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Abstract

Profiling amino acids and acylcarnitines in whole blood spots is a powerful tool in the labora-
tory diagnosis of several inborn errors of metabolism. Emerging data suggests that altered
blood levels of amino acids and acylcarnitines are also associated with common metabolic
diseases in adults. Thus, the identification of common genetic determinants for blood
metabolites might shed light on pathways contributing to human physiology and common
diseases. We applied a targeted mass-spectrometry-based method to analyze whole blood
concentrations of 96 amino acids, acylcarnitines and pathway associated metabolite ratios
in a Central European cohort of 2,107 adults and performed genome-wide association
(GWA ) to identify genetic modifiers of metabolite concentrations. We discovered and repli-
cated six novel loci associated with blood levels of total acylcarnitine, arginine (both on
chromosome 6; rs12210538, rs17657775), propionylcarnitine (chromosome 10;
rs12779637), 2-hydroxyisovalerylcarnitine (chromosome 21; rs1571700), stearoylcarnitine
(chromosome 1; rs3811444), and aspartic acid traits (chromosome 8; rs750472). Based on
an integrative analysis of expression quantitative trait loci in blood mononuclear cells and
correlations between gene expressions and metabolite levels, we provide evidence for
putative causative genes: SLC22A16 for total acylcarnitines, ARG1 for arginine, HLCS for
2-hydroxyisovalerylcarnitine, JAMS3 for stearoylcarnitine via a trans-effect at chromosome
1, and PPP1R16A for aspartic acid traits. Further, we report replication and provide
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additional functional evidence for ten loci that have previously been published for metabo-
lites measured in plasma, serum or urine.

In conclusion, our integrative analysis of SNP, gene-expression and metabolite data
points to novel genetic factors that may be involved in the regulation of human metabolism.
At several loci, we provide evidence for metabolite regulation via gene-expression and
observed overlaps with GWAS loci for common diseases. These results form a strong ratio-
nale for subsequent functional and disease-related studies.

Author Summary

Human metabolite levels differ between individuals due to environmental and genetic fac-
tors. In the present work, we analyzed whole blood levels of amino acids and acylcarni-
tines, reflecting disease relevant metabolic pathways, in a cohort of 2,107 individuals. We
then performed a genome wide association analysis to discover genetic variants influenc-
ing metabolism. Thereby, we discovered six novel regions in the genome and confirmed
ten regions previously found to be associated with metabolites in plasma, serum or urine.
Subsequently, we analyzed whether these variants regulate gene-expression in peripheral
mononuclear cells and at several loci we identified novel causal relations between SNPs,
gene-expression and metabolite levels. These findings help explaining the functional
mechanisms by which associated genetic variants regulate metabolism. Finally, several
SNPs associated with blood metabolites in our study overlap with previously identified
loci for human diseases (e.g. kidney disease), suggesting a shared genetic basis or pathome-
chanisms involving metabolic alterations. The identified loci are strong candidates for
future functional studies directed to understand human metabolism and pathogenesis of
related diseases.

Introduction

High-throughput metabolomics experiments using mass spectrometry platforms are becoming
an integral part of clinical and systems biology research. Profiling of amino acids and acylcarni-
tine species in dried whole blood samples of newborns is used worldwide in neonatal screening
programs to identify rare inborn errors of metabolism [1]. These diseases are generally caused
by rare mutations, leading to loss of function of an enzyme that catalyzes the biochemical reac-
tion of the respective trait. Recently, many of the amino acid and fatty acid metabolites utilized
in newborn screening were also implicated in common complex diseases of adults such as car-
diovascular disease, insulin resistance and obesity. Exemplarily, obesity is accompanied by an
increase in circulating levels of multiple amino acids, including branched chain amino acids
[2,3], and in type 2 diabetics, altered levels of acylcarnitines were described [4,5]. Amino acids
and acylcarnitines show substantial inter-individual variation [6] and a strong genetic contri-
bution to their blood concentrations has been reported [7]. Thus, the integration of genetic and
metabolic profiling holds the promise for providing novel insights into the regulation of meta-
bolic homeostasis in health and disease.

Indeed, recent studies have identified common genetic variants associated with a variety of
circulating metabolites in serum, plasma or urine using different analytical platforms (LC-MS/
MS, NMR) [8-24]. However, the complexity of the metabolome cannot be captured by a single
technology. Since differences in metabolite abundance have been described between plasma
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and whole blood [25], we hypothesized that additional genetic determinants affecting the
blood metabolome are yet to be discovered.

Thus, we performed an integrated study combining genetics, gene expression and metabo-
lom data (see S1 Fig for the study design). We applied a targeted LC-MS/MS method to mea-
sure the abundance of amino acids and acylcarnitines in dried whole blood spots of 2,107
individuals and performed genome-wide association analysis. Top findings were replicated in a
second independent European Caucasian cohort of 923 Sorbs. Further, going beyond plain
genetic associations, we integrated analyses of mRNA levels in leukocytes to establish causal
links between genetic variations, gene-expression levels and metabolites. Finally, we explored
whether SNP-metabolite associations identified in our study overlap with previously identified
genetic loci for other complex traits or diseases.

Results
Discovery GWAS

Quantitative concentrations of 26 amino acids, 36 acylcarnitines and 34 metabolite ratios were
determined in dried whole blood spots of 2,107 participants of the LIFE Leipzig Heart Study using
LC-MS/MS. Metabolites and their ratios reflect metabolic function of various biochemical path-
ways e.g. urea cycle, branched chain amino acid metabolism or cellular fatty acid oxidation (see S1
Table for complete list of phenotypes and their categories). We performed a genome wide associa-
tion study (2,619,023 SNPs) for whole blood metabolites and identified 2,261 SNP-metabolite
associations (119 after pruning) with p-values <107, These associations comprise 42 metabolites
(including 19 ratios) and 866 SNPs (54 lead-SNPs after pruning) at 25 unique genomic locations
(Fig 1, S2 Table). QQ-plots and regional association plots for all loci demonstrating valid quality
control are presented in the supplemental material (S2 and S3 Figs).

Replication analysis

Next, replication of top SNPs was sought in an independent cohort of 923 individuals from the
Sorb study, where genome-wide SNP and metabolite datasets were available. Good proxies
(r*>0.8) for replication analysis in the Sorbs were available for 858 (99.1%) of our 866 top-
SNPs, covering 21 of the 25 identified loci and comprising 2,227 associations (well-imputed
proxies were not available for the loci at 1q32.3, 3p24.1, 5p15.2, 20q13.2, see S3 Table for com-
plete results). We observed identical directions of effects for 2,133 (95.8%) combinations of
SNPs and metabolites in the replication cohort, resulting in a replication rate of 88.3%, when
applying a FDR (false discovery rate) of 5% (Fig 2). Replicated lead-SNPs were distributed over
14 of the 21 genomic loci eligible for replication analysis (Table 1; see S3 Table for results of
non-replicated loci). In addition, we considered associations at locus #4 (2q34) with glycine
and locus #14 (12q24.31) with C4 as validated results, since these loci were already reported in
other GWAS for serum metabolites [8,9,13-15]. Moreover, non-lead-SNPs at 12q24.31 were
replicated in the Sorbs at FDR 5% level. None of the other non-replicated loci or loci without
proxies in the Sorb study achieved a p-value <10~® in our initial GWAS.

In total, our study led to the identification of 16 unique, validated loci for 36 whole blood
metabolites (Table 1). At six of the 16 loci we identified associations for blood metabolites for
the first time i.e. these loci represent novel findings of our study. Also, we successfully validated
ten loci previously reported for serum, plasma, and urine metabolites (Table 1 and S4 Table).
At three of these loci, associated metabolites were different from those previously reported. In
detail, at locus #3 (2p13.1) we detected associations with Arg and related metabolite ratios,
whereas earlier associations were reported for plasma N-acetylornithine and related com-
pounds [8,13,14,16]. Further, at loci #11 (9q34.11) and #15 (15q22.2), we identified
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Fig 1. GWAS results for amino acids (a) and acylcarnitines (b) in whole blood. Manhattan plots of the genome-wide association analysis for metabolic
phenotypes in 2,107 individuals of the LIFE-Heart cohort. Results are presented separately for 36 acylcarnitines (including free and total carnitine) and 26
amino acids. Results for metabolite ratios are omitted. The horizontal line represents a p-value = 1.0x107, which was the cutoff used for inclusion of identified
associations in the replication state.

doi:10.1371/journal.pgen.1005510.g001

associations with methylmalonyl-carnitine, whereas earlier studies reported associations
involving the isobaric compound succinyl-carnitine [13,14].

eQTL analysis

To investigate if associated variants have gene regulatory effects, we analyzed our validated
lead-SNPs for correlations with gene expression in peripheral blood mononuclear cells
(PBMC). Transcriptome data (28,295 eligible transcripts) was available for 2,112 subjects of
the LIFE Leipzig Heart study. At an FDR of 5%, 132 eQTLs were identified for 38 of the 45 vali-
dated lead-SNPs, affecting the expression of 69 transcripts. Explained variances of eQTLs ran-
ged between 0.4% (corresponding p-value = 3.9x10™) and 28.0% (corresponding p-

value = 8.0x107'°3, S5 Table).

We observed eQTLs at 14 of the 16 validated loci, including the six novel loci identified in
our study (Fig 3 and S7 Fig, Table 2). All 14 loci included lead-SNPs with cis-regulatory effects
on gene expression. In addition, novel loci #2 (1q44) and #12 (19q11), as well as reported locus
#14 (12q24) also included trans-regulated eQTLs. The trans-eQTLs at locus #2 (1q44) regulat-
ing JAM3 expression were inter-chromosomal and particularly strong, explaining about 13.0%
of variance (Fig 3 and S7 Fig, Table 2).

Integrative analysis of mQTLs, eQTLs and expression-metabolite
associations
We next aimed to assess whether changes in expression of identified eQTL genes can explain

observed SNP-metabolite associations in our study. Therefore, we analyzed the relationship
between expression levels of these genes and metabolites. We found 40 study-wide significant

PLOS Genetics | DOI:10.1371/journal.pgen.1005510 September 24, 2015 4/25



el e
@ : PLOS | GENETICS Genetic Regulation of Whole Blood Metabolites

20
15
2 Pathway
3 | © |Urea cycle
_S A Ammonia recycling
© | X |BCAA metabolism
2 o Amino acid metabolism,
e | other
° | | v |Carnitine transport
S XX e +|Energy metabolism
2 x| WY = |Fatty acid metabolism
-15
-20

-20 -15 -10 -5 O 5 10 15 20
z-score discovery cohort
Fig 2. Results of replication analysis. GWAS top-hits of the LIFE Leipzig Heart study were compared with corresponding results in the Sorbs study. Top-

hits were selected applying a p-value cut-off of p<1.0x10, which leads to the gap of z-scores at the x-axis. Associations below and above the dotted lines
are considered as replicated controlling the false discovery rate at 5%. Colors and symbols correspond to physiologically related metabolites.

doi:10.1371/journal.pgen.1005510.g002

associations between gene expressions and metabolites, corresponding to 9 loci and 18 eQTL
transcripts (16 unique genes, see Table 3 and S6 Table).

We then integrated information from SNP-metabolite (mQTL), SNP-gene expression
(eQTL) and expression-metabolite associations to form association triangles. A triangle is
defined by a triple of SNP, transcript and metabolite showing pair-wise associations (see meth-
ods for details). We constructed a network of all pairs of associations and their strengths (see
Fig 4) to illustrate the multiple relationships between associated genetic loci, genes and metabo-
lites. An interactive html-document to explore the network is provided as supplement material
(S4 Fig). Certain overlaps with previously reported molecular interactions exist. These known
relationships are summarized in S11 Table. We identified 177 relations containing 21 unique
primary associations between features analysed in our study. Additionally, we identified 16
unique molecules potentially connecting features analysed in our study. As expected, these
molecules include Proinsulin and Ubiquitin.

Association triangles were further used to test whether variances in gene expression are
causally related to variances of metabolite levels. We discovered 38 association triangles map-
ping to six unique loci including the two novel loci #2 and #10 at 1q44 and 8q24.3, respectively
(S7 Table). To estimate the number of such triangles identified by chance, we performed a
comprehensive permutation analysis including mQTL, eQTL and expression-metabolite asso-
ciation analysis (S8 Fig). From this, the empirical likelihood of the reported six triangles
obtained by chance was estimated to be <1x10™'°. Particularly, in only two of 100 permutations
we obtained a single triangle while in 98 of our 100 permutations, no triangles were observed.

PLOS Genetics | DOI:10.1371/journal.pgen.1005510 September 24, 2015 5/25



@’PLOS | GENETICS

Genetic Regulation of Whole Blood Metabolites

Table 1. Results of SNP-metabolite association analyses.

Lo- Lead-SNPs' Cytogen. Phys. Nearby Associated Beta (SE) p-value Beta p- Published metabolite
cus pos. pos. genes? Metabolites® LIFE-HEART LIFE-HEART (SE) value associations
Sorbs  Sorbs
#1 rs17587071, 1p31.1 76 Mb ACADM (0), C8, C10,C6 -0.021 1.487e-13 -0.011  3.431e- Acetylcarnitine /
rs1303870 RABGGTB (0.0028) (0.0031) 04  hexanoylcarnitine, C12 / C10,
27), C12/C8[13,14,20,21]
SNORD45C
(28)
#2 rs3811444 1944 246  TRIM58 (0), C18, C18:1, 0.051 9.138e-16 0.063 2.22e-
Mb  OR2W3(0), C16,Q3:(C16 (0.0063) (0.013) 06
ORT1L1 (34) +C18:1)/C2, Q4:
CO0/(C16+C18)
#3  rs6546838, 2p13.1 74Mb ALMST (0), Q15:Arg/Gly, -0.0074 2.079e-15  -0.0083 2.385e- Myoinositol / N-
rs12620074 EGR4 (160), Q14:Arg/Orn, (0.00092) (0.00083) 22 acetylornithine, N-
FBXO41  Q13:Arg/Cit, Arg acetylornithine, N-acetylated
(180) compound(s) [8,13,14,16]
#4 rs715, 2q34 211 CPS1 (0), Gly, Q27:Sarc/ -0.069 1.232e-27 0.014  1.75e-  Glycine, glycine / histidine,
rs4673545, Mb LOC29034 Gly, Q15:Arg/Gly  (0.0062) (0.011) 01 glycine / PC ae C38:2
rs13386028, (59), [8,9,13-15,20]
rs10932350, LANCL1
rs7684 (200)
#5 rs4074110 3927.1 184 MCCcC1 C50H+HMG -0.024 1.255e-08 -0.024 2.003e- Hydroxyisovaleroylcarnitine
Mb (4.3), (0.0042) (0.0079) 03 [14]
DCUN1D1
(30), ATP11B
(89)
#6 rs11737481 4g32.1 160 ETFDH (0), C10 0.023 8.068e-09 0.018 9.602e- C14:1-OH/ C10,
Mb PPID (9), (0.0039) (0.0045) 05 decanoylcarnitine / palmitate
C4orf46 (28) (16:0), octanoylcarnitine / X-
13435 [13,14,20]
#7 rs162890 5qg31.1 132 SLC22A4 AC-total 0.047 2.312e-08 0.063 1.1e-05 Propionylcarnitine [14]
Mb (6.5), (0.0084) (0.014)
PDLIM4 (15),
P4HA2 (60)
#8 rs12210538, 6g21 111 SLC22A16 AC-total, C18:1, -0.1 (0.0081) 7.397e-37 -0.12  2.003e-
rs6939019, Mb (0), DDO C16, C2, Q19: (0.018) 11
rs7763591, (23), (Leullle)/C3, C3,
rs2428192, C6orf186  CO, Q11:Ala/C2,
rs12205108 (81) C182, C18, Q21:
(C50H+HMG)/
(Leullle), C50OH
+HMG, C16:1,
C20:3, C14,
Q20:C5/(Leul
lle), C4
#9 rs17657775 6q23.2 132  ARGT (0), Arg, Q14:Arg/ 0.0561 2.606e-15*  0.0085 1.934e-
Mb  MED23(0), Orn, Q15:Arg/ (0.007) (0.0036) 02*
ENPP3 (50) Gly, Q13:Arg/Cit
#10  rs750472 8qg24.3 146  FOXH1 (0), Q12:Ala/Asp, 0.069 2.3%-12 0.14  1.412e-
Mb KIFC2 (2),  Asp, Q34:Asp/ (0.0098) (0.02) 11
CYHR1 (10) C2, Q16:Asp/Cit
#11  rs746872, 9g34.11 131 CRAT (0), MMA, Q38: -0.098 4.214e-83 -0.089  1.45e- C-glycosyltryptophan /
rs7874044, Mb PPP2R4 MMA/C3, C50H (0.0049) (0.0078) 28 succinylcarnitine [14]
rs17452603, (8.2), +HMG, Q21:
rs10760593, DOLPP1 (12) (C50H+HMG)/
rs12686182, (Leullle)
rs3124505,
rs11789753,
rs11999428
(Continued)
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Table 1. (Continued)

Lo- Lead-SNPs' Cytogen. Phys. Nearby Associated Beta (SE) p-value Beta p- Published metabolite
cus pos. pos. genes? Metabolites® LIFE-HEART LIFE-HEART  (SE) value associations
Sorbs  Sorbs
#12 rs12779637 10911.21 45 Mb MARCHS (0), C3,C2 -0.13 (0.021)  1.04e-09 -0.12  4.46e-
ANUBL1 (0.033) 04
(30), ALOX5
(140)
#13 rs1171614 10g21.2 61 Mb SLC16A9 (0), CO0,Q33:C0/ -0.12(0.014) 4.268e-16 -0.1 1.428e- Carnitine, carnitine / X-12798
CCDCE6 (79), (AC-total) (0.027) 04 [13-15,20]
ANKS3 (320)
#14 rs2066938, 12g24.31 120 UNC119B  C4, Q35:C5/C4 0.046 2.323e-24 0.0096 2.333e- Butyrylcarnitine,
rs12822898 Mb  (0), ACADS (0.0044) (0.0081) 01 butyrylcarnitine /
(3), MLEC propionylcarnitine
(1) [13,14,20,21]
#15 rs12440281, 159222 61 Mb TPM1 (18), MMA 0.081 (0.011) 6.986e-14 0.04 2.69e- succinylcarnitine [13,14]
rs7162825, LACTB (32), (0.018) 02
rs12442826, RPS27L (63)
rs7183733
#16 rs1571700 21g22.13 37 Mb HLCS (0), C50H+HMG -0.02 5.38e-08 -0.023 1.173e-
DSCRE6 (42), (0.0037) (0.0072) 03
PIGP (100)

Table includes all validated loci of our analysis. Validation is based on either successful replications in the Sorbs or by additional published evidence. The
latter applies for two loci (#4 and #14) where association of lead-SNPs did not replicate in the Sorbs cohort. For each locus, nearby genes, independently
associated SNPs, associated metabolites and statistics for the strongest association between them are shown (Beta estimators, corresponding standard
errors and p-values). We also present the results of replication analysis and published evidence. Six loci with no corresponding published genetic variants
were considered as “novel’.

'SNP with strongest association in the discovery cohort is presented in bold;

2Distance of SNPs to genes in kB in parentheses;

SMetabolite with strongest association in the discovery cohort is presented in bold. p-value Sorbs: best p-value of SNPs in Sorbs corresponding to the
lead-SNP and metabolite of discovery cohort,

“Replication was successful for ratio Q14:Arg/Orn, only, hence, we report here on association with Q14:Arg/Orn

doi:10.1371/journal.pgen.1005510.t001

Next, we used Mendelian randomization to establish a causal link between gene expression
and the metabolite. We identified 15 metabolite-gene pairs included in 36 triangles (S7 Table).
Next, we investigated whether identified eQTLs explained a significant part of the SNP-
metabolite association which we could demonstrate for a total of five loci (Table 4). Strongest
causal effects were found for novel locus #10 at 8q24.3 associated with several Aspartic acid
traits (strongest causal effect for ratio Aspartic acid / Acetylcarnitine via cis-regulation of
PPPIRI6A) and locus #11 at 9q34.11 associated with MMA via PPP2R4.

Associations with clinical traits and diseases

Finally, we explored whether SNP-metabolite associations identified in our study overlap with
genetic loci for clinically relevant traits published in the National Human Genome Research
Institute (NHGRI) GWAS Catalog. At nine of the 16 validated loci, metabolite associated SNPs
matched SNPs previously associated with clinical traits or diseases (S9 Table). We observed
associations with platelet and red blood cell properties at three loci associated with acylcarni-
tines in our study (1q44 (C18), 10q11 (C3) and 15q22 (MMA)) [26-28]. Further, we found
that several of our variants were associated with clinical chemistry traits, e.g. fibrinogen (2q34)
[29], homocysteine (2q34) [30] and traits reflecting lipid metabolism (HDL-cholesterol at 2q34
and 15q22) [31], purine catabolism (uric acid at 10q21) [32], and kidney function (creatinine

PLOS Genetics | DOI:10.1371/journal.pgen.1005510 September 24, 2015 7/25
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Fig 3. eQTL map of mQTL loci. We analysed the top-SNPs of our mQTL analysis regarding association with
gene-expression levels. A total of 54 top-SNPs were correlated with 28,295 probe expressions. Expression
probes of auto- and gonosomes were analysed, while SNPs were restricted to autosomes. X-axis represents
physical position of SNPs. Y-axis represents the physical position of the start of the regulated transcript.
Points located on the diagonal line relate to cis-effects, while other points relate to trans-effects. Associations
with FDR = 5% are highlighted. Trans-eQTLs with p-values < 0.001 are also shown. Size of points represents
the strength of association. Colors of points and gray shadings indicate distinct chromosomes. An interactive
html version of this map allowing exploration of the results is provided as supplemental S7 Fig.

doi:10.1371/journal.pgen.1005510.g003

at 2pl3 and 2q34) [33]. At the 2p13 and 2q34 loci, reported associations for creatinine were
also linked to chronic kidney disease [34]. In addition, variants at the 2q34 locus for glycine
also convey risk for non-small cell lung cancer [35]. Interestingly, recent studies described a
key role for glycine in cancer cell proliferation and tumorigenesis [36,37]. Further, metabolite
associations at 3g27 (C50H+HMG), 5q31 (AC-total), 9q34 (MMA) and 15q22 (MMA) over-
lapped with associations for Parkinson’s Disease [38], Asthma [39], Hypersomnia [40] and
orofacial cleft [41], respectively. These co-localizations may implicate a shared genetic basis
(pleiotropy) between complex traits and aid in forming new hypothesis regarding molecular
pathomechanisms.

Discussion

Several GWAS for urine, serum and plasma metabolites have been published using different
measurement approaches [8,9,12-21,23]. Here, we report the first genome-wide association
study for amino acid and acylcarnitine levels in whole blood. We discovered 25 loci of which
14 were replicated in an independent cohort. Additional two loci were strongly supported by
mQTL-studies in serum or plasma [8,9,13-15]. Of these 16 loci, six describe novel SNP
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Table 2. Results of eQTL analysis of validated loci.

Locus

#1

#2

#3

#5

#6

#7

#8

#9

#10

#11

#12

#14

#15

#16

Cytogen.

pos.

1p31.1
1944
2p13.1
3927.1
4932.1
5031.1
6021
6023.2

8024.3

9934.11

10g11.21
12q24.31
15022.2

21g22.13

"SNP with strongest metabolite association is presented in bold while SNP with strongest eQTL was marked with an asterisk*
2Gene with strongest association is presented in bold

3A g-value<5% was considered as significant, i.e. FDR is controlled at 5%.

“These genes are located on the same chromosome as the lead-SNPs at distances larger than 1Mb

doi:10.1371/journal.pgen.1005510.t002

Lead-SNPs’ Cis-regulated genes? Trans- Beta p- g-
regulated (SE) value value®
genes?
rs17587071*, rs1303870 ACADM, RABGGTB 0.065 1.3e- 2.2e-
(0.004) 45 43
rs3811444* SMYD3, OR2W3 JAM3, -0.23 4.9e- 7.6e-
C150RF54 (0.013) 66 60
rs6546838*, rs12620074 ALMS1, NAT8B, STAMBP, TPRKB, 0.028 1.3e- 5.7e-
LOC200420 (0.004) 13 12
rs4074110* McCcCC1 0.023 1.4e- 4.8e-
(0.004) 09 08
rs11737481* ETFDH, HS.415576, TMEM144 -0.067 4.1e- 6.2e-
(0.005) 41 39
rs162890* SLC22A5, SLC22A4, CDC42SE2, 0.11 1.9e- 4.8e-
RAD50, P4HA2 (0.006) 74 72
rs7763591%*, rs2428192, rs12205108, SLC22A16, RPF2, DDO, CDC2L6, 0.21 4.9e- 2.5e-
rs6939019, rs12210538 AMD1 (0.009) 98 95
rs17657775* MED23, ARG1 0.048 2.7e- 6.2e-
(0.01) 06 05
rs750472* PPP1R16A, LRRC14, KIFC2, RPLS, 0.11 3.4e- 2.6e-
ZNF34, MFSD3, CYHR1, VPS28, (0.005) 102 99
LOC642859, COMMD5
rs746872*, rs7874044, rs12686182, PPP2R4, SH3GLB2, CRAT, -0.061 2.1e- 4.5e-
rs3124505, rs10760593, rs17452603, HS.148844, ENDOG, CCBL1, (0.004) 60 58
rs11789753, rs11999428 TBC1D13
rs12779637* ANUBL1, FAM21C FAM21D* 0.051 6.6e- 4e-17
(0.006) 19
rs12822898*, rs2066938 RNF10, MLEC, UNC119B, CAMKK2 coQs* 0.049 3.8e- 1.9e-
0.006) 16 10
rs7162825%*, rs12442826, rs7183733, LACTB, TPM1, APH1B 0.12 8e- 1.2e-
rs12440281 (0.004) 153 149
rs1571700* HLCS 0.033 2.8e- 2.3e-
(0.003) 23 21

metabolite associations, comprising four loci associated with various acylcarnitines and two

loci associated with amino acids. Our results demonstrate that studying whole blood can pro-
vide additional genetic loci not detected in previous mQTL studies for plasma or other body
fluids. This might be attributable to differences in metabolite abundance and components of

cellular metabolism not present in plasma (or other cell free body fluids) [25].

Further, we used whole genome expression in peripheral mononuclear cells to establish
functional links between SNP-metabolite associations and gene-expression. EQTLs were dis-
covered at 14 loci, including all of our six novel loci. Since eQTL analysis per se does not allow
inferring causal genes, we performed gene expression association analysis between eQTL genes
and metabolites associated with the corresponding SNP. This is a major advantage of our study
since we can directly infer causal relationships, whereas most other studies can only report
indirect evidence from public eQTL data bases. Besides limitations of gene-expression analysis,
such as tissue specificity and numerous other ways for genetic variations to influence the
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Table 3. Results of associations between gene-expressions and metabolites.

Locus

#1

#2

#3

#6

#7

#8

#9

#10

#11

Cytogen.
pos.
1p31.1
1q44
2p13.1

4g32.1

5q31.1
6921

6q23.2

8024.3

9934.11

Regulated Genes'

ACADM
SMYD3, JAM3
STAMBP, NAT8B

ETFDH, TMEM144

SLC22A4
AMD1, SLC22A16
MED23
PPP1R16A,

LRRC14, CYHR1
PPP2R4, CRAT

Metabolites? Beta(SE) p- g-
value value®
C10,C8 -0.084 1e-05 1.9e-03
(0.019)
Leullle, C18, C16 0.2 6.6e- 1.5e-03
(0.045) 06
Leullle, Q14:Arg/Orn, Q27:Sarc/Gly -0.24 1.4e- 2.3e-03
(0.056) 05
Q11:Ala/C2, C2, C10, C16:1, C4, AC-total, C18:1, Leu|lle, Q1:(Val+Leu| -0.43 8.2e- 2.6e-10

lle)/(Phe+Tyr), Q20:C5/(Leu]lle), C8, Q33:C0/(AC-total), C16, Q3:(C16 (0.057) 14
+C18:1)/C2, Q26:Glu/Orn

Q19:(Leullle)/C3 -0.27 5e-04 4.1e-02
(0.078)
MMA, C14 0.1 2.8e- 3.0e-02
(0.028) 04
Cc8 0.06 3.6e- 3.3e-02
(0.017) 04
Q34:Asp/C2, Asp, Q16:Asp/Cit, Q12:Ala/Asp, Q1:(Val+Leu|lle)/(Phe+Tyr),  -0.62 43e-  4.50-05
c2 (0.11) 08
MMA, Q38:MMA/C3 0.16 1.3e- 1.0e-04
(0.031) 07

Table displays significant associations of eQTL genes and metabolites for validated loci. Genes and metabolites are ordered according to strength of
association. Statistics of strongest associations are also presented.

'Gene with strongest association is presented in bold

2Metabolite with strongest association is presented in bold

SA g-value<5% was considered as significant, i.e. FDR is controlled at 5%.

doi:10.1371/journal.pgen.1005510.t003

function or abundance of proteins, we identified five loci for which a significant part of SNP-
metabolite association was explained by blood eQTLs. These represent novel findings to the
best of our knowledge and extend the very few examples of known causal chains between
SNPs, gene-expression and metabolites [14,42,43].

Characteristics and functional hypotheses of novel loci

At two of the six newly identified loci (6923, ARGI and 21q22, HLCS), rare variants are known
to cause autosomal recessive inborn errors of metabolism, providing a strong biological plausi-
bility for the SNP-metabolite associations. Mutations in ARGI (6423), encoding arginase, the
enzyme which catalyzes the hydrolysis of arginine, are the cause of Argininemia (OMIM
#207800). Here, we report common variants of ARG1 to be associated with arginine levels.
Likewise, defects in HLCS (21q22) are responsible for holocarboxylase synthetase deficiency
(OMIM #253270) with affected individuals displaying elevated levels of CSOH+HMG. In line
with this observation, the lead SNP at the HLCS locus exhibited a strong cis-eQTL and the
allele responsible for higher HLCS expression was associated with lower CSOH+HMG levels.
A third novel locus (#8; 6q21) associated with multiple acylcarnitines (lead phenotype: AC-
total) also contained a gene with direct biochemical relationship to the associated metabolites,
namely SLC22A16, encoding an organic cation/ carnitine transporter. Gene expression of
SLC22A16 was regulated in cis at this locus, but SLC22A 16 gene expression was not correlated
with acyl-carnitine concentrations in whole blood. In fact, the strongest SNP metabolite associ-
ation at this locus was observed for a non-synonymous coding SNP (rs12210538) in
SLC22A16, which is predicted to be damaging by Polyphen and SIFT [44,45]. These findings
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Fig 4. Network of discovered loci, eQTLs and metabolites. Significant relationships between genetic loci
(top SNPs), gene-expression in PBMCs and metabolite levels in whole blood are displayed. Line thickness
corresponds to amount of explained variance (Lightblue = genetic loci without triangles, darkblue = genetic
loci with triangles, lightgreen = cis-regulated genes, darkgreen = trans-regulated genes, light orange = raw
metabolites, darkorange = metabolite ratios). An interactive html-document document of the network can be
found in the supplement material.

doi:10.1371/journal.pgen.1005510.g004

suggest that associations at 6q21 are more likely driven by this non-synonymous coding muta-
tion than by gene expression of SLC22A16.

The remaining three novel loci relate to candidate genes with no prior connection to metab-
olism to the best of our knowledge. For the locus at 10q11.21, associated with C2 and C3, we
observed cis-effects on ANUBLI and FAM21C expression, but gene expressions of both tran-
scripts were not correlated with either C2 or C3. Thus, additional work will be required to
explore the causal link between genetic variation at the 10q11.21 locus and C2 and C3 blood
concentrations.

At novel locus 8q24.3, integration of SNP, eQTL and gene-expression data let to the identifi-
cation of PPPIRI6 as putative causal gene for the association with aspartic acid and corre-
sponding ratios (lead phenotype: alanine / aspartic acid). While we detected strong cis-effects
on expression of two local genes, PPP1R16A and LRRCI14, only the eQTL of PPPIRI6A partly
explained the observed SNP-phenotype associations. Future studies need to address how
PPPIRI16A, a gene involved in signal transduction [46], may be affecting blood levels of aspartic
acid.

Finally, we identified JAM3 encoding the junctional adhesion molecule C (JAM-C) as a
novel candidate gene of acylcarnitine metabolism. Top associated SNP rs3811444 (1q44)
exhibited an exceptionally strong trans-eQTL for JAM3, located at 11q25. This trans effect was
also described by other eQTL studies [47]. Gene expression of JAM3 correlated with several
long chain acyl-carnitines (i.e. C16) and explained a significant part of the SNP-metabolite
association. JAM-C participates in cell-cell adhesion, leukocyte transmigration and platelet
activation. The soluble form of JAM-C has been shown to mediate angiogenesis [48].
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@’PLOS | GENETICS

Genetic Regulation of Whole Blood Metabolites

Table 4. Integrative analysis and association triangles.

Locus Cytogen.

#1

#2

#3

#10

#11

pos.

1p31.1
1944
2p13.1

824.3

9G34.11

Lead-SNPs

rs1303870,
rs17587071

rs3811444

rs6546838

rs750472

rs11789753,
rs11999428,
rs3124505,
rs12686182,
rs10760593,
rs17452603,
rs7874044

rs11789753,
rs10760593,
rs3124505,
rs7874044,
rs12686182,
rs17452603,
rs11999428

Regulated Associated Beta

gene

ACADM

JAMS3

STAMBP

Metabolites of
mQTL

C8,C10 -0.016
C16 0.044
Q14:Arg/ -0.022
Orn
PPP1R16A Q34:Asp/C2, -0.170
Q16:Asp/Cit,
Asp, Q12:
Ala/Asp

CRAT

PPP2R4

MMA -0.127

MMA, Q38: -0.127
MMA/C3

Beta
of
eQTL

0.027

-0.229

-0.015

0.111

-0.043

-0.094

Beta of
expression-
metabolite
association
-0.054
-0.049

0.070

-0.619

0.107

0.165

p-value
causality
gene
expression
and
metabolite'

8.3x10°
2.8x102
8.7x10™

1.0x1077

5.2x107®

9.4x107

Explained Explained Explained

variance
mQTL

1.8%

1.4%

2.6%

1.8%

2.2%

2.2%

variance
eQTL

2%

13%

0.9%

19.6%

0.4%

2.4%

variance
expr.-
metab.
association

0.7%

0.6%

0.7%

1.5%

0.6%

1.4%

p-
value

4e-03

3.7e-

6.9e-
03

3.7e-
04

2.4e-
02

2.2e-
04

Combinations of SNPs, genes and metabolites for which gene-expression explains at least a nominally significant part of the observed SNP-metabolite

association. Best combination of SNP, gene and metabolite is presented in bold with corresponding statistics. Causality of expression and metabolites is

determined via Mendelian Randomization. Last column shows p-values of testing whether gene-expression explains a part of the observed SNP-

metabolite association (see methods section). Triangles with strongest causality per locus are show in bold.
'analysed adopting Mendelian Randomisation method

doi:10.1371/journal.pgen.1005510.t004

Homozygous mutations in JAM3 cause hemorrhagic destruction of the brain, subependymal
calcification, and congenital cataracts (HDBSCC, OMIM #613730). At present, the potential
functional role of JAM3 in acyl-carnitine metabolism remains elusive.

Novel evidence at known metabolite loci

In addition to the identification of novel loci, we replicated and extended functional evidence
for SNP-metabolite associations at ten loci previously described in GWAS for serum or plasma
metabolites (Table 1). The majority of these loci contain highly plausible candidate genes based
on their biologic function in metabolism (MCCC1, ETFDH, SLC22A4/5, ACADM, ACADS,
CPS1, CRAT). Rare loss of function mutations in these genes cause Mendelian inborn errors of
metabolism and measuring the respective marker metabolites in whole blood spots is part of
neonatal screening programs throughout the world [1]. Here, we validated common variants
located in non-coding DNA with modest effect sizes on blood metabolites. Additionally, we
found blood eQTLs for MCCC1, ETFDH, SLC22A4/5, ACADM, and CRAT. This is in line with
evidence from other complex genetic traits, demonstrating that most associations for common

PLOS Genetics | DOI:10.1371/journal.pgen.1005510 September 24, 2015
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variants arise in non-coding DNA and emphasizes the importance of regulatory variants in
modulating gene expression [49,50]. A striking example is the ACADM locus, where SNPs
have been associated with C8 and C10 levels [13,14,20,21]. In our study, gene-expression of
ACADM was associated with C8 and C10 blood levels and we showed for the first time that
this relationship was causal explaining a part of the observed SNP association.

In conclusion, our study expanded the current knowledge on the genetic regulation of
human blood metabolites by adding six novel genetic loci. Furthermore, by integrative analysis
of SNP, gene expression and metabolite data, we derived mechanistic insights into the molecu-
lar regulation of blood metabolites. At several loci, we provide evidence for metabolite regula-
tion via gene-expression and observed overlaps with GWAS loci for other complex traits and
diseases, pointing towards potential pathomechanisms via metabolic alterations. Additional
functional studies are required to elucidate the cellular mechanisms how the discovered candi-
date genes affect metabolic pathways and relate to disease pathology.

Materials and Methods
Cohorts

LIFE Leipzig Heart is an observational study in a Central European population designed to
analyze genetic and non-genetic risk factors of atherosclerosis and related vascular and meta-
bolic phenotypes [51]. Patients undergoing first-time diagnostic coronary angiography due to
suspected stable CAD with previously untreated coronary arteries, patients with stable left
main coronary artery disease and patients with acute myocardial infarction were recruited. The
latter were excluded for the present analysis.

The study meets the ethical standards of the Declaration of Helsinki. It has been approved
by the Ethics Committee of the Medical Faculty of the University of Leipzig, Germany (Reg.
No 276-2005) and is registered at ClinicalTrials.gov (NCT00497887). Written informed con-
sent including agreement with genetic analyses was obtained from all participants. In this anal-
ysis, we considered a total of 2,464 individuals. From these, 2,107 had complete genotype,
metabolite and covariate data qualifying them for GWAS analysis (descriptive statistics can be
found in S9 Table). A subset of 1,856 individuals had complete data of genotypes, gene expres-
sion, metabolites and covariates. These individuals were used for integrative analyses (see study
design, S1 Fig).

The Sorbs were recruited from the self-contained Sorbs population in Germany [52-54]. All
individuals were at fasting state. Phenotyping included standardized questionnaires for past
medical history and family history, collection of anthropometric data (weight, height, waist-to-
hip ratio) and results from an oral glucose tolerance test. A complete set of high-quality geno-
type data, metabolites and covariates was available for 923 subjects (S9 Table). The study was
approved by the ethics committee of the University of Leipzig and all subjects gave written
informed consent before taking part in the study.

Study design

An overview of the study design is presented in S1 Fig. In brief, we first performed a genome-
wide metabolite quantitative trait (mQTL) analysis in the LIFE Leipzig Heart cohort, with rep-
lication of the top-SNPs in the Sorbs cohort. Following this two-stage design, we applied a lib-
eral cut-off of 1.0x10”” for the initial GWAS to identify candidate loci. A stringent cut-off is
applied at the replication stage where we control the (study-wide) FDR at 5% based on permu-
tation analysis [55]. This accounts for the correlation structure of individuals, SNPs and metab-
olites and the multiple testing issue (for details see below section “Genome-wide association
analysis and SNP replication”).
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Functional relevance of identified loci was studied in the LIFE Leipzig Heart cohort by ana-
lyzing expression quantitative traits (eQTL) and gene expression-metabolite associations fol-
lowed by causal inference regarding discovered associations.

Metabolomic analysis and data processing

Venous blood samples were obtained from all study participants and 40yl of native EDTA
whole blood were spotted on filter paper WS 903 (Schleicher and Schiill, Germany) in the LIFE
Leipzig Heart study. In the Sorb cohort, 40pl cell suspension obtained after plasma centrifuga-
tion (10 min at 3500 x g) were spotted on filter paper. All blood spots were stored at -80°C after
3 hours of drying until mass spectrometric analysis. Sample pretreatment and measurement is
described elsewhere [56-58]. In brief, 3.0 mm diameter dried blood spot punches (containing
3 pL whole blood) were extracted with methanol containing isotope labelled standards. After
sample extraction and derivatization, analysis was performed on an API 2000 tandem mass
spectrometer (Applied Biosystems, Germany). Quantification of 26 amino acids, free carnitine
and 34 acylcarnitines including related metabolites was performed using ChemoView 1.4.2
software (Applied Biosystems, Germany). Samples were analysed within 23 analytical batches
with two quality controls samples in each batch. Mean inter-assay coefficients of variation were
below 11% for amino acids and below 19% for acylcarnitines. Further, using these 61 directly
measured analytes, we derived a number of biologically relevant sums (n = 1, total acylcarni-
tine) and ratios (n = 34) to assess reaction equilibria within physiological pathways and pro-
cesses (e.g. Fischer’s ratio [59]). Consequently, a total of 96 quantities were analyzed as GWAS
traits. A list of metabolites and quantities is presented in S1 Table.

Metabolites with more than 20 percent of values below detection limit were dichotomized
for analysis (below detection limit versus above detection limit). This applies for the metabo-
lites C5:1, C6DC, C140H, C160H, MeGlut, C18:10H, C18:20H, C180H and C20:3. Quanti-
ties were arsinh-transformed (area sinus hyperbolicus) which is close to a log-transformation
for large values but does not emphasize differences between small values and can operate on
values of zero. Transformed quantities were approximately normal distributed. Values outside
of the Interval Mean * 5*SD were considered as outliers and were removed to stabilize subse-
quent regression analysis.

We previously analysed a variety of factors influencing blood metabolites. Age, sex, diabetes
and fasting status show pronounced effects on several metabolites while log-BMI, smoking and
some blood traits showed effects on selected metabolites. Therefore, we decided to adjust our
analyses for these potential confounders.

SNP genotyping and quality control

LIFE leipzig heart samples. DNA was extracted from peripheral blood using the Invisorb
Spin Blood Maxi Kit (Stratec) as described elsewhere [60]. Samples where genotyped using an
Affymetrix Axiom SNP array with custom option comprising a total of 624,908 SNPs. The
Axiom CEU array served as a backbone of our custom array. In addition 62,471 autosomal
SNPs were placed on the array corresponding to 44 genomic regions previously associated with
cardiovascular disease and metabolic risk factors, in particular plasma lipids. Genotyping was
performed at Affymetrix (Santa Clara, Ca; USA). 2,925 out of 3,036 DNA samples were suc-
cessfully genotyped and were called in combination by Affymetrix Power Tools version 1.12.
As further sample-wise quality control, we filtered individuals with sex mismatch, call
rate<97%, low or high mean squared difference of individual’s genotype and expected geno-
type according to box plot outlier criteria, duplicates, implausible relatedness according to
Wang et al. [61] and outliers of principal components analysis (6SD criterion of EIGENSTRAT
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[62]). Thereafter, a total of N = 2,838 individuals remained for analysis. After the final step of
sample quality control, the population genetic structure was homogenous (see S5 Fig). Based
on this sample, we determined our SNP quality filter as follows: non-autosomal SNPs, minimal
plate-wise call rate <90%, i.e. the minimum of the SNP call rate over all plates (our criteria
implies that the conventional overall SNP call rate is greater than 94.3% and its 10 percentile
is greater than 99.2%), p-value of asymptotic Hardy-Weinberg equilibrium test <1.0x10°°, p-
value of the association of SNP allele frequency with plate number <1.0x107. A total of
566,359 SNPs passed all criteria.

Genotype imputation was performed using IMPUTE v2.1.2 (http://mathgen.stats.ox.ac.uk/
impute/impute_v2.html). HapMap2 CEU, Release 24, dbSNP-build 126, NCBI built 36 served
as reference panel comprising a total of 3,974,237 autosomal SNPs. 555,911 of our measured
SNPs were successfully mapped to the reference. As post-imputation quality control we dis-
carded all SNPs with minor allele frequency <1% or with IMPUTE-info score < 0.3. According
to these criteria, a total of 2,619,023 SNPs were analysed.

Sorbs samples. Subjects were either genotyped using the 500K Affymetrix GeneChip or
Affymetrix Genome-Wide Human SNP Array 6.0. For genotype calling, BRLMM algorithm
(Affymetrix, Inc) was applied for 500K and Birdseed algorithm for Genome-Wide Human
SNP Array 6.0. Details of genotyping have been described elsewhere [53]. Quality control of
samples was performed as described in Gross et al [52] resulting in N = 977 individuals with
genotypes of good quality (N = 483 genotyped with 500K, N = 494 genotyped with 6.0). Three
ethnic outliers were identified by a ‘drop one in’ procedure to avoid bias by the relatedness
structure within the Sorbs (see [63] for details). These samples were excluded from subsequent
analyses. After removing these samples, principal components revealed a homogenous popula-
tion structure (see S6 Fig). To account for relatedness, a drop-one-in procedure was used for
principal components analysis (see [63] for details).

Genotype imputation was performed without prior SNP filtering and separately for individ-
uals genotyped with 500K and 6.0 respectively as described [63]. The same software and refer-
ence panel was used as for the LIFE Leipzig Heart samples.

Genome-wide association analysis and SNP replication

Genome-wide association analyses for blood 96 metabolites was performed in the LIFE Leipzig
Heart samples (N = 2,107 with complete phenotypes, covariates and high-quality genotypes).
Associations were tested by linear regression models using gene-doses of imputed SNPs. We
adjusted for age, sex, log-BMI, diabetes status, smoking status, fasting status, haematocrit,
platelet count, white blood cell count and the first three genetic principal components. Results
revealed no signs of genomic inflation (maximum lambda equal 1.018, see S10 Table). To
avoid reporting of redundant SNP information, the top-SNP list was ordered according to min-
imal p-values and pruned applying a linkage disequilibrium cut-off of r*<0.3.

Replication analysis was performed in the independent cohort of Sorbs (N = 923 with com-
plete genotype and metabolite data) and for all combinations of SNPs and metabolites achiev-
ing a p-value of <10~ in our first stage GWAS. Based on our unpruned GWAS top-list, we
retrieved all SNPs within a +50kB environment which were successfully imputed in the Sorbs
(IMPUTE-info score>0.3 in both, 500K and 6.0 subsample). Then, on the basis of the LIFE
Leipzig Heart data, we assessed which of these SNPs are the best proxies of the corresponding
top-SNPs to pair GWAS top-SNPs with optimal proxies of good quality within the Sorbs
study.

Associations between pairs of proxies and metabolites were again analyzed using linear
regression analyses of gene-doses. Here, we adjusted for age, sex, log-BMI, diabetes status,
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smoking status, haematocrit, platelet count, white blood cell count and the relatedness struc-
ture ([52,64,65], function “polygenic” of the “GenABEL” package of R was used to deal with
the relatedness structure [63]).

Since test statistics are correlated due to LD between SNPs and correlations between metab-
olites, we decided to control the false-discovery rate (FDR) at 5% rather than family-wise error
rates. Null-distribution for q-value calculation was determined by permutation analysis. For
this purpose, 1000 random permutations of the links between SNPs and metabolites were
analyzed.

Novelty assessment of SNP-metabolite associations and search for
pleiotropic effects

We compared our results with published GWAS hits on the basis of the GWAS catalogue
(http://www.genome.gov/gwastudies/, date of download March, 4™, 2014). Required LD infor-
mation was derived from HapMap3 (release 28) and 1000genomes project (release 20110521
version 3 f, restricted to SNPs with a MAF > 1%). In addition, further evidence from published
mQTL studies was manually included in this analysis to assess novelty of our results. A total of
13 studies were analyzed [8,9,12-21,23] (see also S4 Table). A locus was considered as novel if
none of its SNPs were in linkage disequilibrium (r*>0.3) with any published mQTL hit reach-
ing study-wide significance as defined by the authors of the corresponding publication. To
increase relevance, we did not match the associated metabolic phenotypes between our study
and the published ones, i.e. our approach of considering loci as novel is conservative.

In complete analogy to this analysis, we determined whether our top hits are associated with
other traits for which results are published in the GWAS catalogue as well as those reported in
two GWAS on plasma lipids [10,31]. These traits could point toward other causal or pleiotropic
effects. If applicable, information on genetic disorders related to our loci were retrieved from
OMIM (http://omin.org).

Gene-expression measurement and pre-processing

Peripheral blood mononuclear cells were isolated in the LIFE Leipzig Heart cohort using Cell
Preparation Tubes (CPT, Becton Dickinson) as previously described [66]. Total RNA was
extracted using TRIzol reagent (Invitrogen) and quantified with an UV-Vis spectrophotometer
(NanoDrop, Thermo Fisher). 500 ng RNA per sample were ethanol precipitated with Glyco-
Blue (Invitrogen) as carrier and dissolved at a concentration of 50-300 ng/ul prior to probe
synthesis. N = 2,501 samples were hybridised to Illumina HT-12 v4 Expression BeadChips
(Iumina, San Diego, CA, USA) in batches of 48 and scanned on the Illumina HiScan instru-
ment according to the manufacturer’s specifications [60]. Documentation of sample processing
included batch information at any processing step allowing adjustment in subsequent data
analysis.

Raw data of all 47,323 probes was extracted by Illumina GenomeStudio, 47,308 probes
could be successfully imputed in all samples. Data was further processed within R/ Bioconduc-
tor R [67]. Individuals having an extreme number of expressed genes (defined as median + 3
interquartile ranges (IQR) of the cohort’s values) were excluded. Transcripts that were not
expressed according to Illumina’s internal cut-off as implemented in the “lumi” Bioconductor
package (p < 0.05 in at least 5% of all samples) were excluded from further analysis. Expression
values were quantile-normalised and log2-transformed [68]. For further outlier detection, we
calculated the Euclidian distance between all individuals and an artificial individual which was
defined as the average of samples after removing 10% samples farthest away from the average
of all samples. Individuals with a distance larger than median + 3 IQR were excluded.

PLOS Genetics | DOI:10.1371/journal.pgen.1005510 September 24, 2015 16/25


http://www.genome.gov/gwastudies/
http://omin.org

@’PLOS | GENETICS

Genetic Regulation of Whole Blood Metabolites

Furthermore, we defined for each individual a combined quantitative measure combining qual-
ity control features available for HT-12 v4 (i.e. ratio of levels of perfect-match vs. mismatch
control probes, mean signal of perfect-match control probes, mean of negative control probes
and labelling-control probes, ratios of high-concentrated, medium-concentrated and low-
concentrated control-probes, mean of house-keeping genes, Euclidian distances of expression
values, number of expressed genes, mean signal strength of biotin-control-probes). We calcu-
lated Mahalanobis-distance between all individuals and an artificial individual having average
values for these quality control features. Individuals with a distance larger than median + 3
IQR were excluded. Transcript levels were adjusted for known batch effects using an empirical
Bayes method as described [69] and residualised for age, sex, monocyte counts and lymphocyte
counts. Additionally, we calculated principal components of the expression data and residua-
lised for the first five principal components of expression data to account for unmeasured
batch effects [70]. Pre-processing resulted in 28,295 expression probes corresponding to 19,519
genes. Chromosomal mapping of expression probes and assignment of gene names was done
using information as reported by the manufacturer (HumanHT-12_V4_0_R2_15002873_B).

eQTL and gene-expression association analysis

After quality control, combined SNP and gene-expression data were available for a total of
2,112 individuals, from which 1,856 had been included in the GWAS. eQTL analysis of the
pruned GWAS top-list was performed by linear regression analysis of gene-doses using the R
add-on package Matrix eQTL [71]. EQTLs were considered as cis-regulated if the distance
between SNP and the centre of the associated expression probe was not larger than 1 Mb, oth-
erwise they were considered as trans-regulated. Cis- and trans- specific significance thresholds
were derived by a Benjamini-Hochberg (B-H) procedure implemented in Matrix eQTL. For
our data, cis associations with a p-value up to 0.0039 and trans-associations with a p-value up
to 3.6x10™"* were considered study-wide significant at FDR<5%. B-H q-values were empiri-
cally confirmed by 100 permutation tests (permutation of SNP and gene-expression profiles).
Further details can be found elsewhere [72].

Association analysis of gene-expression and metabolites was performed in 1,957 individuals
for which both information as well as covariates were available (1,856 of these individuals had
been included in the GWAS). Again, we adjusted for age, sex, log-BMI, diabetes status, smok-
ing status, fasting status, haematocrit, platelet count, white blood cell count. FDR was con-
trolled at 5%.

As we observed multiple relationships between genetic loci, gene-expressions, and metabo-
lites, we visualized all associations found at FDR 5% in a network. Previously published rela-
tions were identified by mapping genetic loci, genes, and metabolites from mQTL, eQTL, and
gene-expression-metabolite association analysis to QTAGEN’s Ingenuity Pathway Analysis
(IPA, QIAGEN Redwood City, www.qiagen.com/ingenuity), as of May, 2015). This database
includes, among many other information, data on genome-wide protein-protein interactions,
activation / co-localization and enzymatic reactions. Significantly associated SNPs were repre-
sented by the three most proximal genes and metabolite ratios by the individual nominator
and denominator.

Identification of association triangles

For a more detailed characterization of the observed SNP-metabolite associations, we inte-
grated genotype, gene expression and metabolite data to construct association triangles. A tri-
angle is defined as a SNP that is significantly associated with both, a certain expression probe
and a certain metabolite. Thereby, the expression probe must be also associated with the
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metabolite. For this purpose, we first determined the top associated SNP per locus, its corre-
sponding best associated metabolite and eQTLs of that SNP (FDR = 5%, see above). Resulting
triples of SNP, transcript level of eQTL and metabolite level were restricted to those showing a
significant association between mRNA expression and metabolite level (FDR = 5%, see above).
These gene-expressions were considered as possible explanatory quantities of the SNP-
metabolite association.

We simulated the expected number of these association triangles under the null distribution
by performing a comprehensive permutation analysis: We performed 100 permutations where
we randomly assigned expression datasets and metabolic datasets to genetic datasets. We ana-
lysed these datasets for mQTLs, eQTLs, and gene-expression associations in accordance to our
original analysis. For each of these 100 permutation-based datasets, we counted the number of
pairwise associations and association triangles and compared it with the results of our original
dataset. We calculated the empirical likelihood of triangles by comparing the observed number
of six triangles with the number of triangles under the null assuming a Poisson distribution.

In order to exclude spurious correlation between gene-expression and metabolites as a
cause of the observed association, we performed a Mendelian randomization analysis using our
eQTL SNPs as instrumental variables [73]. In general, it is not easy to prove that the conditions
of Mendelian randomization are fulfilled. In particular, a direct SNP effect on metabolites can-
not be excluded, violating one of the assumptions [74]. Therefore, we adapted the Mendelian
randomization analysis by using the residuals of metabolites regarding the remaining direct
SNP effects (see also S1 Text for an extended discussion). Standard errors of Mendelian ran-
domization effects were derived by Jackknife [75].

Furthermore, we tested whether gene-expressions explain at least parts of the observed
mQTL associations. A subset of 1,856 individuals for which SNP, gene-expression, metabolite
and covariate data were available, was eligible for this purpose. We analysed regression models
of metabolites in dependence on SNPs, covariables and with or without gene-expression. We
asked whether the absolute value of the beta-estimator of the SNP is reduced if gene-expression
is added to the model. In this case, gene-expression explains a part of the observed SNP-
metabolite association. The difference of these SNP beta-estimators is tested against zero by
calculating Jackknife standard errors. This analysis also provides evidence for causal relations
between genetic variants, gene-expression levels and metabolite concentrations. Since we
observed that it is more stringent and conservative than Mendelian randomization analysis,
our conclusions regarding causality are based on this type of analysis.

To gain additional insights into possible functional mechanisms of our loci, we performed
the same analysis for all independently associated top-SNPs.

Supporting Information

S1 Fig. Study design. Analysis steps, required data and number of loci with significant results
at each stage are shown. For causal inference, association triangles were analysed. A triangle is
defined as a SNP that is significantly associated with both, a certain expression probe and a cer-
tain metabolite. Thereby, the expression probe must be also associated with the metabolite.
(PDF)

$2 Fig. QQ-plots of GWAS. Quantile-quantile plots of (~log10)-p-values for our genome-
wide association study of amino acids and acylcarnitines in the LIFE Leipzig Heart study. Post-
analysis quality control was applied prior to plotting the results.

(PDF)

PLOS Genetics | DOI:10.1371/journal.pgen.1005510 September 24, 2015 18/25


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pgen.1005510.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pgen.1005510.s002

@’PLOS | GENETICS

Genetic Regulation of Whole Blood Metabolites

S3 Fig. Regional association plots of GWAS hits. Regional association plots of all loci achiev-
ing p-values <1.0x10” for any of the metabolites and metabolite ratios. Association results are
only shown for corresponding lead metabolites.

(PDF)

S4 Fig. Interactive visualization of association structure between genetic loci, genes and
metabolites (HTML). Significant relationships between genetic loci (top SNPs), gene-
expression in PBMCs and metabolite levels in whole blood are displayed in an interactive way
allowing the user to explore the network. Line thickness corresponds to amount of explained
variance (Lightblue = genetic loci without triangles, darkblue = genetic loci with triangles,
lightgreen = cis-regulated genes, darkgreen = trans-regulated genes, light orange = raw metabo-
lites, darkorange = metabolite ratios).

(HTML)

S5 Fig. Genetic Principal Components Analysis of LIFE-Heart samples (initial GWAS sam-
ples). We present the first ten Principal Components for 2,107 LIFE-Heart samples included in
our initial GWAS.

(PDF)

S6 Fig. Genetic Principal Components Analysis of Sorbs samples (replication samples). We
present the first ten Principal Components of our replication sample of Sorbs individuals (red)
in comparison to HapMap CEU (black).

(PDF)

S7 Fig. Interactive eQTL map of mQTL loci. We present an interactive html-version of Fig 3.
Each point represents an eQTL. Test statistics of each eQTL are available as tooltip. For clarity,
on chromosome 15 only the strongest cis-eQTL is shown.

(HTML)

S8 Fig. Empirical distribution of association triangles. We performed 100 permutations
including mQTL (sub-figure A), eQTL (sub-figure B), and gene-expression association analysis
(sub-figure C) using the same cut-offs as in our original analysis. The aim was to simulate a
null-distribution of association triangles (sub-figure D). For all analyses, we observed signifi-
cantly more associations than expected by chance. Particularly, no association triangles were
found in 98 permutations while only one triangle was found in two permutations. In our origi-
nal analysis, we observed six triangles.

(PDF)

S1 Table. Metabolites and definition of metabolite ratios. Overview of analyzed metabolites
and ratios, as well as the associated metabolic pathways are displayed.
(XLSX)

S2 Table. Results of mQTL GWAS in LIFE Leipzig Heart (discovery cohort). Detailed results
of the discovery cohort.
(XLSX)

S3 Table. Replication of mQTL GWAS hits in the independent cohort of Sorbs. Detailed
results of the replication cohort. All pairs of variants and metabolites showing association with
p-value < 1x107 in the initial GWAS were included in the replication.

(XLSX)

$4 Table. Comparison of mQTL GWAS hits with published genetic association studies of
metabolites. For all lead-SNPs of validated loci, we analyzed whether the same or SNPs in
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linkage disequilibrium (R® >0.3) were associated in previously published genome-wide associ-
ation studies on metabolites. R”: linkage disequilibrium between lead-SNPs of our study and
the previously published SNPs.

(XLSX)

S5 Table. Results of eQTL analysis of mQTL hits in LIFE Leipzig Heart. For all lead-SNPs of
validated loci, we show eQTLs in PBMCs. Results are reported for a cis- and trans-specific
FDR of 5%, respectively.

(XLSX)

S6 Table. Results of association analysis of gene-expressions and metabolites in LIFE Leip-
zig Heart. For all associated gene expression probes identified in eQTL analysis, we analyzed
association with metabolites and metabolite ratios.

(XLSX)

S7 Table. Integrative analysis of mQTLs, eQTLs and expression-metabolite associations in
LIFE Leipzig Heart. Shown are all identified association triangles. A triangle is defined as a
SNP that is significantly associated with both, a certain expression probe and a certain metabo-
lite. Thereby, the expression probe must be also associated with the metabolite. R*: explained
variance.

(XLSX)

S8 Table. Comparison of mQTL GWAS hits with GWAS catalogue. For all lead-SNPs of val-
idated loci, we analyzed whether the same or linked SNPs (R°>0.3) were associated in previ-
ously published genome-wide association studies as reported in the GWAS catalogue
(downloaded at March 4™, 2014) or two large GWAS on plasma lipids [10,31]. R’ linkage dis-
equilibrium between lead-SNP of our study and the previously published SNP.

(XLSX)

S9 Table. Cohort descriptions. We present major characteristics of our study populations
used for GWAS (LIFE Leipzig Heart) and replication (Sorbs). For quantitative parameters we
present median and interquartile range.

(XLSX)

$10 Table. Genomic inflation. Overview of observed genomic inflation factors (lambda) for
the mQTL GWAS in LIFE Leipzig Heart (discovery cohort). We observed no evidence for pop-
ulation stratification as lambda ranged from 0.977 to 1.018.

(XLSX)

S11 Table. Reported relationships between significant hits from the mQTL, eQTL, and
gene expression-metabolite association of this study. We used Ingenuity Pathway Analysis
in order to identify previously published relationships between significant hits from our study
shown in Fig 4 and S4 Fig. Locus: Locus of Molecule 1 and Molecule 2. Molecule 1 / 2: Mole-
cules for which relation is described, SNPs are represented by their three nearest genes. mQTL:
Molecule was observed as significant finding in the mQTL GWAS or replication of this study.
eQTL: Molecule was observed as significant finding in the eQTL analysis of this study. gene—
metab: Molecule was observed as significant finding in the gene-expression—metabolite associ-
ation analysis of this study. Citation: Source of relation description.Prim./ Second. Relation:
Prim. = primary relation, i.e. relation directly linking two molecules both observed as signifi-
cant findings in this study, Sec. = secondary relation, i.e. Molecule 1 originates from this study
and is related with a certain Molecule 2 from Ingenuity pathway-database. The pathway mole-
cule is also related with a further Molecule 1 from this study written in the following on the
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next row. Hence, a secondary relation between Molecule 1 from the first and Molecule 1 from
the second row via the same Molecule 2 from the database exists. Direct/Indirect Interaction:
D = Direct Interaction: There is a physical interaction between Molecule 1 and Molecule 2,

I = Indirect Interaction: Both molecules are related via a certain mechanism, but no physical
interaction is reported yet. Interaction type: Interaction as defined in Ingenuity pathway analy-
sis: A = Activation, CP = Chemical-Protein interaction, E = Expression (includes metabolism/
synthesis for chemicals), EC = Enzyme Catalysis, I = Inhibition, L = Molecular Cleavage
(includes degradation for Chemicals), LO = Localization, M = Biochemical Modification

MB = Group/complex Membership, P = Phosophorylation / Dephosphorylation, PP = Proten-
Protein binding, RB = Regulation of Binding, RE = Reaction, T = Transcription,

UB = Ubiquination; Relationship: Short description of reported relationship between Molecule
1 and Molecule 2.

(XLSX)

S1 Text. Extended methods and discussion of Mendelian randomization analysis.
(PDF)
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