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Glioma is themost common type of primarymalignant tumor in
the central nervous system. Tumor recurrence and progression
are common in lower-grade glioma (LGG). Immune checkpoint
blockade (ICB), as an emerging immunotherapy, is expected to
improve theprognosis ofpatientsundergoingconventional treat-
ment, but it currently performs poorly in glioma.We divided pa-
tients into genome-stable and -unstable groups according to the
somatic mutation count and then found that the expression of
CDC20 was positively correlated with genomic instability. We
compared the differences in long non-coding RNA (lncRNA)
expression and immune infiltration between the two groups.
Five lncRNAs and three immune cell types were identified to
construct riskmodels andanomogramcombing clinical features.
Through internal and external validation, the models exhibited
sufficient ability to predict the prognosis and the possible
response to ICB therapy of patients. This study provided a poten-
tial predictive approach for the precise application of ICB and
support for improving the prognosis of LGG patients.

INTRODUCTION
Glioma is the most common primary malignant brain and other cen-
tral nervous system tumor, accounting for 80.8% of patients.1 Gli-
omas are conventionally classified into World Health Organization
(WHO) grades I to IV based on histopathological features, among
which WHO grades II and III are considered as lower-grade gliomas
(LGGs). According to the latest WHO classification combined with
molecular parameters in 2016, LGGs are divided into isocitrate dehy-
drogenase (IDH)-wild-type astrocytomas, IDHmutant astrocytomas,
IDH mutant and 1p19q-codeleted oligodendrogliomas, and not
otherwise specified (NOS) categories.2 Despite well-developed con-
ventional treatment, tumor recurrence and progression to WHO
grade IV glioblastomas are common in LGG due to the highly inva-
sive nature and incomplete surgical resection, causing significant dif-
ferences in survival outcomes among patients.3–5 Therefore, accurate
prediction of LGG patients’ prognosis is essential for treatment guid-
ance and comprehensive management.

Genomic instability (GI), as a ubiquitous characteristic of human
cancers, represents an elevated trend of acquiring new mutations in
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the genome, thereby driving tumor progression and resistance to
therapy.6 Previous studies have shown that higher GI is associated
with worse prognosis for several cancer types, such as ovarian, colo-
rectal, and breast cancers.7–10 On the other hand, GI drives tumors to
accumulate point mutation burden, which increases the production
of neoantigens.11 Neoantigens trigger immune responses and modu-
late immune infiltration in the tumor microenvironment (TME),
often making tumors more sensitive to immune checkpoint blockade
(ICB) and leading to better prognosis.12,13 The specific prognostic role
of GI in LGG needs further exploration.

Long non-coding RNA (lncRNA) is defined as a group of various
RNA molecules with more than 200 nucleotides that do not encode
proteins. lncRNAs regulate gene expression through various mecha-
nisms, thereby affecting biological activities of cells, including glioma
cells naturally, such as GI, proliferation, migration, and apoptosis.14,15

Regarding the link between lncRNA and GI, recent studies have re-
vealed that NORAD could maintain genomic stability by sequestering
proteins that bind to mRNAs and inhibit their critical activity such as
mitosis, DNA repair, and DNA replication.16,17 DINO has been re-
ported to bind to and promote p53 protein stabilization and plays
an important role in the process of cell-cycle arrest and apoptosis
in response to DNA damage.18 Besides, increasing studies have re-
vealed the functional roles of lncRNAs in the modulation of
TME.19,20 Compared with the total amount, the lncRNAs in which
mechanisms have been revealed are only a drop in the ocean. The cur-
rent research results can only partially explain the impact of lncRNA
on GI and immune infiltration.

In the current study, based on the somatic mutation profiles and tran-
scriptome profiles from public databases, we explored the impact of
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Figure 1. Identification and function enrichment analyses of GI-related lncRNAs

(A) Comparison of three differential expression analysis methods, including limma, edgeR, and DESeq2. (B) Based on 50 differentially expressed lncRNAs, patients were

divided into two groups using hierarchical clustering. (C) The two groups were distinguished by the number of cumulative somatic mutations. (D) The expression of CDC20

was higher in the GU-like group. (E) K-M survival analysis exhibited that the GS-like group had significantly better prognosis. (F) GO analysis of the biological process based on

the GI-related lncRNAs. (G) KEGG analysis based on the GI-related lncRNAs.
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GI on LGG from the level of lncRNA expression and immune infiltra-
tion. Corresponding risk models and a nomogram were developed
and validated to predict the prognosis and the possible response to
ICB therapy of patients. The results of this study may help identify
patients suitable for ICB therapy and improve the current plight of
LGG treatment. The conclusions need to be further confirmed in bio-
logical experiments and clinical trials.

RESULTS
Identification of GI-related lncRNAs

Based on the somatic mutation profiles of LGG samples (n = 496)
downloaded from The Cancer Genome Atlas (TCGA), we calculated
the number of cumulative point mutations for each sample.

Samples with mutations in the top 25% (n = 130) and bottom 25%
(n = 128) were defined as genome-unstable (GU) group and
432 Molecular Therapy: Oncolytics Vol. 22 September 2021
genome-stable (GS) group, respectively. Subsequently, the GS group
was set as the control group, and the differential expression analysis
of lncRNAs between GU and GS groups was performed using three
methods separately, limma, edgeR, and DESeq2. After calculating
the fold change (FC) and false discovery rate (FDR) of lncRNAs,
we set |log2FC| > 1.5 and FDR < 0.05 as the filter criteria and then
took the intersection of results from three methods. Finally, 50 differ-
entially expressed lncRNAs were selected for subsequent analyses
(Figure 1A).

With the aid of hierarchical clustering, 496 LGG samples were sepa-
rated into two groups in terms of the differential expression pattern of
50 lncRNAs, which were exhibited in a heatmap (Figure 1B). The cu-
mulative somatic mutations in the two groups were significantly
different, and we defined the group with fewer mutations as the
GS-like group, whereas the other group as the GU-like group



Table 1. Comparison of clinical characteristics of patients in the training set

and testing set

Variables
Training
set

Testing
set

TCGA
set

p
value

Gender

Female 163 (46.8%) 59 (39.9%) 222 (44.8%) 0.183

Male 185 (53.2%) 89 (60.1%) 274 (55.2%)

Age

%40 165 (47.4%) 76 (51.4%) 241 (48.6%) 0.481

>40 183 (52.6%) 72 (48.6%) 255 (51.4%)

Histological type

Astrocytoma 130 (37.4%) 57 (38.5%) 187 (37.7%) 0.193

Oligoastrocytoma 96 (27.6%) 30 (20.3%) 126 (25.4%)

Oligodendroglioma 122 (35.1%) 61 (41.2%) 183 (36.9%)

WHO grade

Grade II 174 (50.0%) 65 (43.9%) 239 (48.2%) 0.281

Grade III 174 (50.0%) 82 (55.4%) 256 (51.6%)

Unknown 0 (0%) 1 (0.7%) 1 (0.2%)

Molecular feature

IDH mutant and
1p19q codeleted

52 (14.9%) 31 (21.0%) 83 (16.7%) 0.430

IDH mutant 95 (27.3%) 39 (26.4%) 134 (27.0%)

IDH wild type 37 (10.6%) 16 (10.8%) 53 (10.7%)

Unknown 164 (47.1%) 62 (41.9%) 226 (45.6%)

TCGA, The Cancer Genome Atlas; WHO, World Health Organization; IDH, isocitrate
dehydrogenase.
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(Wilcoxon test, p < 0.001; Figure 1C). Besides, the expression of
CDC20 in the GU-like group was much higher (Wilcoxon test, p <
0.001; Figure 1D). CDC20 is a newly identified gene related to
genomic stability. The overexpression of CDC20may forcibly activate
the unregulated mitosis cycle of cells that have undergone prolonged
mitotic arrest, which in turn leads to cell proliferation in an unregu-
lated manner.21 According to the Kaplan-Meier (K-M) survival
analysis between the two groups, the GS-like group had better overall
survival (OS) (log-rank test, p < 0.001; Figure 1E).

Furthermore, based on the transcriptome profiles downloaded from
TCGA, we analyzed the co-expression relationship between lncRNAs
and protein-coding genes. A co-expression network was constructed
based on the top 10 most related protein-coding genes for each differ-
entially expressed lncRNA (Figure S1). Functional enrichment ana-
lyses of lncRNA-related protein-coding genes were conducted to
explore the prospective pathways of the association between GI and
lncRNAs. In terms of the Gene Ontology (GO) analysis, the function
was enriched in the biological process such as nuclear division and
chromosome segregation (Figure 1F). As for the Kyoto Encyclopedia
of Genes and Genomes (KEGG) analysis, pathways such as cell cycle
and p53 signaling pathway were identified (Figure 1G). These en-
riched GI-related pathways provided a possible explanation for the ef-
fects of lncRNAs on GI in LGG samples.
Association between GI-related lncRNAs and prognosis

To explore the impact of GI-related lncRNAs on prognosis, further sur-
vival-related analyseswere performed for screeningmodeling lncRNAs.
Based on a ratio of seven to three, 496 LGG patients from TCGA were
separated randomly into the training set (n = 348) and the testing set
(n = 148). Patients’ clinical characteristics from the two sets were
compared to ensure the differences between the two sets were insignif-
icant (Table 1). In the training set, throughunivariateCox regression, 49
of the 50 GI-related lncRNAs met the criteria that the p value was less
than 0.05. Subsequently, in the least absolute shrinkage and selector
operation (LASSO) regression, eight lncRNAs met the requirement to
be included more than 990 times in all 1,000 repetitions. Finally,
through further filtration of stepwise regression, a model based on the
expression of five lncRNAs in the training set was established as follows:
lncRNA risk score = 0:4069� H19 expression level� 0:6600� AC

109439:1 expression level + 0:3623� LINC02587 expression level +

1:1741� AC015909:3 expression level + 1:6457� AC003986:2

expression level

.

Based on the median risk score of the training set (�0.431), patients
from the training set, testing set, and total TCGA set were divided into
high- and low-risk groups, respectively. In the total TCGA set, we
visualized the relationship among lncRNA risk score, expression level,
and survival outcome (Figure 2A). The higher expression level of
AC109439.1 indicated better prognosis, whereas the association in
the other four lncRNAs was opposite. The somatic mutation count
and the expression of CDC20 in the high-risk group were both higher
than those in the low-risk group (Wilcoxon test, p < 0.001; Figure 2B).

As for the lncRNA risk model’s predictive ability, K-M analyses and
receiver operating characteristic (ROC) curves were performed in the
training set, testing set, and total TCGA set, respectively. Patients in
the high-risk groups had worse prognosis than the low-risk groups
(log-rank test, p < 0.001, Figure 2C; p = 0.002, Figure 2D; p <
0.001, Figure 2E). According to the ROC curves of 1-, 3-, and 5-
year OS prediction, the area under the curve (AUC) ranged between
0.769 and 0.942 (Figures 2F�2H). The lncRNA riskmodel exhibited a
quite good prediction performance in the internal validation. As for
the external validation, since modeling lncRNAs other than H19
lacked enough expression data, we only explored the prognostic
role of H19 in the Chinese Glioma Genome Atlas (CGGA) set (n =
592) and Gene Expression Omnibus (GEO): GSE16011 set (n =
107). Similar to the performance in TCGA set, higher expression of
H19 in external sets also indicated worse prognosis (log-rank test,
CGGA: p < 0.001; GEO: GSE16011: p = 0.117; Figure S2).

Association between GI-related immune infiltration and

prognosis

To explore the association between GI and immune infiltration, we
compared the enrichment scores of 28 immune cell types, stromal
Molecular Therapy: Oncolytics Vol. 22 September 2021 433
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Figure 2. Construction and validation of the lncRNA risk model

(A) With the increase of lncRNA risk score, the differences in lncRNA expression level and survival outcome. (B) Comparison of somatic mutation count and CDC20

expression between low and high lncRNA risk groups. (C�E) Groupswith higher lncRNA risk scores were related to worse prognosis in the training set, testing set, and TCGA

set. (F�H) ROC curves for 1-, 3-, and 5-year OS prediction of the lncRNA risk model were performed in the training set, testing set, and TCGA set.
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score, and immune score between GS- and GU-like groups. Since the
distribution of each score was quite different, the comparison between
the two groups was exhibited after consecutive mean subtraction and
standardization (Figure 3A). The differences between the two groups
of effector memory CD8 T cell and eosinophil were not significant,
and the score of the CD56-dim natural killer cell in the GS-like group
was significantly higher than the GU-like group, whereas all other
scores in the GU-like group were significantly higher than the GS-
like group.

To explore the relationship between prognosis and immune cell
scores, we conducted univariate Cox regression analyses for 28 im-
mune cell types. In the training set, 22 cell types met the criteria
that the p value was less than 0.05. LASSO regression was performed
for further filtration and found that four cell types were included
more than 990 times in all 1,000 repetitions. With the aid of stepwise
434 Molecular Therapy: Oncolytics Vol. 22 September 2021
regression, an immune risk score based on enrichment scores of three
cell types was constructed as follows: immune risk score =
13:610� type 2 T helper cell score + 4:202�memory B cell score +
10:580� plasmacytoid dendritic cell score.

Like the lncRNA risk score, patients were separated into high- and
low-risk groups in terms of the median risk score of the training
set (18.657). In the total TCGA set, the relationship among
immune risk score, enrichment score, and survival outcome was
exhibited (Figure 3B). Higher scores of all three cell types were
correlated with worse prognosis. The somatic mutation count
and the expression of CDC20 were both elevated in the high-risk
group (Wilcoxon test, p < 0.001; Figure 3C). Besides, with
combining mutation profiles, we compared the difference in
IDH1 and TP53 mutation rates between the high- and low-risk
groups. It was found that fewer IDH1 mutations but more TP53
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Figure 3. Evaluation of the immune infiltration and construction of the immune risk model

(A) Comparison of enrichment scores of 28 immune cell types between GS- and GU-like groups. (B) With the increase of immune risk score, the differences in immune

enrichment level and survival outcome. (C) Comparison of somatic mutation count andCDC20 expression between low and high immune risk groups. (D) Differences in IDH1

and TP53mutation rates between low and high immune risk groups. (E) Groups with higher immune risk scores were related to worse prognosis in the training set. (F) ROC

curves for 1-, 3-, and 5-year OS prediction of the immune risk model were performed in the training set. * p < 0.05; ** p < 0.01; *** p < 0.001.
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mutations occurred in the high-risk group (chi-square test, p <
0.001; Figure 3D).

K-M analyses and ROC curves were also performed for the immune
risk model to assess the prediction accuracy. In the training set, pa-
tients’ survival outcomes in the high-risk group were significantly
worse (log-rank test, p < 0.001; Figure 3E). The AUCs of the
ROC curves of 1-, 3-, and 5-year OS were 0.867, 0.756, and 0.726,
respectively (Figure 3F). As for three validation sets, similar to the
training set, high-risk scores were also associated with poor prog-
nosis in the testing set, CGGA set, and GEO: GSE16011 set (log-
rank test, p = 0.012, Figure 4A; log-rank test, p < 0.001, Figure 4B;
log-rank test, p = 0.003, Figure 4C). According to the ROC curves of
three validation sets, the model showed better effectiveness in the 3-
year OS prediction, and the AUCs were 0.747, 0.702, and 0.778,
respectively (Figures 4D�4F). Compared with the lncRNA risk
model, the immune risk model was much easier to promote in
the external validation sets due to the higher availability of the
enrichment score.

With the aid of the Tumor Immune Estimation Resource (TIMER),
we analyzed the relationship betweenCDC20 and immune infiltration
in LGG samples, involving B cell, CD8+ T cell, CD4+ T cell, macro-
phage, neutrophil, and dendritic cell (DC). The expression level of
CDC20 was positively correlated with the level of immune infiltration
when it was relatively low, especially B cell and DC (Figure 4G). Be-
sides, compared with diploid copy numbers of CDC20, the copy num-
ber of CDC20 was significantly positively correlated with the level of
immune infiltration (Figure 4H).

To further improve the immune risk model’s prediction accuracy, we
developed a nomogram combined with the model and several clinical
features. Through univariate andmultivariate Cox regression analyses,
immune risk score, age, WHO grade, and molecular feature were
Molecular Therapy: Oncolytics Vol. 22 September 2021 435
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Figure 4. Validation of the immune risk model

(A�C) Groups with higher immune risk scores were related to worse prognosis in the testing set, CGGA set, and GEO: GSE16011 set. (D�F) ROC curves for 1-, 3-, and 5-

year OS prediction of the immune risk model were performed in the testing set, CGGA set, and GEO: GSE16011 set. (G) Association between immune infiltration and the

expression level of CDC20. (H) Association between immune infiltration and the copy number of CDC20.
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singled out as factors in the nomogram (Table 2; Figure 5A). The Har-
rell’s consistency index (C-index) of the nomogram was 0.853 in
TCGA set. Subsequently, the nomogram was validated in both
TCGA set and the CGGA set. The calibration curves of the OS predic-
tion at 1, 3, and 5 years exhibited a pretty good prediction ability of the
nomogram (Figures 5B and 5C). The AUCs of the ROC curves of 1-, 3-
, and 5-year OS prediction were 0.893, 0.905, and 0.825 in TCGA set,
whereas AUCs in the CGGA set were 0.760, 0.800, and 0.787 (Figures
5D and 5E). Decision curve analysis (DCA) curves showed that the net
benefits of clinical decisions based on the nomogram were better than
those based on individual included factors (Figures 5F and 5G).
436 Molecular Therapy: Oncolytics Vol. 22 September 2021
Higher immune risk score indicated better response to

immunotherapy

Based on the immune risk model, LGG samples were separated
into high-risk and low-risk groups, and we compared the expres-
sion levels of several immune checkpoints between the two groups,
including PD-L1 (CD274), CTLA-4 (CTLA4), PD-1 (PDCD1),
LAG-3 (LAG3), TIM-3 (HAVCR2), VISTA (VSIR), and CD161
(KLRB1). The expression levels of above immune checkpoints in
the high-risk group were significantly higher than the low-risk
group (Wilcoxon test, PD-L1: p < 0.001; CTLA-4: p < 0.001;
PD-1: p < 0.001; LAG-3: p = 0.015; TIM-3: p < 0.001; VISTA:



Table 2. Univariate and multivariate Cox regression for the development of

the nomogram

Variables

Univariate analysis Multivariate analysis

HR
(95% CI)

p
value

HR
(95% CI)

p
value

Gender

Female 1 (ref)

Male 0.95 (0.60�1.53) 0.846

Age 1.06 (1.04�1.08) <0.001 1.05 (1.03�1.07) <0.001

WHO grade

Grade II 1 (ref) 1 (ref)

Grade III 3.80 (2.20�6.54) <0.001 2.38 (1.28�4.41) 0.006

Molecular feature

IDH mutant and
1p19q codeleted

1 (ref) 1 (ref)

IDH mutant 1.30 (0.68�2.49) 0.419 1.41 (0.72�2.76) 0.321

IDH wild type 9.60 (4.95�18.62) <0.001 4.48 (1.97�10.16) <0.001

Immune risk score 3.18 (2.27�4.44) <0.001 1.53 (1.01�2.32) 0.046

HR, hazard ratio; CI, confidence interval; ref, reference.
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p < 0.001; CD161: p < 0.001; Figure 6A). Besides, with the aid of
the Immune Cell Abundance Identifier (ImmuCellAI), we pre-
dicted the response to ICB of patients in TCGA and CGGA sets.
The response rates in the high-risk groups were higher than the
low-risk groups in both sets (chi-square test, p < 0.001; Figure 6B).
Based on the predicted response to ICB, we divided patients from
TCGA and CGGA sets into no-response and response groups,
respectively. The differences of three modeling immune cell scores
between the two groups were explored. The scores in the response
groups were higher than the no-response groups in both sets (Wil-
coxon test, p < 0.001; Figure 6C). Similarly, the differences of
modeling lncRNAs between the two groups were also compared
(Figure S3).

Furthermore, we examined the immune risk model in ICB therapy
datasets. For cancer types with many somatic mutations and many
neoantigens, such as melanoma and urothelial cancer, the model
was validated in a total set of GEO: GSE35640 (n = 56), GEO:
GSE115821 (n = 11), and IMvigor210 (n = 348). The immune
risk score of the response group was significantly higher than the
no-response group (Wilcoxon test, p < 0.001; Figure 6D). Besides,
for clear cell renal cell carcinoma with fewer somatic mutations,
the verification was performed in only one dataset (n = 33). Simi-
larly, the risk score of the clinical benefit group was higher than
the no clinical benefit group (t test, p = 0.046; Figure 6E). Moreover,
we explored the association between the immune risk model and
targets of chimeric antigen receptor (CAR) T cell therapy. The
expression levels of interleukin-13 receptor (IL-13R)a2 and erythro-
poietin-producing hepatocellular receptor A2 (EphA2) were higher
in the high-risk group compared to the low-risk group (Wilcoxon
test, IL-13Ra2: p < 0.001; EphA2: p < 0.001; Figure 6F).
Higher ratio of neoantigen to mutation indicated better

prognosis

Based on the previous publication of TCGA research network, we ob-
tained neoantigens predicted from a single-nucleotide variant (SNV)
of 494 patients and neoantigens predicted from insertion-deletion
(InDel) of 391 patients in TCGA set. We explored the association be-
tween immune risk scores and predicted neoantigens. The SNV neo-
antigen counts in the high-risk group were significantly higher than
the low-risk group, whereas the difference of InDel neoantigen counts
was not significant (Wilcoxon test, SNV neoantigen: p < 0.001; InDel
neoantigen: p = 0.61; Figure 7A).

Furthermore, we calculated the ratio of the neoantigen counts to the
mutation counts. There was no significant difference in the ratios be-
tween high- and low-risk groups (Wilcoxon test, SNV neoantigen: p =
0.14; InDel neoantigen: p = 0.13; total neoantigen: p = 0.14; Figure S4).
Nonetheless, according to the K-M analysis, a higher ratio of total
neoantigen to mutation was correlated for a better prognosis (log-
rank test, p = 0.011; Figure 7B).

DISCUSSION
In this study, we identified GI-related lncRNAs and divided patients
into GS-like and GU-like groups based on the expression levels of
50 lncRNAs. Compared to the GS-like group, patients in the GU-
like group had significantly more somatic mutations and higher
expression levels of CDC20. CDC20 plays a crucial role in cell divi-
sion and genomic stability, and the expression is elevated in various
cancers, indicating an oncogenic function in tumorigenesis.22 Be-
sides, it has been observed that high expression of a gene module
co-expressed with CDC20 correlated severe GI in glioma.23 The
marked difference of somatic mutation and expression level of
CDC20 between GS-like and GU-like groups indicated that the hi-
erarchical clustering method was reliable enough for subsequent
analyses.

Similar to previously reported cancer types, possibly due to the
driving effect of GI on tumor progression and therapy resistance,
LGG patients in the GU-like group had a worse prognosis than those
in the GS-like group. However, patients with a higher ratio of neoan-
tigen count to mutation count had a better prognosis, although not
receiving immunotherapy. According to functional enrichment ana-
lyses, protein-coding genes co-expressed with 50 GI-related lncRNAs
were involved in pathways such as nuclear division, chromosome
segregation, cell cycle, and p53 signaling pathway. Among those
GI-related pathways, the p53 signaling pathway induces tumor-sup-
pressive mechanisms such as cell-cycle arrest and apoptosis, thereby
avoiding DNA damages and leading to GI.24 In addition to the impact
of lncRNAs on GI, we also explored the prognostic role of lncRNAs in
LGG. Five lncRNAs were finally singled out for the construction of
the lncRNA risk model. The expression levels of H19, LINC02587,
AC015909.3, and AC003986.2 were negatively correlated with prog-
nosis, whereas the expression level of AC109439.1 was positively
correlated with prognosis. It had been reported that H19 promoted
the proliferation and metastasis of glioma through the interaction
Molecular Therapy: Oncolytics Vol. 22 September 2021 437
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Figure 5. Development and evaluation of the nomogram

(A) The nomogramwas developed based on immune risk score, age, WHO grade, and molecular feature. (B and C) Calibration curves of the nomogram on 1-, 3-, and 5-year

survival probability. (D and E) ROC curves for 1-, 3-, and 5-year OS prediction of the nomogram were performed in both TCGA and CGGA sets. (F and G) DCA curves

exhibited that clinical decisions based on the nomogram had the highest net benefits.
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with several microRNAs.25,26 Besides,H19 can destabilize the genome
and induce newmutations in tumor cells.27 The verified association of
H19 with prognosis and GI indicates that plausible mechanisms may
also exist in the association of other modeling lncRNAs, which needs
to be explored by further research.

The difference in immune infiltration between GS- and GU-like
groups also played a crucial role in the prognosis of LGG patients.
Among 28 types of immune cells, the enrichment scores of most types
were significantly higher in the GU-like group, which may be related
to the production of neoantigens caused by GI. We also observed that
the expression level and copy number of CDC20 were both positively
correlated with the immune infiltration level in LGG, indicating that
438 Molecular Therapy: Oncolytics Vol. 22 September 2021
CDC20 may cause higher immune infiltration by destructing the
genomic stability. Three cell types were finally singled out to construct
the immune risk model, and higher enrichment scores of all three
types were correlated with worse prognosis. Typically, a type 2 T help-
er (Th2) cell mediated immune responses related to parasitic infec-
tions and chronic inflammatory diseases.28 Moreover, compared to
healthy subjects, the immune response in patients with glioblastomas
exhibited a significantly elevated level of Th2 cells, and the trend was
more remarkable for recurrent glioblastomas.29 As for the memory B
cells, the negative correlation between enrichment levels and prog-
nosis still lacked sufficient explanation. Besides, it has been reported
that the infiltration level of memory B cells in tumors of responders to
ICB was significantly higher than tumors of non-responders.30 This
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Figure 6. Prediction of the response to immunotherapy

(A) The expression levels of seven immune checkpoints were higher in the high immune risk group. (B) The rate of response to ICBwas higher in the high immune risk group in

both TCGA andCGGA sets. (C) The scores of three modeling immune cells were higher in the response group in both TCGA andCGGA sets. (D) The immune risk score of the

response group was higher than the no-response group in melanoma and urothelial cancer. (E) The immune risk score of the response group was higher than the no-

response group in clear cell renal cell carcinoma. (F) The expression levels of two potential targets of CAR T cell therapy were higher in the high immune risk group.
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finding indicates that patients with higher immune risk scores may
also have better responses to ICB. The plasmacytoid DC (pDC), as
the major antigen presenting cell in glioma, was involved in multiple
immune-suppression mechanisms, such as inducing an increased
expression of indoleamine 2,3 dioxygenase to recruit immunosup-
pressive regulatory T cells and binding the PD-1 of T cells via the
PD-L1 expressed by pDCs.31–33 The immune suppression in glioma
was consistent with the relationship between pDCs and prognosis,
and it indicated that higher immune risk scores might be associated
with better prognosis of patients undergoing ICB therapy.

After exploring the prognostic role of infiltrating immune cells, we
also evaluated the accuracy of the immune risk score to predict the
response to ICB. In addition to PD-L1, which is widely recognized
as a predictive biomarker in immunotherapy in other cancers,34 the
expression levels of several other immune checkpoints were also posi-
tively related to the immune risk score. Among them, CD161 is a
newly discovered immunosuppressive receptor expressed in glioma-
infiltrating T cells, and the blockade of CD161 enhances the anti-tu-
mor effect.35 The pathway of CD161 shares similar mechanisms with
the PD-1 pathway and is expected to be a novel target of immuno-
therapy for gliomas. Besides, the expression levels of IL-13Ra2 and
EphA2 were positively correlated to the immune risk score. IL-
13Ra2 has long been recognized as an available target for CAR
T cell therapy.36 CAR T cells targeting EphA2 have exhibited anti-tu-
mor effects in animal experiments, and related clinical trials are
already underway.37,38

Based on the experience in other cancers, higher expression levels of
immune checkpoints may indicate a better response to ICB, which to
some extent reflected the predictive value of the immune risk score.
However, the conclusions were not based on the direct impact of
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A B Figure 7. Evaluation of the predicted neoantigen

(A) The SNV neoantigen counts were higher in the high

immune risk group. (B) The group with a higher ratio of

neoantigen to mutation had a better prognosis.
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these immune checkpoints on biology, so further experiments are
indispensable to support the results. Besides, with ImmuCellAI pre-
dictions, we found that patients with higher immune risk had a higher
potential response rate to ICB. Furthermore, we validated the im-
mune risk model in several ICB treatment cohorts and found that
the model’s predictive ability was not limited to cancer types and
may also be applicable to glioma, which needs to be validated in clin-
ical trials of glioma. Perhaps the immune risk model we constructed
can help improve the plight of ICB therapy in glioma.

Although the current study exhibited the significant role of GI at the
level of lncRNA and immune infiltration in LGG, several shortcom-
ings need to be improved in further studies. The risk models and
the nomogram exhibited good predictive performance in predicting
prognosis. In other cancers, these immune checkpoints were related
to the response to ICB, but further research is required in glioma.
We have verified them in the CGGA, GEO, and ICB treatment sets
but still need to be verified in more LGG sets, especially in the LGG
cohort under ICB therapy. Furthermore, we identified pathways,
lncRNAs, and immune cells that were closely related to GI. However,
due to the limitations of bioinformatics methods, the correlation was
mainly understood through speculation, and the specific mechanisms
on the level of molecular still need to be further explored. In addition,
the difference in the format of sequencing data due to various
sequencing processes may cause the distribution of risk score to
vary with research cohorts, and the employment of a consistent
cut-off value for grouping may bring errors to the analysis. Besides,
the use of a merged CGGA set for external validation may lead to
reduced reliability of the conclusions.

In conclusion, with the aid of bioinformatics analysis methods, this
study interpreted the influence of GI on LGG from the perspective
of lncRNA and immune infiltration. We identified that higher GI in
LGG was associated with worse prognosis. Besides, several lncRNAs
and infiltrating immune cells were closely correlated to GI and sur-
vival outcomes. The risk models and nomogram based on the
expression level of lncRNAs and the infiltration level of immune
cells exhibited a good predictive performance. Among them, the im-
mune risk model, after further verification based on biological
experiment and clinical feasibility, may help identify patients suit-
able for ICB therapy and improve the current plight of LGG
treatment.
440 Molecular Therapy: Oncolytics Vol. 22 September 2021
MATERIALS AND METHODS
Data source

From the LGG project of TCGA (https://portal.
gdc.cancer.gov/), we downloaded somatic muta-
tion profiles, gene-expression data, and clinical
features of patients. After excluding patients
with incomplete information and survival time = 0, a total of 496 pa-
tients were retained for subsequent analyses. The gene-expression
data in the “counts” type was used for differential expression analysis,
whereas the “FPKM” (fragments per kilobase per million mapped
reads) type after the log2(FPKM + 1) transformation was used for
other analyses. As for the external validation sets, transcriptome pro-
files and clinical features of datasets “mRNAseq_693” and “mRNA-
seq_325” from the CGGA database (http://www.cgga.org.cn/) were
downloaded, and a total of 592 LGG patients with complete survival
information were retained for validation.39,40 The CGGA set was
merged from two datasets, thus the “ComBat” algorithm in the
“sva” R package was employed to eliminate the batch effect.41 The
validation was also conducted in the GEO: GSE16011 set downloaded
from the GEO database, which contained 107 patients with complete
survival information.42 Furthermore, the results were also validated in
several ICB treatment datasets. Two datasets of melanoma treatment,
GEO: GSE35640 and GSE115821, were downloaded from the GEO
database.43,44 Besides, a dataset of urothelial cancer, namely IMvi-
gor210, and a dataset of clear cell renal cell carcinoma were obtained
according to Supplemental materials of respective studies.45,46 If
necessary, the validation sets were also log transformed to ensure
that they were similar in the order of magnitude to TCGA set.

Differential expression analysis and hierarchical cluster analysis

From the Ensembl database (http://useast.ensembl.org/index.html),
we downloaded the gene transfer format file, namely “Homo_sa-
piens.GRCh38.102.gtf,” which contained annotations of human
genes. Then we singled out the expression data of lncRNAs from
the complete transcriptome profiles according to the annotations. Ac-
cording to the mutation data, samples with cumulative point muta-
tions in the top 25% and bottom 25% were defined as GU and GS
groups. With the aid of “limma,” “edgeR,” and “DESeq2” R packages,
the differential expression analysis of lncRNAs between the two
groups was conducted using three different methods based on the
gene-expression data in the “counts” type. After the differences in
the expression of all lncRNAs between the two groups were calcu-
lated, |log2FC| > 1.5 and FDR < 0.05 were set as the standard, and
lncRNAs that met the standards of all three methods were retained
for subsequent analyses. In terms of the expression levels of lncRNAs,
using Euclidean distance and the complete linkage method for the hi-
erarchical cluster analysis, patients in TCGA set were separated into
GU-like and GS-like groups, and the result was exhibited using the
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“pheatmap” R package. K-M survival analysis was performed to
explore the prognostic role of GI.
Functional enrichment analysis

The co-expression relationship between differentially expressed
lncRNAs and protein-coding genes was explored using Pearson cor-
relation analysis. The top 10-related protein-coding genes based on
correlation coefficients for each lncRNA were retained for functional
enrichment analysis. With the use of “clusterProfiler” and “enrich-
plot” R packages, GO and KEGG analyses were performed based
on the Entrez Gene ID corresponding to each related protein-coding
gene.
Risk-score model and nomogram

Before constructing risk-score models, TCGA set was divided into the
training set (70%) and the testing set (30%) randomly. A chi-square
test was employed to compare two sets’ clinical features and assess
whether the differences were significant. Univariate Cox regression,
LASSO regression, and stepwise regression were used in sequence
to single out candidates of variables in the model. The criteria of
the LASSO regression was to be retained in the model more than
990 times in all 1,000 repetitions. Based on coefficients calculated
by the stepwise regression, the risk-score model was constructed as

follows: risk score =
Pn

i= 1
ðcoefi �aiÞ. The ai represented the expression

levels of lncRNAs in the gene risk model, while representing the
enrichment scores of immune cells in the immune risk model. In
the training set, K-M survival analyses and ROC curves were per-
formed to evaluate the predictive accuracy of models, also in the
testing set and external validation sets.

The nomogram was constructed based on the immune risk model.
Univariate and multivariate Cox regression analyses were performed
successively to assess the importance of the immune risk score and
several clinical features in the prediction of OS, with p < 0.05 as the
criteria. The nomogram was developed using “rms” R package, and
the C-index was calculated using the “rcorr.cens” function from the
“Hmisc” R package. Besides, in both TCGA and CGGA sets, calibra-
tion curves for different years were plotted to exhibit the disparity be-
tween actual and predicted survival possibility. ROC curves were
plotted to assess the prediction accuracy. DCA curves were also
plotted to evaluate the net benefits of different clinical decisions.
Evaluation of immune infiltration and neoantigen

With the aid of “GSVA” and “GSEABase” R packages, the enrichment
scores of 28 types of infiltrating immune cells were calculated using
single-sample Gene Set Enrichment Analysis (ssGSEA).47,48 Besides,
the scores of stromal cells and immune cells in TME pre-calculated
by the ESTIMATE (Estimation of Stromal and Immune Cells in Ma-
lignant Tumors Using Expression Data) algorithm were downloaded
(https://bioinformatics.mdanderson.org/estimate/). TIMER (https://
cistrome.shinyapps.io/timer/) was used to explore the relationship
between immune infiltration and the expression level and copy num-
ber of the GI-related gene.49 Based on the transcriptome profiles of
TCGA and CGGA sets, ImmuCellAI (http://bioinfo.life.hust.edu.cn/
ImmuCellAI/#!/) was used to predict the response of patients to
ICB therapy.50 The predicted neoantigen, including prediction from
SNVs and InDel, was obtained according to supplementary materials
of a previously published study from TCGA research network.51

Statistical analysis

R software (version 4.0.2) and several packages mentioned above were
used for statistical analyses. Survival analyses were performed using
the K-Mmethod, with the log-rank test to assess the significance.Wil-
coxon rank-sum test, t test, and chi-square test were used for the com-
parison between two groups. All statistical tests were two sided, and
p < 0.05 was considered statistically significant.
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