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Often, analysis for pharmacogenomic studies involving multiple drugs
from the same class is completed by analyzing each drug individually for
association with genomic variation. However, by completing the analysis
of each drug individually, we may be losing valuable information. When
studying multiple drugs from the same drug class, one may wish to
determine genomic variation that explains the difference in response
between individuals for the drug class, as opposed to each individual drug.
Therefore, we have developed a multivariate model to assess whether
genomic variation impacts a class of drugs. In addition to determine genomic
effects that are similar for the drugs, we will also be able to determine
genomic effects that differ between the drugs (that is, interaction). We will
illustrate the utility of this multivariate model for cytotoxicity and genomic
data collected on the Coriell Human Variation Panel for the class of anti-
purine metabolites (6-mercaptopurine and 6-thioguanine).
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Introduction

Thiopurines, such as 6-mercaptopurine (6-MP), 6-thioguanine (6-TG) and
azathioprine, a prodrug that is converted to 6-MP in vivo, are widely used to
treat acute lymphoblastic leukemia of childhood and autoimmune disorders.’
Various factors, including polymorphisms and structural variation in DNA,
differences in gene expression levels, gender, ethnicity and drug-drug interac-
tions, affect variation in thiopurine drug response. Among these factors, gene
expression profiles have been used to identify candidate genes that contribute to
variation in drug response on the basis of mRNA expression relative to drug
response.” Traditionally, studies aimed to maximize efficacy and minimize
toxicity of chemotherapeutic agents have focused on genes known to have
important roles in the pharmacokinetic and pharmacodynamic pathways of a
particular drug. 6-MP and 6-TG are prodrugs that must undergo metabolic
conversion to form the active drug metabolites, 6-thioguanine nucleotides
(6-TGNs), followed by incorporation into DNA to exert their anti-neoplastic and
anti-inflammatory effects.® As these metabolites are critical for the therapeutic
effect of thiopurines, 6-TGN concentrations have been used as an index of the
therapeutic and toxic effects of these drugs.>>

Several genes within the thiopurine-metabolizing pathway have effects
on individual variation in the accumulation of 6-TGNs. Figure 1 displays
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Figure 1 The thiopurine pathway.

a diagram of the thiopurine pathway as presented in
PharmGKB  (http://www.pharmgkb.org/index.jsp).® Thio-
purine S-methyltransferase) is a primary factor responsible
for variation in the quantity of thiopurine available for
enzymatic reactions that lead to the formation of 6-TGNs.”
However, variation in thiopurine S-methyltransferase activ-
ity does not account for all of the adverse reactions or poor
responses to thiopurine treatment.® The analyses of the well-
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studied thiopurine drug-metabolizing pathway genes may
provide insights into possible mechanisms responsible for
the accumulation of intracellular 6-TGNs involving thio-
purine circulation.

In the late 1980s, the National Cancer Institute developed
a collection of human tumor cell lines (NCI60) from a variety
of common solid tumors (lung, colon and breast) for anti-
cancer drug screening.” Although tumor DNA is important
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for response to chemotherapy, it is hard to come by and
increasing evidence has shown that germline DNA is as
important as tumor DNA. Therefore, recently, pharmaco-
genomic research has incorporated non-tumor cell-based
model systems that represent common genetic variation
among individuals.'®!! These cell-based model systems have
been used to study multiple drugs and thus, a comprehensive
set of drug-related endpoints are available for a set of cell lines.
Traditional analysis approaches for pharmacogenomic studies
involve analyzing each drug individually for association with
genetic variation. However, by completing the analysis of each
drug individually, we may be losing valuable information.
When studying multiple drugs from the same class of drugs that
have similar genetic mechanisms, one may wish to determine
genomic variation that explains the difference in cytotoxicity
between individuals for the class of drugs as opposed to
each individual drug. By analyzing the drugs in the same class
together we hope to increase ability to detect genomic
associations with both drugs (that is, genetic effects that affect
the class of drugs). In addition to a possible increase in power,
we will be able to determine whether the genetic variation is
associated with the class of drugs or whether the genetic
variation affects the drugs differently (that is, interaction).
Therefore, we have developed a multivariate model to
assess whether genomic variation impacts a class of drugs
and have applied this model to the analysis of thiopurines.
These models will allow us to make statements about the
class of drugs as opposed to individual drugs. The results
from the analysis of a class of drugs may assist researchers in
generating hypotheses that will lead to better understanding
of the complex nature of the relationship between genomic
variation and drug response. This will lead eventually to the
development of ‘individualized therapy’ for cancer patients,
presuming a genomic relationship is found and validated.

Materials and methods

Pharmacogenomic study of anti-purine metabolite drugs

Cell lines, drug and cell proliferation assay. Epstein-Barr virus-
transformed lymphoblastoid cell lines derived from 58
Caucasian-American (CA), 53 African-American, 60 Han
Chinese-American and 23 Centre d’Etude du Polymor-
phisme Humain (CA) unrelated subjects were purchased
from the Coriell Institute (Camden, NJ, USA). The drugs 6-
MP and 6-TG were purchased from Sigma (St Louis, MO,
USA). Drugs were prepared in dimethyl sulfoxide
immediately before use and further diluted with media.
Cells were plated at a density of 5 x 10* cells per well in
triplicate in 96-well plates (Corning, Corining, NY, USA).
Around 1h after plating, cells were treated with 6-MP
or 6-TG. The CellTiter96 Aqueous Non-Radioactive Cell
Proliferation Assays (Promega, Madison, WI, USA) were
performed as described by the manufacturer after 72h
incubations. Plates were read in a Safire? microplate reader
(Tecan AG, Mannedorf, Switzerland), with subsequent
cytotoxicity measurements recorded at various doses of
6-MP and 6-TG for the cell lines.
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Basal affymetrix U133 Plus2.0 GeneChip gene expression
data. Whole Genome expression data for cell lines was
obtained with Affymetrix U133 plus 2.0 expression array
chip. The RNA extraction and the expression array assays were
performed following the Affymetrix GeneChip expression
technical manual (Affymetrix, Santa Clara, CA, USA). Before
the assay, RNA quality was tested using an Agilent 2100
Bioanalyzer. The Affymetrix GeneChip contains over 54 000
probe sets the design of which is based on build 34 of the
Human Genome Project. The mRNA expression array data
were normalized on the log; scale using GC Robust Multi-array
Average methodologies.'> 4

Model for analysis of a class of drugs

By analyzing the drugs in the same class together in a mixed
model framework we hope to increase the ability to detect
genomic effects for the class of drugs. We will also be able to
determine whether the genomic variation affects the drugs
differently (that is, interaction). Below, we outline the
model for joint analysis of multiple drugs. The multivariate
mixed model proposed for analyzing a class of drugs is

Vi = By + BixDj + By xXi + B3 x (DjxXi) + o + &5

where Yj; is the quantitative phenotype value for the ith
subject/cell line treated with drug j, D; is an effect for drug j,
X; is the genomic variable for subject/cell line i, D; x X; is the
interaction between drug and genomic variable, and a
random effect o; to account for the dependency in multiple
measurements taken off the same subject/cell line. Lastly, we
allow both random variables to follow independent normal
distributions with constant variance (¢;~N(0,62) and
&;j~N(0,62)). This results in Y; following a normal distribu-
tion with mean p; and variance 6%+ ¢2. The covariance
between measurements taken off the subject is ¢2, and
the covariance between measurements taken off different
subjects is 0. This results in the standard mixed model
specification for repeated measures, with a covariance
matrix that has a compound symmetry structure.’® Like-
lihood estimates of the fixed effects (genomic main effects
and interaction) can be estimated and tested using
maximum likelihood methods with estimation of the
variance components completed using restricted-maximum
likelihood methods.*® If no important interaction between
the drug and genomic variable is present, inference for
genomic effect will be assessed with a significant effect for
the genomic variable (single-nucleotide polymorphism,
mRNA expression, copy number and so on) indicating the
genomic variable impacts the ‘class of drugs’.

Statistical analysis of 6-TG and 6-MP Pharmacogenomic Study

Estimation of the ICsy phenotype (effective dose that Kkills
50% of the cells) was calculated from a four parameter
logistic model for both 6-TG and 6-MP cytotoxicity data for
all cell lines.'®'” The normalized log, expression data were
regressed on gender, race and time since Coriell submission
(dichotomized at 10 years). The binary variable of time since
Coriell submission was included to adjust for the differences
observed in expression values with respect to time since
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Coriell submission. The residuals from this regression model
were then standardized, resulting in a standardized, ad-
justed, normalized mRNA expression value. The ICs, values
were log transformed because of extreme skewness in the
distributions, and then in a similar fashion adjusted for
gender, race and time since Coriell submission (dichoto-
mized at 10 years) before standardizing. On examination of
the distributions for the adjusted standardized ICs, values
and the standardized, adjusted, normalized expression
values, large outliers were observed in the distributions. As
outliers can have a large impact on the results from a mixed
model and interaction effects, we removed outliers before
analysis. An analysis without removing the outlier points
was also conducted and confirmed that the outlier
points were highly influential and skewed the results, as
seen in Supplementary Figure 1 and Supplementary Table 1.
Subjects with standardized ICs, values greater than 4 units
in magnitude (outliers with values more than 4 s.d. from the
mean) were removed (two Han Chinese-American cell lines
and one CA cell line). In addition to removal of cell lines
with extreme values for ICso, outlier values for expression
were also removed on the basis of a 4 s.d. rule (0.79%
removed). Comparison of results from the analysis with no
outliers removed was also completed as a sensitivity
analysis. Results from the analysis without the removal of
outliers are presented in Supplementary Table 1. The multi-
variate analysis outlined in '"Model for analyses of a class of
drugs’ was completed using the transformed, adjusted ICsq
values and the normalized adjusted mRNA expression probe
set values. SAS code used to fit the linear mixed model for
the class of drugs analysis is presented in the online
Supplementary Material, along with details on the format
of the data file and output generated from the mixed model.

Results for analysis of thiopurine drugs 6-TG and 6-MP

The multivariate model described in "Model for analyses of a
class of drugs’ was applied to a pharmacogenomic study of
the thiopurine drugs 6-TG and 6-MP as described in
‘Statistical analysis of 6-TG and 6-MP Pharmacogenomic
Study.’ The correlation between the ICs, for the two drugs
was 0.78. Figure 2 displays the distributions for the two drug
phenotypes and the relationship between these phenotypes.
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The analysis was completed first of the probe sets within the
thiopurine pathway, followed by an agnostic genome-wide
analysis. Before assessing the significance of the expression
effects on the class of drugs (that is, main effects),
assessment of the interaction effects must be completed. If
a significant interaction effect between drug and mRNA
expression is observed, the main effect of expression on the
ICs0 is uninterruptable. Results from the thiopurine path-
way analysis, consisting of 30 probe sets, with P-values
<0.05 are presented in Table 1. The results showed some
evidence that probe sets for genes IMPDHI (P=0.0002),
PRPS1 (P=0.0008), GART (P=0.033) and ABCCS5 (P=0.049)
have different expression effects on ICs, for 6-TG and 6-MP
(that is, interaction effect). However, because of testing 30
probe sets simultaneously, only genes IMPDHI and PRPS1
were significant after applying a Bonferroni correction
(significance level of 0.002). As for genes with a similar
effect on 6-TG and 6-MP ICs, (expression main effect), there
is evidence of an association with NT5E (P=0.048 and
P=0.016) and thiopurine S-methyltransferase (P=0.047).
However, none of the probe sets are significant after
adjusting for multiple testing.

Next we took an unbiased or agnostic approach and
completed a genome-wide multivariate analysis to assess
whether variation in mRNA expression for genes outside the
drug pathway had an effect on the ICso for the class of

Table 1 Results from multivariate analysis for 30 probe sets
within the thiopurine pathway

Probe set Gene P-value for P-value for

interaction effect expression

main effect
203939_at NTSE 0.395 0.048
203672_x_at TPMT 0.092 0.047
1553995_a_at NTS5E 0.331 0.016
204169_at IMPDH1 0.00022 0.521
209440_at PRPS1 0.0008? 0.735
212379_at GART 0.033 0.874
226363_at ABCC5 0.049 0.705

Probe sets with effects with P-value <0.05 are displayed.
?Statistically significant after adjusting for multiple testing within the pathway
(Bonferroni threshold of 0.002).
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Figure 2 Plots of the standardized ICso phenotypes; (a) histogram of the 6-TG ICs values, (b) histogram of the 6-MP ICsq values and (c) scatterplot

of the 6-TG and 6-MP ICs, values.
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Table 2 Probe sets with P-value for main effects or interaction effects <10~> from the multivariate genome-wide expression

analysis
Probe set Gene P-value for g-Value for P-value for expression g-Value for expression
interaction effect® interaction effect main effect® main effect®

55662_at C100rf76 0.3908 0.7611 6.19E-09¢ 0.0003
202389_s_at HD 0.2812 0.7310 1.29E-07¢ 0.0033
207268_x_at ABI2 0.9311 0.8606 4.34E-06 0.0571
214919_s_at EIF4EBP3 MASK-BP3 0.8541 0.8498 5.28E-06 0.0571
218891 _at C100rf76 0.1655 0.6825 5.47E-06 0.0571
1552794_a_at ZNF547 2.79E-07¢ 0.0132 0.9270 0.9540
233753_at SFRS15 9.00E-07¢ 0.0213 0.3153 0.8770
233412_x_at — 3.98E-06 0.0628 0.6796 0.9407
212718_at PAPOLA 5.55E-06 0.0657 0.3304 0.8819

317 probe sets with P<0.0001 for interaction effect.
42 probe sets with P<0.0001 for main effect.

“Statistically significant after adjusting for multiple testing (Bonferroni threshold of 9 x 10~7).

thiopurine drugs. At the 0.0001 significance level, under
the null hypothesis of no association we would expect to
have 5.5 probe sets with P-values <0.0001. For the analysis
of drug by expression interaction effects and expression
main effects, we observed 17 and 42 probe sets with P-values
<0.0001, respectively. Thus, there appears to be a slight
deviation from the null hypothesis for both interaction
and main effects, with statistically significant main effects
for genes C100rf76 (P=6.19 x 10~°) and HD (1.29 x 1077)
and statistically significant interaction effects for ZNF547
(P=2.79 x10"7) and SFRS15 (9.0x10°7). Upon future
investigation of the significant interaction effects, the
univariate analysis of 6-TG ICsy, with level of mRNA for
ZNF547 resulted in a correlation of 0.18 (P=0.01), whereas
6-MP had a correlation of —0.07 (P=0.29); the correlation
between level of mRNA for SFRS15 and 6-MP ICs, was
—0.07 (P=0.328), whereas 6-TG had a correlation of 0.12
(P=0.096). Thus, for both genes, it appears that there is a
positive relationship between mRNA expression level and
6-TG ICso and no relationship (or slight negative relation-
ship) with 6-MP ICs,. The results for probe sets with P-values
<107% are presented in Table 2. Five probe sets had P-values
for expression main effects <10~ (similar effect of mRNA
expression for both drugs), with two probe sets falling in the
gene C10orf76. The g-values for these five probe sets ranged
from 0.0003 to 0.057. Four probe sets (related to three
known genes) were associated with different expression
effects for 6-TG and 6-MP ICs,, with P-values <10~° and
g-values ranging from 0.013 to 0.066.

Discussion and conclusions

One of the major challenges facing medicine is to indivi-
dualize drug therapy. However, the rate at which pharma-
cogenomics is translated into the clinic is still relatively
slow. To identify biologically relevant pharmacogenomic
candidate genes and, more importantly, to understand the
mechanisms underlying the effects of those genes on drug
response phenotypes would be the first step required to

successfully translate this information into the clinic. Many
therapeutic agents share common mechanisms resulting in
similar clinical manifestations in terms of clinical response
and adverse drug reactions. The information gained from
a multivariate analysis of a class of drugs will enhance
our understanding of differences and similarities in drug
mechanisms, in turn, making possible the identification of
novel pathways, and verification of known pathways,
involved in the observed in the pharmacogenomic basis
for response to these drugs.

We have outlined and presented the application of a
multivariate model for the pharmacogenomic involving
mRNA expression data for the analysis of a class of drugs.
This model can be easily extended to model the effect of
other genomic data types (for example, single-nucleotide
polymorphisms, copy number variations and methylation)
and their association with a class of drugs. In addition to the
analysis of each genomic data type in a ‘one-at-a-time’
manner, the multivariate model can be extended to include
multiple genomic variants into a single model (that is,
multivariable regression).

In the current study, we developed and applied such a
multivariate model to analyze the association between gene
expression and 6-TG and 6-MP cytotoxicity data, (ICsg)
generated from 194 lymphoblastoid cell lines. Using the
expression data from those probe sets of known ‘thiopurine
pathway’ genes, our model suggested that expression of the
NTSE and thiopurine S-methyltransferase genes might con-
tribute to variation in ICso, that is, cytotoxicity, of both
thiopurine drugs studied. In addition, this effect was not due
to the interaction between drug and mRNA expression.

NTS5E encodes ecto-5'-nucleotidase (EC 3.1.3.5), NTSE/
CD?73, is anchored to the external side of plasma membrane
by glycosyl-phosphatidylinositol.'® NTSE catalyzes the de-
phosphorylation of extracellular 5-mononucleotides to
nucleosides. In a parallel study designed to address the
functional implications of the association between genes
and thiopurine drug cytotoxicity (unpublished data), we
hypothesized and validated the existence of a cellular
‘thiopurine circulation’” which might have an important
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role in regulating intracellular levels of 6-TGNs, therefore,
the cytotoxic effect or efficacy of thiopurine drugs. In this
model, NT5E is responsible for the conversion of thiopurine
ribonucleotide monophosphates to thiopurine ribonucleo-
sides. The ribonucleotide monophosphates are exported by
an ATP-binding cassette transporter and—as a result of the
phosphate—are impermeable to cells unless converted to
nucleosides by NTSE. The thiopurine ribonucleosides are
then able to flow back into the cells through the action of
both concentrative and equilibrative transporters on the
plasma membrane. Therefore, variation in expression of
NTSE could, in theory, influence intracellular levels
of 6-TGNs. Studies are on-going to investigate the role of
NTSE in response to thiopurine drugs.

The results of this study illustrate the usefulness of analyzing
drugs within the same class jointly in a multivariate model, as
opposed to individually, which may lead to novel pharmaco-
genomic hypotheses. The multivariate model enabled us to
consider a class of drugs, the thiopurines, and identify genes
for which mRNA expression was associated with cytotoxic
effect due to a common mechanism of action. Further func-
tional and mechanistic studies are needed to follow-up
candidate genes identified through the class of drugs’ analysis,
in particular, genes C10orf76 and HD, with the ultimate
objective that these studies might shed light on the relation-
ship between genomic variation and drug response for classes
of drug therapies.
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