated by obtaining mean recovery (%)

and relative standard deviation (RSD, %) for evaluation of its accuracy, precision, repeatability,

and reproducibility. All the experiments were carried out in triplicate at each spiking level.

Repeatability and reproducibility were also confirmed by conducting recovery tests in another

day (Intraday). At two spiking levels of 0.01 mg/kg and 0.05 mg/kg, recovery was obtained by

plotting matrix-matched standards for LC-analysis. The fortification levels were decided due

to the introduction of Positive List System (PLS) in Korea. Based on the PLS, in case that the

pesticide in some food does not have maximum residue level (MRL) yet, they should follow

one standard which is less than 0.01 mg/kg. Matrix-matched standards played an important

role in minimizing the error occurring by instrumental signal enhancement or suppression by

mixing blank matrix extracts with a solvent standard solution. For quantitative analysis of tar-

get compounds, the mixture of matrix-matched standards was prepared at the levels of 0.001,

0.0025, 0.005, 0.01, and 0.025 mg/kg. Linearity, limit of detection (LOD), and limit of quantita-

tion (LOQ) were evaluated by plotting each matrix-matched calibration curve. LOD and LOQ

were also calculated to be the lowest concentration having an S/N ratio with a peak of quantita-

tive ion above 3 and 10 respectively. Finally, the 24 insect samples collected from the farms

were analyzed using the method optimized in this experiment.

Matrix effect (ME) (%) was determined based on the following equation,

ME ð%Þ ¼
slope of matrix � matched standards curve

slope of solvent standards curve
� 1

� �

� 100

When the ME is around 0%, there is no matrix effect on the analytical results. When the

ME is greater than 0%, there is ion suppression and when the ME is less than 0%, there is ion

enhancement.

3. Results and discussion

3.1. Selection of a gradient program

Simultaneous analysis of the three compounds using LC-MS/MS after using the same extrac-

tion method is ideal. Therefore, several gradient programs were investigated in this study, but

it is challenging to optimize one gradient program for simultaneous analysis. Finally, different

PLOS ONE Easy and effective analytical method of three pesticides from Protaetia brevitarsis seulensis using LC-MS/MS

PLOS ONE | https://doi.org/10.1371/journal.pone.0258266 October 14, 2021 4 / 12

https://doi.org/10.1371/journal.pone.0258266


Fig 1. Sampling procedure optimized in this study.

https://doi.org/10.1371/journal.pone.0258266.g001
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gradient programs with the same column and eluents were selected for carbendazim/dimetho-

morph (Fig 2A) and fenoxanil (Fig 2B). Using a multiresidue analysis program used in our

group, carbendazim and dimethomorph showed a Gaussian peak shape and good sensitivity.

Unlike the other two compounds, fenoxanil gave peak splitting, causing low response. Previ-

ous studies on multiresidue analysis generally quantified fenoxanil with a split peak even

though it was less sensitive [27, 28]. However, with a different program (S1B Table), fenoxanil

gave a Gaussian peak shape and better response while carbendazim showed peak fronting and

splitting. In this program, the amount of organic eluent in the beginning of program was

decreased from 85% to 75% and flow rate was also decreased from 0.3 mL/min into 0.1 mL/

min.

3.2. Investigation of clean-up methods

Recovery of carbendazim, dimethomorph, and fenoxanil achieved after eight different clean-

up procedures with the extract at the spiking level of 0.05 mg/kg is shown in Fig 3 and S2

Table. Protein and fat contents of edible insects proved the greatest interference challenge

when pesticide residues are extracted from P. brevitarsis. This study investigated various clean-

up methods, which have been applied for meal worms, because each pesticide responds differ-

ently when it is extracted from different samples. In this study, the mixture containing 150 mg

MgSO4/25 mg PSA/25 mg C18 gave the best recovery for the target compounds, which is con-

sistent with the previous study that successfully removed fat and lipids from meal worms [2].

For the analysis of tryphenlylene and chrysene in a wide range of foods such as those of animal

origin with a moderate to high fat content, infant foods, and plant-derived products, the

Z-Sep, mixture of MgSO4/PSA/C18, and EMR-lipid were compared but the mixture was

selected for clean-up due to the cost-effectiveness and the availability of ready-to-use kits.

Fatty-AOAC contained more PSA (25 mg more) and C18 (25 mg more) but recovery did not

vary greatly from those of the Fatty-EN method. Several studies also investigated the efficiency

of the EMR substances in pesticide analysis in terms of fat removal [21, 29].

Both SPE (PRiME HLB and EMR lipid) cartridges are suitable for removal of a large

amount of fat, but the contents of both cartridges are proprietary. PRiME HLB has been

Fig 2. Chromatograms achieved with matrix-matched standards (0.01 mg/kg) of each compound after the clean-up procedure using a gradient program (A)

generally used for multiresidue analysis, and (B) used for fenoxanil.

https://doi.org/10.1371/journal.pone.0258266.g002
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reported to successfully eliminate various sources of interference including protein and fat for

polar compounds such as glyphosate [30–32]. In this study, PRiME HLB gave low recoveries

(27.9%–44.9% ± 1.6%–4.5%) for all of the target compounds. It was assumed that the material

in the cartridge can retain the analytes of interest as well as the interference.

The three d-SPE (C18/Z-sep, Z-sep and Z-sep+) also investigated in this study (Fig 3) gave

very low recoveries (33.5%–34.4% ± 1.7%–3.6% with C18/Z-sep, 25.0%–35.9% ± 2.4%–5.6%

with Z-sep, and 23.4%–37.7% ± 2.1%–4.9% with Z-sep+). Z-sep is designed for removal of fat

matrices and pigments and Z-sep+ is an advanced version of Z-sep but it was concluded that

Z-sep and Z-sep+ absorbed the target compounds in this study.

GCB can effectively remove pigments (chlorophyll) [33]. A previous study showed that the

addition of GCB to PSA and MgSO4 in the procedure of removal of chlorophyll from olive

extracts increased from 64% of co-extractives (by weight) to 75% without compromise of

recoveries [34]. However, it is not generally used in multiresidue analysis because it strongly

adsorbs pesticides with planar ring structures such as carbendazim, chlorothalonil, thiabenda-

zole, and hexachlorobenzene [35]. This study demonstrated that GCB completely retained car-

bendazim (no recovery obtained) but gave good recoveries for dimethomorph (96.6% ± RSD

1.9%) and fenoxanil (95.4% ± RSD 4.8%).

3.3. Matrix effect and method validation

MEs (%) are a major issue in quantitative analysis by LC-MS/MS because they can have a nega-

tive effect on accuracy, precision, and sensitivity of the analytical method applied. In this

study, the MEs were determined for each target compound in P. brevitarsis after eight different

clean-up procedures (Fig 4). The values of the matrix effect for all the target compounds are

Fig 3. Recovery (n = 3) obtained after eight different clean-up procedures with the supernatants of acetonitrile extract. Spiking level was at

0.05 mg/kg.

https://doi.org/10.1371/journal.pone.0258266.g003
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shown in Fig 4 and S2 Table. The MEs obtained in this study showed signal suppression,

which is consistent with the fact that matrix co-eluting compounds in LC-MS/MS generally

cause signal suppression while those in GC-MS/MS mainly lead to signal enhancement [36,

37]. As other studies have demonstrated [35, 38, 39], the MEs in this study were variable from

compound to compound. Carbendazim gave the values from -65.4% to -31.4%. EMR Lipid

clean-up gave the largest value, -65.4% for carbendazim. The mixture containing 150 mg

MgSO4/25 mg PSA/25 mg C18, which was selected for clean-up in this study gave -35.9%.

Comparing previous studies showing that ME of carbendazim was 30% in beewax [39] and

120% in rice [38], carbendazim in this experiment may not be greatly influenced by the sample

derived matrices. MEs of dimethomorph were in the range from -18.1% to 6.8% (-1.8% from

the Fatty-EN clean-up) which is insignificant, compared with the previous studies with over

100% in rice [38], brown rice, spinach, and orange with LOQ 1.0 ng/g [35]. MEs of fenoxanil

are ranged from -19.9% to 7.2%, which is not significant. Previous study showed that MEs of

fenoxanil in brown rice, spinach, orange, and potatoes were over 500% using modified QuE-

ChERS combined with GC-MS/MS [35]. The optimized clean-up process gave ME of -15.2%

for fenoxanil. It can be concluded that there was no significant interference from matrices,

indicating that MEs did not cause peak identification or quantification issues. Plotting matrix-

matched calibration curves played an important role in minimizing the matrix effect.

Recovery of carbendazim (77.0% ± RSD 2.0%) was lower than those of other compounds

(106.9% ± RSD 5.0%) for fenoxanil, and 103.6% ± RSD 1.3% for dimethomorph; S2 Table). It

may be due to higher ME of carbendazim. Previous study showed that recovery for carbenda-

zim in beewax was 72% at the spiking level of 0.2 mg/kg and 78% at 0.1 mg/kg with 10 ng/g

LOQ [39].

After optimization of the analytical method for this study, recovery studies were performed

at two fortification levels of 0.01 mg/kg and 0.05 mg/kg for LC-MS/MS at replicates (n = 3) for

Fig 4. Matrix effects (%) were determined after analysis of carbendazim, dimethomorph, and fenoxanil in P. brevitarsis after eight

different clean-up procedures with the sample acetonitrile extract.

https://doi.org/10.1371/journal.pone.0258266.g004
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two different days. Calibration curves presented linearity between 0.5–25 ng/mL for LC-MS/

MS. All calibration curves displayed linearity with r2> 0.99. All the pesticides studied gave

recoveries (Table 2 and S3 Table) between 70% and 120% with the RSD lower than 20% for

both fortification levels. In a different day, recovery at the two spiking levels (0.01 mg/kg and

0.05 mg/kg) for the target compounds was also achieved with 75% to 115% with the RSD less

than 5.5% (S4 Table), demonstrating the intraday precision, reproducibility, and repeatability.

The 24 real sample analyses using the developed method (S5 Table) showed the concentration

of three compounds were lower than LODs, demonstrating that the target compounds

detected in the feed were not transferred into the insect.

4. Conclusions

Recently, P. brevitarsis has attracted attention due to its medicinal properties; therefore, it is

urgent to establish reliable analytical methods in order to monitor pesticide residues in this

edible insect. This study described the optimization of a simplified and effective method for

analysis of carbendazim, dimethomorph, and fenoxanil in P. brevitarsis using LC-MS/MS. The

results showed that the target pesticides exhibited different responses to the clean-up adsor-

bents. The simple ready-to-use kit containing 150 mg MgSO4, 25 mg PSA, and 25 mg C18 was

selected for clean-up after low precipitation due to the best recovery of the target. The analyti-

cal method optimized in this study can provide fast quantification for three fungicides on P.

brevitarsis to provide a safe medicinal material for human consumption. Considering that the

efficacy of P. brevitarsis has been demonstrated in many studies, this optimized analytical

method will contribute to development of the edible insect industry, providing new economic

opportunities to farmers in Korea.

Supporting information

S1 Table. A gradient program for (A) carbendazim/demethomorph and (B) fenoxanil.

(PDF)

S2 Table. Recoveries, regression, and matrix effects of three target compounds obtained

using 8 cleanup methods (at the spiking level of 0.05 mg/kg).

(PDF)

S3 Table. Final recoveries, regression, and matrix effect of three compounds at the two

spiking level.

(PDF)

Table 2. Recovery of the target analytes obtained at the two spiking levels (0.01 mg/kg and 0.05 mg/kg).

Target Compounds Spiking Level (mg/kg) Recoveries (%) RSD (%) LOD (mg/kg) LOQ (mg/kg)

Carbendazim 0.01 80.8 4.0 0.005 0.05

0.05 77.9 0.8

Dimethomorph 0.01 116.7 2.8 0.001 0.01

0.05 111.2 3.0

Fenoxanil 0.01 111.9 2.9 0.001 0.01

0.05 112.5 5.2

�RSD: relative standard deviation.

https://doi.org/10.1371/journal.pone.0258266.t002
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