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Abstract: This paper presents a new design of microelectromechanical systems (MEMS) based low-
g accelerometer utilizing mode-localization effect in the three degree-of-freedom (3-DoF) weakly
coupled MEMS resonators. Two sets of the 3-DoF mechanically coupled resonators are used on either
side of the single proof mass and difference in the amplitude ratio of two resonator sets is considered
as an output metric for the input acceleration measurement. The proof mass is electrostatically
coupled to the perturbation resonators and for the sensitivity and input dynamic range tuning
of MEMS accelerometer, electrostatic electrodes are used with each resonator in two sets of 3-DoF
coupled resonators. The MEMS accelerometer is designed considering the foundry process constraints
of silicon-on-insulator multi-user MEMS processes (SOIMUMPs). The performance of the MEMS
accelerometer is analyzed through finite-element-method (FEM) based simulations. The sensitivity
of the MEMS accelerometer in terms of amplitude ratio difference is obtained as 10.61/g for an
input acceleration range of ±2 g with thermomechanical noise based resolution of 0.22 µg/

√
Hz and

nonlinearity less than 0.5%.

Keywords: dynamic range; finite-element-method; MEMS accelerometer; mode-localization; mode-
aliasing; nonlinearity; resolution; sensitivity tuning; SOIMUMPs; weakly coupled resonators

1. Introduction

Microelectromechanical systems (MEMS) accelerometers have been widely used in
many different applications for the last three decades due to their small size, light weight,
batch fabrication and low power requirements. The resonant MEMS accelerometers are
considered to be ideal for precision navigation and seismic sensing applications due to
their high sensitivity and resolution [1,2]. Most of the resonant MEMS accelerometers
use resonant frequency shift, based on stiffness modulation, as an output metric for the
measurement of input acceleration due to output signal being quasi-digital and high sensi-
tivity [3,4]. However, the resonant frequency shift output metric for MEMS accelerometers
is also strongly affected by the environmental variations including temperature and pres-
sure [5,6]. This requires additional error compensation techniques for the stable operation
of such resonant MEMS accelerometers [7,8].

Recently, a relatively new approach based on multiple coupled resonators and using
resonator amplitude as output metric has been implemented for different MEMS resonators
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based sensing applications including force sensing [9], mass sensing [10], stiffness sens-
ing [11] and displacement sensing [12]. These resonant MEMS sensors operate based on the
mode-localization effect between the weakly coupled resonators. The mode-localization
involves the confinement of the energy into any one of the MEMS resonators due to an
input stiffness perturbation in the coupled resonator system. The corresponding changes
in the amplitudes of the resonators are then used as an output metric for the physical
parameter to be measured. The sensitivity of such resonant MEMS sensors is 2–3 orders of
magnitude higher than the conventional resonant frequency shift based sensors [13].

One of the earliest work on the mode-localization based resonant MEMS accelerome-
ters was presented by Zhang et al. [14]. Two double-ended-tuning-fork (DETF) resonators,
weakly coupled through mechanical beams formed a 2-DoF system for the acceleration
sensing. The amplitude ratio (AR) of the two resonators, in out-of-phase mode, was used
as an output metric and results showed that the sensitivity of mode-localization based
MEMS accelerometer, for an input range of ±1 g, is 1.26/g which is 302 times higher than
that of conventional frequency shift based output metric. Yang et al. [15] modified the
accelerometer design presented in [14] by using two single-tine weakly coupled resonators
instead of DETF resonators to decrease the number of vibration modes and implement
closed-loop readout sensing. This allowed to achieve the high resolution and amplitude
ratio sensitivity of 1.32/g. To further increase the sensitivity, Kang et al. [16] used 3-DoF
weakly coupled resonators using mechanical coupling beams and demonstrated an ampli-
tude ratio sensitivity of 4.38/g which was 348% higher than the 2-DoF coupled resonator
system presented earlier in [14]. Recently, Peng et al. [17] implemented the 4-DoF resonator
system with 3-DoF weakly coupled resonators, using mechanical beams, attached in series
and one electrically coupled resonator in parallel. The maximum amplitude ratio sensitivity
is reported to be 23.37/g.

In the previous works presented on the mode-localization based resonant MEMS
accelerometers, the amplitude ratio of the resonators is used as an output metric for acceler-
ation measurement to achieve high sensitivity. However, the amplitude ratio nonlinearity
is a strong function of the stiffness perturbation in the resonators for an input accelera-
tion. The nonlinearity is maximum for low values of the stiffness perturbation around
the veering zone and thus limits the measurement range of the MEMS accelerometer [14].
Recently, Pandit et al. [18] have presented a mode-localized MEMS accelerometer, for input
acceleration from 0–1 g, using amplitude ratio difference (ARD) of 2-DoF weakly coupled
single beam resonators that are attached on the two sides of the proof mass. The amplitude
ratio difference sensitivity of 11/g is reported with enhanced linearity for low stiffness
perturbation values.

In this paper, a new design of mode-localization based MEMS accelerometer is pre-
sented with two 3-DoF weakly coupled resonator systems attached on each side of proof
mass for high sensitivity and large input range. The amplitude ratio difference of the
two resonator system is implemented as an output metric for the input acceleration to
minimize the nonlinearity for low input acceleration values. The proposed design utilizes
electrostatic tuning of the 3-DoF resonators to increase the sensitivity.

2. Structural Design and Working Principle

Figure 1 shows the schematic diagram of the MEMS accelerometer design with two sets
of three weakly coupled resonators attached on either side of the central proof mass. Each
of the resonator consists of four fixed-guided beams to minimize any out-of-plane bending
and a relatively large central plate as compared to traditional MEMS resonators to avoid any
variation in the mass value of resonators due to fabrication process tolerances. The outer
and inner resonator of the 3-DoF resonator set have equal stiffness and mass and are set to
vibration by using comb drive based electrostatic actuators. For the measurement of the
vibration amplitude of these two resonators, capacitive sensing parallel plates are included
in the design in differential current sensing configuration to minimize common mode
signals. The mass of the middle resonator is same as the adjacent resonators but stiffness
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value of its suspension beams is higher. For the stiffness tuning of coupled resonators,
electrostatic parallel plates based tuning electrodes are attached to each resonator. The three
resonators are weakly coupled by using serpentine shaped mechanical suspension beams.
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Figure 1. The structural design of mode-localized MEMS accelerometer with two sets of 3-DoF weakly coupled resonators
on either side of central proof mass.

The central proof mass is free to move and is suspended by using four fixed-guided
beams. The proof mass and inner most resonator, on each side of the proof mass, are
mechanically separated but electrostatically coupled through parallel plate electrodes. For
an input acceleration, the displacement in the central proof mass changes the electrostatic
coupling gap between the proof mass and inner most resonator of 3-DoF resonator system
on each side. This gap change leads to an electrical spring stiffness variation of the inner
resonators and hence results in the localization of the energy and changes in the vibration
amplitudes of the resonators. For the MEMS accelerometer, the difference in the amplitude
ratios of the outer and inner resonator on each side of the central proof mass is used as an
output metric for input acceleration measurement. The proposed MEMS accelerometer is
designed by following the fabrication limitations of commercially available SOIMUMPs
process with structural layer of Silicon and thickness of 25 µm [19]. Table 1 summarizes
main design parameters of the MEMS accelerometer design.
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Table 1. Dimensions of the proposed MEMS accelerometer design.

Parameters Values

Overall device area 5.58 × 1.38 mm2

Central proof mass dimensions 1.96 × 1.16 mm2

Mass of central proof mass (mp) 1.36 × 10−7 Kg

Mechanical stiffness of proof mass suspension beams (kp) 9.25 N/m

Overlap length of perturbation electrodes
(
lp ) 80 µm

Width of perturbation electrodes
(
wp) 3 µm

Number of parallel plate perturbation electrodes (N) 8

Mechanical stiffness of inner and outer resonators (k1 = k3 ) 40 N/m

Mechanical stiffness of middle resonator (k2) 258 N/m

Mechanical stiffness of coupling beams (kc ) 1.06 N/m

Number of driving combs attached to inner and outer resonators 28

Number of electrostatic tuning plate pairs attached to each resonator (Nte) 16

Overlap area of electrostatic tuning plates (Ate) 1500 µm2

Number of parallel sensing plates attached to inner and outer resonators 2

3. Mathematical Model

The working of the MEMS accelerometer can be described by using a lumped mass-
spring-damper model for each 3-DoF resonators set attached on either side of the central
proof mass, as shown in Figure 2. For the dual resonator drive of each resonator set, the
equations of motion can be written as;

m1
..
x1 + c1

.
x1 + k′1x1 + kc(x1 − x2) = F1cos(ωt) (1)

m2
..
x2 + k′2x2 + kc(x2 − x1) + kc(x2 − x3) = 0 (2)

m3
..
x3 + c3

.
x3 + k′3x3 + kc(x3 − x2) = F3cos(ωt) (3)

m4
..
x4 + c4

.
x4 + k′4x4 + kc(x4 − x5) = F4cos(ωt) (4)

m5
..
x5 + k′5x5 + kc(x5 − x4) + kc(x5 − x6) = 0 (5)

m6
..
x6 + c6

.
x6 + k′6x6 + kc(x6 − x5) = F6cos(ωt) (6)

where the mi (for i = 1 to 6) is the masses of the resonators, ci (for i = 1 to 6) is the damping
coefficient due to slide and squeeze film air damping, xi (for i = 1 to 6) is the displacement
in the resonators, F1 and F3 are the driving forces acting on the outer and inner resonator in
the resonator set A, F4 and F6 are the driving forces acting on the inner and outer resonator
in the resonator set B and ω is the frequency of oscillation. The kc is the stiffness of weakly
coupled mechanical springs and stiffness values k′1, k′2, k′3, k′4, k′5 and k′6 can be written as;

k′1 = k1 + ∆kT (7)

k′2 = k2 + ∆kT2 (8)

k′3 = k3 + ∆kT + ∆k3 (9)

k′4 = k4 + ∆kT + ∆k4 (10)

k′5 = k5 + ∆kT2 (11)

k′6 = k6 + ∆kT (12)
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where ki (i = 1 to 6) are the mechanical stiffness values of the suspension beams attached to
the six resonators, ∆kT and ∆kT2 are stiffness changes corresponding to the tuning voltage
applied to the inner-outer resonators and middle resonator respectively. The ∆k3 and ∆k4
are stiffness perturbations in the inner resonators in the resonator set A and B respectively.
These stiffness perturbations are induced in the left and right side 3-DoF resonator systems
corresponding to proof mass displacement for an input acceleration. Since the two sets of
3-DoF resonator systems on each side of the proof mass are identical, the general solution
for the resonator set A is discussed and can be written in the matrix form as;

[M]
..
X + [C]

.
X + [K]X = [F] (13)

 m1 0 0
0 m2 0
0 0 m3

 ..
x1..
x2..
x3

+
 c1 0 0

0 c2 0
0 0 c3

 .
x1.
x2.
x3

+
 k′1 + kc −kc 0
−kc k′2 + 2kc −kc

0 −kc k′3 + kc

 x1
x2
x3

=
 F1cos(ωt)

0
F3cos(ωt)

 (14)

assuming that the solution of the system is of following form;

[X] = [A] sin(ωt) + [B] cos(ωt) (15)

where the vectors [A] =

 a1
a2
a3

 and [B] =

 b1
b2
b3

. By using the above solution in

Equation (14) yields the following results;

[T]
[

[A]
[B]

]
=

[
[F]
[0]

]
(16)

where T is given by

[T] =
[

[K]−ω2[M] −ω[C]
ω[C] [K]−ω2[M]

]
(17)
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Figure 2. Lumped mass-spring-damper model of the 3-DoF weakly coupled MEMS resonators (a) Set A (b) Set B.

After A and B are found by using Equation (16), the frequency of the ith resonator
(i = 1 to 6) can be obtained as:

xi(ω) =
√

Ai + Bi (18)

tanθi = −
Bi
Ai

(19)

To sense the input acceleration, the amplitude ratios of rL = x1/x3 (for the resonator
Set A) and rR = x4/x6 (for the resonator Set B) are utilized and the output metric is the
difference of these two ratios i.e.,

output =|rL − rR| (20)



Micromachines 2021, 12, 310 6 of 25

For the operation of the 3-DoF system, first two modes are generally preferred. In the
first mode, the two outer resonators vibrate in-phase with each other while they vibrate
out-of-phase in the second mode. Assuming that no damping is present in the system and
k1 = k3 = k, m1 = m3 = m and ∆k � k′3, the natural frequencies of these two modes can
be expressed as:

ωip =

√√√√√ 1
m

(k + ∆kT) + kc +
1
2

∆k3 − 2
2k
γ
−

√
∆k32 +

(
2k
γ

)2
 (21)

ωop =

√√√√√ 1
m

(k + ∆kT) + kc +
1
2

∆k3 − 2
2k
γ

+

√
∆k32 +

(
2k
γ

)2
 (22)

where ωip and ωop represent the resonant frequency values of the in-phase and out-of-phase
modes, respectively. The term γ in above equations is given by;

γ =
(k + ∆kT)[k′2 − (k + ∆kT) + kc]

k2
c

(23)

For the design of 3-DoF weakly coupled resonators system, the following criteria is
fulfilled [20];

k′2 > 2k′1 (24)

kc <
k′1
10

<
k′2
20

(25)

4. Performance Analysis of the MEMS Accelerometer Design
4.1. Natural Frequency Analysis

The natural frequency analysis and corresponding mode shapes of the MEMS ac-
celerometer are analyzed by behavioral model based FEM simulations in the Coventor-
Ware software. Figure 3a shows the in-phase and out-of-phase mode shapes of the 3-DoF
MEMS resonators, in Set A of the MEMS accelerometer, with the natural frequency values
of 12,220.048 Hz and 12,223.264 Hz respectively. In the in-phase mode, both the inner
and outer resonator vibrate in the same direction while in the out-of-phase mode both
resonators vibrate in the opposite direction.

4.2. Stiffness Perturbation in the the Inner Resonators of 3-DoF Resonator Sets

The proof mass of the MEMS accelerometer is electrostatically coupled to the inner
resonators in the resonator Set A and Set B. The change in the stiffness of these inner
resonators corresponding to the input acceleration g can be expressed as;

∆k3 = − NεA(
d +

mpa
kp
− m3a

k3
+ xg

)3 (∆V)2 (26)

∆k4 = − NεA(
d− mpa

kp
+ m4a

k4
− xg

)3 (∆V)2 (27)

where N is the number of parallel plate capacitive perturbation electrodes, ε is the per-
mittivity, A is the overlap area of electrodes, d is the initial gap between the electrodes,
mp is the mass of the proof mass, kp is the stiffness of the suspension beams attached to
the proof mass, m3 and m4 are the mass values for inner resonators in the resonator Set A
and B respectively, k3 and k4 is the stiffness of the inner resonators in the resonator Set A
and B respectively, a is the input acceleration and ∆V is the potential difference between
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the resonators and proof mass. The term xg is due to the DC voltage based displacement
applied to the resonators and is given as:

xg =
0.5ε0 A(∆V)2

kp

 1(
d− mpa

kp
+ m3a

k3

)2 −
1(

d +
mpa
kp
− m4a

k4

)2

 (28)Micromachines 2021, 12, x 7 of 25 
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The effect of input acceleration in the range of±2 g on the normalized stiffness change
in the inner coupling resonators is studied through FEM simulations. The inner and outer
resonators in the two sets of 3-DoF resonators are oscillated in the out-of-phase mode
at 35 V DC and 15 mV AC voltage. In the simulations, the proof mass and stator plates
of perturbation electrodes are kept at ground potential. The value of the air damping is
computed using DampingMM module in Coventorware for an air pressure of 10 mTorr
and room temperature [21]. At zero input acceleration the effective spring constant of the
inner and outer resonators is equal with a value of 40 N/m. For an applied acceleration,
the stiffness of inner resonators, attached on each side of the mass, changes. Figure 4
shows that the effect of input acceleration in the range of ±2 g on the normalized stiffness
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perturbation in the inner resonators (∆k/k) is nearly linear. However, the results shows
that the ∆k/k values for inner resonators in both the resonator Set A and B differ with a
maximum value of 0.0018 at input acceleration of ±2 g. This is due to the fact that for a
given acceleration, if the gap in the perturbation electrodes increases in inner resonator in
Set A, it equally decreases in the inner resonator in Set B and from Equations (26) and (27)
it is clear that it will result in a small difference in the ∆k/k for both the inner resonators.
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4.3. Dynamic Response and Mode Localization

For the mode-localization analysis, both the outer and inner resonators of 3-DoF
coupled resonator system are set into vibration in the out-of-phase mode. Figure 5a shows
the frequency response of Set A 3-DoF resonator system at out-of-phase mode resonance
frequency and with input acceleration of 0 g (∆k = ∆k3 = 0). The results show that at
resonant frequency of 11,160.83 Hz, both the outer and inner resonator vibrate with the
same amplitude of 0.44 µm and have an amplitude ratio of 1. Moreover, since the stiffness
of both the inner and outer resonators is equal and there is no stiffness perturbation, only
the out-of-phase mode is activated and in-phase mode is fully restrained. Figure 5b shows
the frequency response of the same system at −0.5 g ((∆k = ∆k3 = −0.0587). The results
show that at −0.5 g, the negative stiffness perturbation introduced by the proof mass
due to electrostatic coupling results in mode-localization. The in-phase and out-of-phase
resonant frequencies are separated by 8.91 Hz with frequency values of 11,150.53 Hz and
11,159.43 Hz respectively. At in-phase resonant frequency, the outer and inner resonator
vibrate with the amplitude of 0.1013 µm and 0.5138 µm respectively and the amplitude
ratio value is 0.197. At out-of-phase resonant frequency, the amplitude ratio of outer and
inner resonator in Set A is 4.955 with corresponding vibration amplitudes of 0.510 µm and
0.103 µm respectively.
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4.4. Mode Aliasing and Frequency Based Sensitivity Analysis

The bandwidth of resonant modes in the coupled 3-DoF resonator systems is strongly
dependent on the quality factor and at low air pressure both the in-phase and out-of-phase
modes may overlap and hence result in mode aliasing. For the 3-DoF weakly coupled
resonator system, the frequency difference (∆ f ) between the in-phase and out-of-phase
mode must be greater than 2∆ f3dB to avoid mode-aliasing [22]. Figure 6a,b shows the
frequency variation in both the in-phase and out-of-phase mode frequency for the resonator
Set A and Set B respectively for an input acceleration in the range of ± 2 g. The results
show that in the resonator Set A, both the in-phase and out-of-phase resonant frequency
values are separated by a minimum frequency of 3.0 Hz at 0 g input acceleration i.e., at
∆k/k = 0. The frequency difference between the two resonant modes increases as the
input acceleration changes from 0 to ±2 g. The behavior of frequency difference variation
with respect to input acceleration is similar in 3-DoF resonator Set B. For the MEMS
accelerometer, the 2∆ f3dB value at 0 g is 2.92 Hz which is less than the ∆ f = 3.0 Hz. Thus,
the anti-aliasing condition is fully satisfied at zero stiffness perturbation.
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Figure 6. In-phase and out-of-phase mode resonant frequency variation with input acceleration (a) Resonator Set A (b)
Resonator Set B.

From Figure 6a,b, it can be observed that the in-phase mode frequency sensitivity
in terms of change in resonant frequency (∆ωip = ω

1g
ip − ω

0g
ip ) of the resonator at 1 g

with respect to 0 g input acceleration is 16.5 Hz. Similarly, the out-of-phase mode sensi-
tivity in terms of change in resonant frequency for 3-DoF weakly coupled resonators is
∆ωop = ω

1g
op − ω

0g
op for 1 g input acceleration is 14.5 Hz. Thus, the relative sensitivity in

parts per million (ppm) i.e., [(∆ωop/ip/ω
0g
op/ip)× 106] for 3-DoF weakly coupled resonators

in in-phase and out-of-phase mode is 1478.78 ppm/g and 1299.18 ppm/g respectively.

4.5. Amplitude Ratio of 3-DoF Resonators as Sensitivity Metric

The amplitude ratios of the outer and inner resonators in the resonator Set A and
Set B are obtained at both the in-phase and out-of-phase mode frequency and at 35 V DC
and 15 mV AC voltage for the input acceleration in the range of ±2 g. Figure 7a shows
the variation in the amplitude ratios of the resonators in the two sets at in-phase mode
frequency. The results show that for resonator Set A, the amplitude ratio (x1/x3) is nearly
zero for a negative stiffness perturbation corresponding to input acceleration in the range
of −0.5 g to −2 g and increases non-linearly for small stiffness perturbation values in the
acceleration range of +0.5 g to −0.5 g. However, for an input acceleration in the range
of 0.5 g to 2 g, the amplitude ratio increases linearly with a maximum value of 16.43 at
input acceleration of 2 g. The amplitude ratio of outer and inner resonator in Set B i.e.,
(x6/x4) follows a symmetrical and opposite behavior with respect to stiffness perturbation
in comparison to the resonator Set A. Figure 7b shows the amplitude ratios of the outer and
inner resonators at out-of-phase mode. The amplitude ratio of resonators in Set A is nearly
zero for positive stiffness perturbation 0.5 g to 2 g and increases linearly for the negative
stiffness perturbation in the input acceleration range of 0 to 2 g. The variation of amplitude
ratio of the resonators in the Set B is symmetrical with respect to the resonators in Set A.
The maximum value of amplitude ratio for the resonators at out-of-phase mode is 21.4
which is higher than the corresponding amplitude ratio value at in-phase mode frequency.
Thus, for the subsequent analysis for the proposed MEMS accelerometer design, we have
considered the out-of-phase mode frequency as the operational frequency. The amplitude
ratio of the resonators in Set A and Set B varies from 1 to 9.95 for an input acceleration in
the range of 0 to ±1 g which shows an absolute amplitude ratio sensitivity (AR/g) of 8.95
for two resonator sets. The relative value of the amplitude ratio sensitivity (AR/g× 106) is
8.95× 106 ppm/g for the MEMS accelerometer design which is 6889 times higher than the
relative frequency sensitivity discussed in Section 4.4.
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Figure 7. Amplitude ratio of the outer and inner resonators in 3-DoF resonators Set A and Set B (a) in-phase mode frequency
(b) out-of-phase mode frequency.

One of the major concerns for amplitude ratio-based output metric for the weakly
coupled MEMS resonators is the nonlinearity for the small values of stiffness perturba-
tion [18,22]. Figure 8 shows the plot for the nonlinearity in the amplitude ratio values
for 3-DoF weakly coupled resonators in Set A and Set B for the out-of-phase mode fre-
quency. The results show that for input acceleration in the range of± 0.5 g, the nonlinearity
in the amplitude ratio increases exponentially for both the coupled resonators in Set A
and Set B. The maximum value of nonlinearity approaches to 39% in the input acceler-
ation range of ±0.2 g. This nonlinearity in the amplitude ratio for small values of the
input acceleration limits the measurement range of the mode-localization based resonant
MEMS accelerometers.
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4.6. Amplitude Ratio Difference of 3-DoF Resonators as Sensitivity Metric

In addition to the limitation of nonlinear response in the small input acceleration range,
the amplitude ratio of the resonators in both Set A and Set B is also strongly dependent on
the input acceleration being in the positive or negative range. From Figures 4 and 7, it is
clear that for the 3-DoF resonator Set A and for input acceleration in the range of 0 to −2 g
(∆k/k < 0) the out-of-phase mode amplitude ratio should be selected for high sensitivity
and for input acceleration in the range of 0 to 2 g (∆k/k > 0) the amplitude ratio of the
in-phase mode should be selected. Similarly, for the resonators Set B, the operational mode
for amplitude ratio must be switched between the in-phase and out-of-phase mode for high
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sensitivity depending on the normalized stiffness perturbation being negative or positive.
The selection of difference of amplitude ratios of the 3-DoF weakly coupled resonators sets
allows to mitigate the limitations of using the amplitude ratios of individual resonator Set
A and Set B as an output metric.

Figure 9 shows the amplitude ratio difference graph for the MEMS accelerometer
design in the input acceleration range of ±2 g. The results show that the difference of the
amplitude ratio of 3-DoF resonators in Set A and Set B varies linearly with an increase in
the input acceleration. The nonlinearity values are less than 0.5% for the input acceleration
range of ±2 g. This shows that for the MEMS accelerometer design, the amplitude ratio
difference as sensitivity metric overcomes the limitation of the nonlinearity in the input
acceleration range of 0 to ±0.5 which is present when only amplitude ratio of resonators in
Set A and Set B is considered. In the input acceleration range of 0 to ±1 g, the amplitude
ratio difference varies from 0 to 9.84 which shows an absolute amplitude ratio difference
sensitivity (ARD/g) of 9.84.
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Figure 9. Amplitude ratio difference of resonators in Set A and Set B of MEMS accelerometer and
nonlinearity for input acceleration in the range of ±2 g.

5. Sensitivity Tuning of MEMS Accelerometer

From Equations (18), (21) and (22) it is clear that both the amplitude and frequency
response of the proposed MEMS accelerometer design are strongly dependent on the
mechanical beam stiffness of inner/outer resonators, middle resonators and mechanical
coupling springs. In the present design, the value of mechanical coupling spring is fixed
while electrostatic tuning plates are attached to the 3-DoF resonators in both the Set A
and Set B. These tuning electrodes allow to tune the sensitivity of the proposed MEMS
accelerometer in a specific range.

5.1. Electrostatic Stiffness Tuning of Inner/Outer Resonators

As shown in Figure 1, in the MEMS accelerometer design, electrostatic tuning elec-
trodes are attached to the mechanical suspension beams of inner and outer resonators of
the 3-DoF resonator Set A and Set B. For the static and dynamic response results, discussed
in Section 4, the net voltage applied to these tuning electrodes is zero and thus only me-
chanical stiffness of beams is present. However, by applying the tuning voltage to these
electrodes, a negative stiffness change in the inner and outer resonators occurs due to
electrostatic spring softening effect and can be estimated as;

∆kT = −NteεAte

(dTE)
3 (∆V)2 (29)



Micromachines 2021, 12, 310 13 of 25

As discussed previously in [20] and also evident from Equations (14) and (23), both
the amplitude and frequency response of the 3-DoF weakly coupled resonators is strongly
dependent on the effective stiffness of the resonators. Figure 10a shows the effect of
increasing tuning voltage on the amplitude ratio of outer and inner resonators in resonator
Set A. It can be observed that with the increase in the tuning voltage, the amplitude ratio
values increase for the input acceleration in the range of ±2 g. Figure 10b shows the same
effect for the amplitude ratio difference of the resonator Set A and Set B with an increase in
the tuning voltage. It should be noted here that for the 3-DoF resonator sets, the maximum
value of tuning voltage that can be applied to the outer and inner resonators is 65 V since
increasing the voltage beyond this value violates the condition given by Equation (25).
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Figure 11 summarizes the effect of increasing tuning voltage on the amplitude ratio
and amplitude ratio difference sensitivity of the MEMS accelerometers. The amplitude
ratio and amplitude ratio difference sensitivity increases to 9.92 and 10.82 respectively at
tuning voltage of 65 V in comparison to the amplitude ratio and amplitude ratio difference
sensitivity values of 8.94 and 9.84 respectively at 0 V.
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and Set B) on the amplitude ratio and amplitude ratio difference sensitivity.

As discussed in Section 4.4, to avoid mode aliasing effect the condition of ∆ f > 2∆ f3dB
must be satisfied. The electrostatic stiffness tuning of the outer and inner resonators in Set
A and Set B of the resonators though results in an increase in the sensitivity, it may result
in the violation of the mode aliasing condition. The effect of applying electrostatic tuning
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voltage to the coupled resonators on shift in out-of-phase resonant frequency is analyzed
for both the resonator Set A and Set B through FEM simulations. Figure 12 shows that for
the resonator Set A, the increase in the tuning voltage and corresponding decrease in the
effective stiffness of the outer/inner resonators violates the basic condition of ∆ f > 2∆ f3dB.
At tuning voltage of 45 V, the ∆ f = 2.941 Hz and 2∆ f3dB at out-of phase mode is 2.988 Hz.
Similarly at tuning voltage of 65 V, the ∆ f = 2.88 Hz and 2∆ f3dB at out-of phase mode is
2.948 Hz.
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5.2. Electrostatic Stiffness Tuning of Middle Resonators in 3-DoF Weakly Coupled Resonators

The frequency separation between the in-phase and out-of-phase resonant modes of
the 3-DoF weakly coupled resonator sets in the MEMS accelerometer and hence the mode
aliasing effect is dependent on the mechanical stiffness of the resonators and coupling
springs with a relation represented by the γ parameter (Equation (23)) in Equations (21)
and (22). The electrostatic mechanical stiffness tuning of the outer and inner resonators in
the Set A and Set B of the MEMS accelerometer results in an increase in the amplitude ratio
of the resonators at tuning voltage of 45 V and 65 V, but decreases the spacing between the
two resonant modes which leads to mode aliasing. In this section, the effect of electrostatic
stiffness tuning of the middle resonators, in both the resonators Set A and Set B, is analyzed
through FEM simulations. Figure 13a shows that for the case when tuning voltage of
45 V is applied to the outer and inner resonators with k′1 = 30 N/m, the increase in the
electrostatic tuning voltage on the middle resonators results in an increase in the ∆f between
the in-phase and out-of-phase resonant modes. At tuning voltage of 50 V, applied to the
electrostatic tuning electrodes attached to the middle resonators, the ∆f = 3 Hz which is
above the 2∆ f3dB value of 2.980 Hz. Similarly, Figure 13b shows that at the tuning voltage
of 65 V to the middle resonators, the ∆f value between the two modes is 2.961 Hz which is
above the 2∆ f3dB value 2.948 Hz for the case when k′1 = 20 N/m. These results show that
by the electrostatic stiffness tuning of the middle resonators, the anti-aliasing condition for
k′1 = 30 N/m and k′1 = 20 N/m can be satisfied.
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Figure 13. Effect of applying electrostatic tuning voltage to the middle resonators in 3-Dof resonator Set A and Set B on the
frequency separation between two modes for (a) k′1 = 30 N/m and (b) k′1 = 20 N/m.

From Equation (18), it is clear that the vibration amplitude of the outer and inner
resonators in the 3-DoF weakly coupled resonator sets for a stiffness perturbation is also
dependent on the mechanical stiffness of the middle resonators in Set A and Set B of the
MEMS accelerometer. Thus, effect of electrostatic stiffness tuning of the middle resonator on
the amplitude ratio sensitivity (AR/g) and amplitude ratio difference sensitivity (ARD/g)
of the outer and inner resonators in both sets is analyzed for tuning voltage of 45 V and
65 V applied to the outer and inner resonators. Figure 14 show that for electrostatically
tuned effective stiffness k′1 = 30 N/m and k′1 = 20 N/m of outer and inner resonators,
the amplitude ratio and amplitude ratio difference sensitivity decreases by increasing the
electrostatic tuning voltage to the middle resonator. For the case of k′1 = 30 N/m, the AR/g
and ARD/g values are 9.255 and 10.150 respectively for a tuning voltage values of 50 V.
Similarly, for the case of k′1 = 20 N/m, the AR/g and ARD/g values are 9.713 and 10.611
respectively for a tuning voltage value of 65 V.
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Figure 14. Effect of applying electrostatic tuning voltage to the middle resonators in 3-Dof resonator Set A and Set B with k′1
= 30 N/m and k′1 = 20 N/m on (a) amplitude ratio sensitivity and (b) amplitude ratio difference sensitivity.

5.3. Dynamic Range and Resolution of MEMS Accelerometer

The lower absolute value of input acceleration for the proposed MEMS accelerometer
design is limited by the nonlinearity and mode-aliasing effect. As discussed in Section 4.5,
for input acceleration ≤±0.5 g, the amplitude ratio of outer and inner resonators in both
resonator Set A and Set B is highly nonlinear. Thus, limiting the dynamic input acceleration
range to ±0.5 g to ±2 g if amplitude ratio is considered as an output metric for acceleration
measurement. However, when amplitude ratio difference is considered as an output metric,
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the overall response becomes linear for the whole input acceleration range of ±2 g. Thus,
the proposed MEMS accelerometer design allows to overcome the inherent nonlinearity
effect on the dynamic input acceleration range by considering the amplitude ratio difference
of two resonator sets as an output metric instead of amplitude ratio of outer and middle
resonators in individual resonator sets.

As discussed in Section 5.1, by using electrostatic stiffness tuning the sensitivity of
the MEMS accelerometer increases but the both in-phase and out-of-phase modes become
aliased. This, effectively limits the lower value of measurable input acceleration to ± 0.05 g
for k′1 = 30 N/m and k′1 = 20 N/m. This limitation of mode aliasing effect of lower value
of measurable input acceleration is overcome by using electrostatic stiffness tuning of the
middle resonators as shown Figure 13. Thus, the mode-aliasing is effectively removed for
the 3-DoF weakly coupled resonators in both Set A and B of the MEMS accelerometer in
the input acceleration range of ±0.05 g.

The upper value of the dynamic input acceleration is limited by the minimum ampli-
tude the resonator that can be measured. For the 3-DoF weakly coupled resonators, the
increase in the input acceleration and hence perturbation in the inner resonators, that are
electrostatically coupled to the proof mass in both Set A and Set B, leads to a decrease in the
vibration amplitude as shown in Figure 15. For an input acceleration in the range of 0 to
−2 g, the perturbation in the inner resonator in Set A results in a decrease in the vibration
amplitude x3. Similarly, an input acceleration in the range of 0 to +2 g and corresponding
stiffness perturbation in the inner resonator in Set B results in a decrease in the vibration
amplitude x4.
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increasing value of input acceleration.

The minimum detectable amplitude for a resonator is limited by the amplitude fluctu-
ations due to noise in the system. The thermomechanical noise developed due to dynamic
equilibrium between the mechanical energy of the resonator and thermal energy of the sur-
roundings is considered to be the fundamental noise factor for the MEMS resonators within
3 dB bandwidth [20]. Assuming that the noise in the inner resonators in both Set A and Set
B is Gaussian and 3 dB bandwidth for a resonator is very less than the resonant frequency
i.e., ∆ f3dB << fr, displacement in the resonator caused only by the thermomechanical
noise can be expressed as [23]

xnoise
r =

√
4kbT∆ f3dBQ

mrω3
r

(30)
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where kb is Boltzmann constant, T is ambient temperature, Q is quality factor, mr is effective
modal mass and ωr is the angular resonant frequency of resonator. From Equation (30), the
noise equivalent displacement obtained for the inner resonators in Set A and Set B of the
MEMS accelerometer is 1.22× 10−5 µm. The minimum amplitude of the inner resonators in
Set A (x3) and Set B (x4) is 0.02 µm at 2 g input acceleration. This shows that signal-to-noise
ratio at lowest amplitude of the resonators in the MEMS accelerometer design very high
and is equal to 1643.

The resolution of the MEMS accelerometer design can be calculated by estimating
the minimum resolvable shift in the inner resonators stiffness due acceleration induced
perturbation by using following expression [24].

(
∆k
k

)
min

= 8
kc

k

√
kbT∆ f3dB

2mrω3
r xr2Q

(31)

For the case for k′1 = 20 N/m and tuning voltage of 65 V applied to the middle
resonators, the minimum resolvable shift in the stiffness for the inner resonators in both
Set A and Set B is 6.06× 10−10. From this value, the resolution of the proposed MEMS
accelerometer design in terms of input acceleration can be calculated as;

Resolution =
(∆k/k)min
(∆k/k)/g

= 0.22 µg/
√

Hz (32)

6. Discussion
6.1. Comparison of 3-DoF Weakly Coupled MEMS Resonators Based Accelerometer Designs

Table 2 shows the comparison of the MEMS accelerometer presented in this work
with the other accelerometers designs presented in the literature using mode localization
concept. Most of the designs presented in the literature convert the input acceleration
range of ±1 g with amplitude ratio as output metric for the acceleration measurement.
For applications like structural health monitoring [25], hand tremor detection [26,27],
and earthquake sensing [28], the MEMS accelerometer should be able to detect input
acceleration up to ±2 g. One other parameter which is generally not presented in the
mode-localization based MEMS accelerometers presented in the literature is overall size of
the MEMS accelerometer. Most of the designs listed in Table 2 utilize two mass system for
acceleration measurement except in [18] which utilizes single proof mass. The two mass
system results in an increase in the overall size of the MEMS accelerometer. In comparison
to the mode-localization based MEMS accelerometers, the 3-DoF weakly coupled MEMS
resonators-based accelerometer design presented in this work offers large input dynamic
range, high linearity, high sensitivity, high resolution with comparatively small size.

Table 2. Comparison of the 3-DoF weakly coupled resonators based MEMS accelerometers performance with respect to
mode-localized MEMS accelerometers presented in the literature.

Reference DoF of Coupled
Resonators Output Metric Dynamic Range Sensitivity Resolution Size

Zhang et al. [14] 2 Amplitude ratio ±1 g 1.26/g 0.619 mg -
Yang et al. [15] 2 Amplitude ratio ±1 g 1.32/g 7.608 µg/

√
Hz -

Kang et al. [16] 3 Amplitude ratio ±1 g 4.38/g 1.1 µg/
√

Hz -
Peng et al. [17] 4 Amplitude ratio 0-1 g 23.37/g - -

Pandit et al. [18] 2 Amplitude ratio
difference ±1 g 6/g - 10 × 10 mm2

This work 3 Amplitude ratio
difference ±2 g 10.61/g 0.22 µg/

√
Hz 5.58 × 1.38 mm2
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6.2. Comparison of 3-DoF and 2-DoF Weakly Coupled MEMS Resonators Based MEMS
Accelerometer Designs

In this section, the comparison of the amplitude ratio and amplitude ratio sensitivity
of the 3-DoF resonator based MEMS accelerometer is presented with respect to the 2-
DoF weakly coupled resonator system, shown in Figure 16, at the same testing conditions
discussed in Section 4.2. Figure 17 shows the amplitude ratio and amplitude ratio difference
for 2-DoF weakly coupled resonators based MEMS accelerometer for an input acceleration
range of ±2 g. The results show that the amplitude ratio sensitivity for the 2-DoF resonator
system based MEMS accelerometer is only 0.137/g which is 65 times less than the AR
sensitivity value for the un-tuned 3-DoF resonator system based accelerometer. The ARD
sensitivity value for the 2-DoF resonator system based design is 0.069/g which is 128 times
less than the 3-DoF resonator system based MEMS accelerometer. The mechanical structure
of the proposed 3-DoF weakly coupled resonators based MEMS accelerometer is relatively
complex involving multiple masses and mechanical suspensions. However, the proposed
3-DoF system allows to achieve higher sensitivity in comparison to the conventional 2-DoF
weakly coupled resonator systems.

Micromachines 2021, 12, x 18 of 25 
 

 

weakly coupled resonator system, shown in Figure 16, at the same testing conditions dis-
cussed in Section 4.2. Figure 17 shows the amplitude ratio and amplitude ratio difference 
for 2-DoF weakly coupled resonators based MEMS accelerometer for an input acceleration 
range of ±2 g. The results show that the amplitude ratio sensitivity for the 2-DoF resonator 
system based MEMS accelerometer is only 0.137/g which is 65 times less than the AR sen-
sitivity value for the un-tuned 3-DoF resonator system based accelerometer. The ARD 
sensitivity value for the 2-DoF resonator system based design is 0.069/g which is 128 times 
less than the 3-DoF resonator system based MEMS accelerometer. The mechanical struc-
ture of the proposed 3-DoF weakly coupled resonators based MEMS accelerometer is rel-
atively complex involving multiple masses and mechanical suspensions. However, the 
proposed 3-DoF system allows to achieve higher sensitivity in comparison to the conven-
tional 2-DoF weakly coupled resonator systems. 

 
Figure 16. The structural design of mode-localized MEMS accelerometer with two sets of 2-DoF weakly coupled resonators 
on either side of central proof mass. 

 
Figure 17. The amplitude ratio and amplitude ratio difference of 2-DoF weakly coupled resonators 
based MEMS accelerometer. 

6.3. Effect of Microfabrication Process Tolerances on the MEMS Accelerometer 
Since, the proposed MEMS accelerometer design involves multiple masses that are 

coupled together through mechanical suspension beams, any process variation can dras-

Figure 16. The structural design of mode-localized MEMS accelerometer with two sets of 2-DoF weakly coupled resonators
on either side of central proof mass.

Micromachines 2021, 12, x 18 of 25 
 

 

weakly coupled resonator system, shown in Figure 16, at the same testing conditions dis-
cussed in Section 4.2. Figure 17 shows the amplitude ratio and amplitude ratio difference 
for 2-DoF weakly coupled resonators based MEMS accelerometer for an input acceleration 
range of ±2 g. The results show that the amplitude ratio sensitivity for the 2-DoF resonator 
system based MEMS accelerometer is only 0.137/g which is 65 times less than the AR sen-
sitivity value for the un-tuned 3-DoF resonator system based accelerometer. The ARD 
sensitivity value for the 2-DoF resonator system based design is 0.069/g which is 128 times 
less than the 3-DoF resonator system based MEMS accelerometer. The mechanical struc-
ture of the proposed 3-DoF weakly coupled resonators based MEMS accelerometer is rel-
atively complex involving multiple masses and mechanical suspensions. However, the 
proposed 3-DoF system allows to achieve higher sensitivity in comparison to the conven-
tional 2-DoF weakly coupled resonator systems. 

 
Figure 16. The structural design of mode-localized MEMS accelerometer with two sets of 2-DoF weakly coupled resonators 
on either side of central proof mass. 

 
Figure 17. The amplitude ratio and amplitude ratio difference of 2-DoF weakly coupled resonators 
based MEMS accelerometer. 

6.3. Effect of Microfabrication Process Tolerances on the MEMS Accelerometer 
Since, the proposed MEMS accelerometer design involves multiple masses that are 

coupled together through mechanical suspension beams, any process variation can dras-

Figure 17. The amplitude ratio and amplitude ratio difference of 2-DoF weakly coupled resonators
based MEMS accelerometer.



Micromachines 2021, 12, 310 19 of 25

6.3. Effect of Microfabrication Process Tolerances on the MEMS Accelerometer

Since, the proposed MEMS accelerometer design involves multiple masses that are
coupled together through mechanical suspension beams, any process variation can drasti-
cally effect the device performance parameters. The SOIMUMPs microfabrication process is
a relatively matured foundry process with process tolerances of only±1 µm. In this section,
the effect of these process tolerances on the variation in the stiffness of the mechanical
suspension beams of the three weakly coupled resonators and hence on the performance
parameters of the proposed 3-DoF weakly coupled resonators based MEMS accelerometer
is analyzed. Table 3 shows the values of the spring constant of the inner/outer (k1), middle
resonators (k2) and coupling spring (kc) at nominal thickness of 25 µm and with ±5%
variation in thickness due to SOIMUMPs process tolerances. The effect of variations in the
spring beams thickness on the main performance parameters including AR, ARD, ∆ f and
2∆ f3dB is analyzed through design of experiments (DOE) based response surface method-
ology (RSM) [29,30]. The spring constant of three resonators are considered as design
factors with each being at three levels. Table 4 show the central composite design (CCD)
based simulation matrix with 16 different combinations of thickness values for resonators
and coupling spring beams and corresponding output responses at input acceleration of
2 g. A regression analysis is carried out for the output responses which showed that the
interaction between the k1 and kc is most significant. Figure 18 shows the response surface
plot for the effect of the ±5% variation in the beams thickness of inner/outer resonators
and coupling springs on ARD of the MEMS accelerometer. The value of middle resonator
thickness is considered to be at nominal value of 25 µm The results show the ARD values
change linearly with the variation in the inner/outer resonators and coupling spring beam
thickness from 23.75 µm to 26.25 µm. At inner/outer resonators and coupling spring
beam thickness of 23.75 µm and 26.25 µm, ARD values are 23.94 and 18.99 respectively.
This shows that the variation in the ARD with respect to nominal thickness of 25 µm
(ARD = 21.34 at 2 g) for mechanical beams is 10.9%.
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Table 3. Three different levels of mechanical springs with respect to±5% variation in beam thickness.

Thickness (µm) 23.75 ( −5%) 25 (0%) 26.25 ( +5%)

kc 1.004 N/m 1.06 N/m 1.11 N/m

k1 38 N/m 40 N/m 42 N/m

k2 244.8 N/m 258 N/m 270.6 N/m

Table 4. The DOE based CCD design matrix for beam thickness of mechanical springs and corresponding output responses.

No. kc (µm) k1 (µm) k2 (µm) AR ARD ∆f (Hz) 2∆f3dB (Hz)

1 26.25 23.75 23.75 19.975 −19.909 3.401 2.956

2 26.25 23.75 26.25 21.683 −21.622 3.001 2.956

3 26.25 25 25 19.923 −19.857 3.302 2.912

4 23.75 23.75 23.75 23.105 −23.049 2.801 2.976

5 25 26.25 25 20.487 −20.423 3.102 2.956

6 25 25 25 21.396 −21.335 3.001 2.920

7 26.25 26.25 23.75 18.259 −18.187 3.502 2.944

8 26.25 26.25 26.25 19.864 −19.798 3.202 2.944

9 23.75 26.25 23.75 21.188 −21.126 2.901 2.968

10 25 25 26.25 22.259 −22.200 2.901 2.920

11 23.75 25 25 23.004 −22.947 2.701 2.932

12 25 25 23.75 20.552 −20.488 3.201 2.920

13 23.75 26.25 26.25 22.897 −22.839 2.601 2.968

14 25 23.75 25 22.399 −22.340 2.902 2.968

15 25 25 25 21.396 −21.335 3.001 2.920

16 23.75 23.75 26.25 24.858 −24.805 2.501 2.976

Figure 19a shows the effect of 5% variation in the mechanical suspension beams of
the inner/outer resonators and coupling springs on the frequency difference between
the in-phase and out-of-phase mode at nominal thickness value of 25 µm for the middle
resonator beams. The results show that doe low thickness value of 23.75 µm for inner/outer
resonators and coupling springs and hence low stiffness values, the ∆ f is at minimum value
of 2.501 Hz. However, with an increase in the resonators and coupling spring thickness to
26.75 µm, the frequency separation increase to maximum value of 3.502 Hz. The change in
the ∆ f value due to ±5% variation in beam thickness value of the resonators and coupling
springs with respect to nominal thickness is nearly 14.3%.

Figure 19b shows the effect of 5% variation in the inner/outer resonators and cou-
pling springs beam thickness on the 2∆ f3dB. At the low values of beam thickness for both
resonators and coupling spring i.e., at 23.75 µm, the 2∆ f3db value is 2.976 Hz by consid-
ering the ∆ f value of 2.501 Hz at beam thickness of 23.75 µm from Figure 19a, it can be
observed that mode aliasing condition is violated. Moreover, Figure 19b shows that at the
resonators and coupling spring thickness of 26.25 µm, the 2∆ f3dB = 2.944 which is less than
corresponding ∆ f value of 3.502 Hz shown in Figure 19a. the results show that due to
process variations based −5% thickness change with respect to nominal thickness value
of 25 µm will lead to high AR and ARD sensitivity but result in severe mode aliasing. As
discussed in earlier in Section 5.2, this mode aliasing can be eliminated by the electrostatic
tuning of the middle resonator stiffness. In this present case, with −5% variation in the
resonators and coupling spring beam thickness, an electrostatic tuning voltage of 100 V to
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the middle resonator results in new ∆ f value of 3.0 Hz which is higher than corresponding
2∆ f3dB value of 2.976 Hz. Thus, mode aliasing condition is satisfied.
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6.4. Effect of Operating Temperature on Performance of the MEMS Accelerometer

The operating temperature of the MEMS accelerometer is generally in the range of
−40 ◦C to 85 ◦C [31]. The temperature dependent properties of the material and thermal
stresses affect the performance parameters of MEMS accelerometer. The temperature
dependent variation in the material properties specially the Young’s modulus is very less
with a 0.016% shift in value with respect to room temperature in the temperature range of
−40 ◦C to 85 ◦C [32,33]. Thus, the effect of temperature dependent variation in Young’s
modulus is ignored in the subsequent discussion. To analyze the effect of operating
temperature variation, in the range of −40 ◦C to 85 ◦C, on the performance of 3-DoF
weekly coupled MEMS accelerometer, an FEM based thermomechanical analysis is carried
out. Both the silicon substrate and structural layer of 400 µm and 25 µm thickness are
considered in the analysis. The thermal deformation analysis results show that temperature
induced deformation in MEMS accelerometer structure is mostly in-plane. Figure 20a and
(b) shows the thermal deformation profile of the MEMS accelerometer at −40 ◦C and 85 ◦C
respectively. The results show that at −40 ◦C, the inner resonators in both set A and set B
have equal thermal deformation in opposite directions with a value of 59 nm. Similarly, the
thermal deformation in the outer resonators in both set A and set B is equal and in opposite
direction with a value of 17.42 nm. Figure 20b shows that at 85 ◦C, the inner resonator
sets move towards the proof mass with a value of 83 nm, thus decreasing the initial gap
between the perturbation electrodes.

Figure 21a shows the effect of operating temperature variations on the amplitude ratio
of the 3-DoF weakly coupled resonators in Set A of the MEMS accelerometer for input
acceleration in the range of 0 to 2 g. At 0 g input acceleration the amplitude ratio of outer
and inner resonators (x1/x3) in Set A is 0.57 at −40 ◦C and 3.98 at 85 ◦C. This shows that
due to operating temperature variations, the amplitude ratio equilibrium point is shifted
due to thermal deformation of the inner/outer resonators and corresponding change in
the initial gap between the capacitive perturbation electrodes. The percentage change
in the amplitude ratio sensitivity with respect to room temperature at −40 ◦C is 14.8%
and at 85 ◦C is 10.8%. Moreover, the difference of amplitude ratio with respect to room
temperature increases nonlinearly with the increasing value of input acceleration in the
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range of 0 g to 2 g. Figure 21b shows the at 0 g input acceleration, the amplitude ratio
difference of resonator Set A and Set B is nearly zero. This is primarily due to symmetric
thermal deformation in both the resonator Set A and Set B at a given operating temperature
at 0 g. However, with an increase in the input acceleration the amplitude ratio difference
between the two resonator sets increases. The percentage change in the amplitude ratio
difference sensitivity with respect to room temperature at−40 ◦C is 18% and at 85 ◦C is 28%.
This high value of deviation for amplitude ratio difference sensitivity with respect to room
temperature can be attributed to further decrease in the amplitude ratio in the resonator
Set B with an application of input acceleration. The thermal deformation results for the
3-DoF weakly coupled resonators based MEMS accelerometer show that the mechanical
design can be further improved to minimize the thermal deformations in the operating
temperature range of −40 ◦C to 85 ◦C to achieve robustness.
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7. Conclusions

In this paper, a new design of the MEMS accelerometer based on mode-localization in
3-DoF weakly coupled MEMS resonators is presented with enhanced input dynamic range
of ±2 g and sensitivity, by following the fabrication constraints of commercially available
SOIMUMPs process. The central proof mass of the MEMS accelerometer is electrostatically
coupled to the two sets of 3-DoF coupled MEMS resonators. The electrostatic stiffness
perturbation in the resonators coupled to the central proof mass varies linearly with an
input acceleration in the range of ±2 g. Initially, the effect of input acceleration on the
mode-aliasing between the in-phase and out-of-phase mode is analyzed which showed
that with the nominal values of design parameters there is no mode-aliasing at 0 g. The
relative frequency sensitivity values for the 3-DoF weakly coupled resonators in in-phase
and out-of-phase mode are obtained as 1478.78 ppm/g and 1299.18 ppm/g respectively.
The amplitude ratio of the outer and inner resonators in both the 3-DoF resonator sets is
obtained as 1 at 0 g with maximum amplitude of 0.44 µm for both resonators. The results
showed that with an increase in the input acceleration, the amplitude ratio between the
outer and inner resonators in a resonator set increases. The amplitude ratio of resonators in
out-of-phase mode is higher with a maximum value of 21.4 in comparison to in-phase mode
in which maximum value is 16.4 at the maximum input acceleration of ±2 g. Thus, for the
MEMS accelerometer design, out-of-phase mode is chosen as a working mode for higher
sensitivity. The relative value of the amplitude ratio sensitivity (AR/g× 106) obtained
for the MEMS accelerometer design is 8.95× 106ppm/g which is 6889 times higher than
the relative frequency sensitivity. It is observed that for low input acceleration values i.e.,
for ± 0.5 g, the amplitude ratio response is highly nonlinear with a maximum value of
nonlinearity approaching to 39% in the input acceleration range of ± 0.2 g. By considering
the difference of amplitude ratios of the two 3-DoF weakly coupled resonator sets, the
output response is linear for the low value of input acceleration also. Thus, increasing the
input dynamic range of the MEMS accelerometer to full range between ±2 g. The absolute
amplitude ratio difference sensitivity (ARD/g) for the MEMS accelerometer is obtained
as 9.84.

Both the amplitude ratio and amplitude ratio difference sensitivity of the MEMS
accelerometer are enhanced by the electrostatic stiffness tuning of the outer and inner res-
onators of the 3-DoF resonator sets but results in mode aliasing. The anti-aliasing condition
is thus satisfied by electrostatic tuning of the middle resonators. At a tuning voltage of 65 V,
applied to the resonators in both the 3-DoF resonator sets, the absolute amplitude ratio and
amplitude ratio difference sensitivity values for the MEMS accelerometer are obtained as
9.713 and 10.611 respectively which are higher in comparison to the initial amplitude ratio
and amplitude ratio difference sensitivity values of 8.95 and 9.84 respectively. By consider-
ing the thermomechanical noise as main noise factor, the signal-to-noise ratio of 1643 is
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obtained for the maximum input acceleration value of ±2 g and for minimum vibration
amplitude of the perturbation resonators. The resolution of the MEMS accelerometer in
terms of input acceleration is obtained as 0.22 µg/

√
Hz. The performance of the 3-DoF and

2-DoF weakly coupled MEMS resonators based accelerometers is compared which showed
that the sensitivity of 3-DoF resonators based accelerometer is 128 times higher than 2-DoF
resonators based MEMS accelerometer. The effect of microfabrication process tolerances on
the sensitivity of the MEMS accelerometer showed a 14.3% variation in sensitivity for ±5%
variation in the thickness of resonators and coupling springs beams. The effect of operat-
ing temperature variations on the proposed MEMS accelerometer design showed that at
−40 ◦C and 85 ◦C, there is 10.8% and 28% change in amplitude ratio and amplitude ratio
sensitivity respectively with respect to the room temperature. Thus, the mode-localization
based MEMS accelerometer design presented in this paper can be used for high sensitivity
seismic applications at room temperature but for operating temperature of −40 ◦C and
85 ◦C the thermomechanical stability should be improved to achieve stable operation.
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