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Sherbrooke, QC J1K 2R1, Canada

Received October 01, 2020; Editorial Decision October 06, 2020; Accepted October 19, 2020

ABSTRACT

Predicting RNA structure is crucial for under-
standing RNA’s mechanism of action. Compara-
tive approaches for the prediction of RNA struc-
tures can be classified into four main strate-
gies. The three first––align-and-fold, align-then-
fold and fold-then-align––exploit multiple sequence
alignments to improve the accuracy of conserved
RNA-structure prediction. Align-and-fold methods
perform generally better, but are also typically
slower than the other alignment-based methods. The
fourth strategy––alignment-free––consists in pre-
dicting the conserved RNA structure without rely-
ing on sequence alignment. This strategy has the
advantage of being the faster, while predicting accu-
rate structures through the use of latent representa-
tions of the candidate structures for each sequence.
This paper presents aliFreeFoldMulti, an extension of
the aliFreeFold algorithm. This algorithm predicts a
representative secondary structure of multiple RNA
homologs by using a vector representation of their
suboptimal structures. aliFreeFoldMulti improves on
aliFreeFold by additionally computing the conserved
structure for each sequence. aliFreeFoldMulti is as-
sessed by comparing its prediction performance and
time efficiency with a set of leading RNA-structure
prediction methods. aliFreeFoldMulti has the lowest
computing times and the highest maximum accu-
racy scores. It achieves comparable average struc-
ture prediction accuracy as other methods, except
TurboFoldII which is the best in terms of average
accuracy but with the highest computing times. We
present aliFreeFoldMulti as an illustration of the po-
tential of alignment-free approaches to provide fast
and accurate RNA-structure prediction methods.

INTRODUCTION

RNA-structure prediction is essential to better understand
the biological mechanism of noncoding RNAs, which are
involved in a vast part of the biochemical machinery in
cells (1). Some examples are the transcription of DNA in
RNA with RNA polymerases (2), the regulation of gene
expression (3), the translation of RNA in proteins (4), but
there are many other biological functions (5).

In the last two decades, several approaches have been de-
vised to predict RNA secondary structures from a single
RNA sequence or a set of homologous RNA sequences.
Single-sequence approaches were developed first. They are
mainly based on the computation of the minimum-free-
energy (MFE) secondary structure of an RNA sequence (6–
8). Various studies have shown that single-sequence ap-
proaches have limited accuracy, because several MFE sec-
ondary structures are possible for a given RNA sequence
and biotic environment conditions can affect the stabil-
ity of the MFE structure (7,9–10). Compared to single-
sequence approaches, multiple-sequence approaches have
been fruitful in improving the prediction of RNA sec-
ondary structures. They consist in predicting a consensus
RNA secondary structure for a set of RNA homologs.
Most multiple-sequence approaches are based on a com-
parative approach that combines multiple RNA sequence
alignment and RNA folding prediction (11–13). Compar-
ative approaches that exploit sequence alignment can be
categorized into three main strategies. The first strategy,
align-and-fold consists of methods that solve the sequence
alignment and folding problems simultaneously by comput-
ing an optimal multiple sequence-structure alignment. The
complexity of the exact solution for the simultaneous mul-
tiple RNA sequence alignment and folding problem on a
set of homologous RNA sequences is in O(n3N) in time and
O(n2N) in space, where n is the maximum length of the RNA
sequences and N is the number of RNA sequences (14).
Given that the computation of an exact solution solution
is highly time-consuming, current methods that follow the
align-and-fold strategy are based on greedy heuristics to
find the common structure using multiple pairwise compar-
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isons (e.g. Foldalign (15,16), TurbofoldII (17), DynalignII
(18), SPARSE (19)).

The second and third strategies referred as align-then-
fold and fold-then-align consist of methods that solve the
alignment and folding problems sequentially and use the
solution of the first problem as a proxy to solve the sec-
ond problem. The advantage of align-then-fold methods is
speed, but their drawback is that the quality of the structure
prediction depends on the quality of the sequence align-
ment which reflects poorly the structural homology with
dissimilar sequences (e.g. RNAalifold (20), CentroidFold
(21), Transat (22), CentroidAlifold (23)). Fold-then-align
methods predict a set of low-free-energy secondary struc-
tures for each RNA sequence and then align the predicted
structures to find the lowest free energy structure common
to all sequences (e.g. RNAspa (24)). Their advantage is not
being limited by the accuracy of sequence alignment. Their
drawback is being highly time-consuming in aligning all
low-free-energy structures. Thus, align-and-fold and fold-
then-align methods generally predict more accurate RNA
secondary structures than align-then-fold, but the first two
are typically slower than the last one, which leaves room for
the development of fast methods yielding accurate structure
prediction. In response to this need, a fourth strategy named
alignment-free has been developed and does not rely on
any time-consuming sequence or structure alignment com-
putations. Methods using this strategy consist in predict-
ing a set of low-free energy secondary structures for each
RNA sequence, and using a latent representation of the sec-
ondary structures to explore their homology and predict a
consensus RNA secondary structure (e.g. RNAcast (25), al-
iFreeFold (26)).

Recently, we developed the aliFreeFold algorithm (26)
that predicts a consensus secondary structure for a set of
RNA homologous sequences using an alignment-free strat-
egy. aliFreeFold consists in computing suboptimal MFE
secondary structures for each RNA sequence using RNA-
subopt (8) and the Zuker et al. method (27). It then com-
putes a vector representation of structures based on the n-
motifs model (28). The n-motifs model represents an RNA
secondary structure as a vector of counts of elementary
structural motifs. The vector representation of suboptimal
structures helps to capture conservation signals of struc-
tural features across the suboptimal structures, and to ex-
tract a single representative secondary structure that con-
tains conserved structural features. This paper presents al-
iFreeFoldMulti which is an extension of the aliFreeFold
algorithm. aliFreeFoldMulti improves on the original al-
iFreeFold algorithm by predicting secondary structures for
all sequences of a family of RNA homologs, instead of a
single consensus structure for the family. It includes several
strategies to predict the secondary structures of all homol-
ogous RNA sequences. To assess the performance of al-
iFreeFoldMulti, the accuracy of structure predictions and
the computing time were compared with those of the cur-
rent best performing prediction methods, including align-
and-fold methods (FoldalignM (16), TurbofoldII (17)),
align-then-fold methods (RNAalifold (20), CentroidAlifold
(23)) and a fold-then-align method (RNAspa (24)). The
results show that TurboFoldII has higher average predic-
tion accuracy than all methods, when all predicted struc-

tures for an RNA family are considered. However, when
we consider the best predicted structure in each family,
aliFreeFoldMulti has the highest maximum accuracy. In
terms of time efficiency, aliFreeFoldMulti is faster than the
other methods. Like aliFreeFold, aliFreeFoldMulti effec-
tively captures conservation signals to achieve fast, and ac-
curate predictions. The source code of aliFreeFoldMulti is
freely available under the GPL license at https://github.com/
UdeS-CoBIUS/aliFreeFoldMulti. A web server is available
at https://alifreefold.cobius.usherbrooke.ca.

MATERIALS AND METHODS

aliFreeFold

The input for the original aliFreeFold algorithm (26) is a set
of homologous RNA sequences and the output is a repre-
sentative consensus secondary structure for the set of RNA
sequences using an alignment-free strategy (see Figure 1
for an overview of the original aliFreeFold algorithm). The
method comprises five main steps. In Step 1, it starts by
generating the first 25 suboptimal structures for each se-
quence using RNAsubopt (8). In Step 2, aliFreeFold rep-
resents each suboptimal structure using the n-motif repre-
sentation model such that a n-motif is an elementary RNA
structural motif, such as a hairpin, stem, bulge, or inter-
nal or multiple loops with the adjacent motifs (28). Each
suboptimal structure is represented by a vector of counts
of n-motifs occurring in the structure. This yields a matrix
representation of the set of suboptimal structures such that
lines represent the suboptimal structures generated for all
sequences, columns represents the n-motifs occurring in the
structures and each cell (i,j) contains the number of occur-
rences of the jth n-motif in the ith suboptimal structure. In
Step 3, aliFreeFold computes the entropy-based conserva-
tion index for each n-motif on the whole set of suboptimal
structures generated. In Step 4, using the conservation in-
dexes of n-motifs, the n-motif representation of the set of
suboptimal structures is transformed using the conserva-
tion indexes of n-motifs into a weighted n-motif representa-
tion giving more importance to conserved n-motifs. In Step
5, the centroid of all the suboptimal structures represented
by the weighted n-motifs representation is computed as the
mean vector of the weighted n-motif representation, and the
distance between the centroid and each suboptimal struc-
ture is computed. Lastly, in Step 6, the representative struc-
ture is defined as the structure that has the most common
structural features with the suboptimal structures of homol-
ogous sequences. It is computed as the suboptimal structure
closest to the centroid in terms of distance.

aliFreeFoldMulti

aliFreeFoldMulti improves upon the original aliFreeFold
algorithm by providing secondary structure predictions for
all sequences of an input family of RNA homologs instead
of a single consensus structure for the RNA family. It in-
cludes four strategies which have been developed to extend
the aliFreeFold algorithm in order to predict all secondary
structures for a set of RNA homologs. Each of the four
strategies is described below in more detail (see Figure 2 for
an overview of the four strategies).

https://github.com/UdeS-CoBIUS/aliFreeFoldMulti
https://alifreefold.cobius.usherbrooke.ca
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Figure 1. Overview of the aliFreeFold approach (Figure 1 from (26)).

Centroid strategy. This strategy is the most direct exten-
sion of the original aliFreeFold algorithm, maintaining the
first five steps in aliFreeFold. The last step of the cen-
troid strategy consists in returning the suboptimal struc-
ture for each RNA sequence that is the closest to the cen-
troid in terms of distance. The rationale behind this strat-
egy is that the results of the original aliFreeFold algorithm
have shown that the centroid effectively summarizes the
conserved structural features of a set of homologous RNA.
Thus, we expect the centroid strategy to yield a set of homol-
ogous secondary structures that share the conserved struc-
tural features captured by the centroid.

Adjusted-centroid strategy. This strategy was derived from
the centroid strategy. It aims at computing a set of homol-
ogous secondary structures that are both close to the cen-
troid and close to each other. In addition to computing the
distance between the centroid and each suboptimal struc-
ture, the adjusted-centroid strategy computes the distance
between each pair of suboptimal structures. The sum of the
distances to the closest suboptimal structures of the other
RNA sequences is computed for each structure predicted by
the centroid strategy for a RNA sequence. Then, the method
chooses the predicted structure that minimizes this sum of
distances, and its set of closest suboptimal structures as the
set of homologous RNA structures for the input RNA se-

quences. The rationale of this strategy is that the input RNA
sequences are expected to have the most similar RNA struc-
tures.

Stem-embedding strategy. This strategy aims at using
the representative structure computed by the original al-
iFreeFold algorithm as a proxy to infer the secondary
structures of other homologous sequences. The first six al-
iFreeFold steps are used to compute a representative sec-
ondary structure for the input set of homologous RNA se-
quences. The computed representative structure is a subop-
timal structure of one of the input RNA sequences denoted
by Srep. The last step consists in computing, for each input
RNA sequence S, a structure-preserving embedding of the
set of stems of the representative structure Srep in the set
of stems of all 25 suboptimal structures of the sequence S.
Given an input RNA sequence S different from Srep, let X
be the set of stems of the representative structure Srep, and
Y be the set of stems of all 25 suboptimal structures of the
sequence S. A structure-preserving embedding of X in Y is
an injective map f from X to Y such that, for any two stems
s1 and s2 in X, if s1 is located inside (resp. before) s2, then
f(s1) is also located inside (resp. before) f(s2). The embed-
ding f of X in Y is computed with a heuristic algorithm that
aims at minimizing the sum of distances between the stems
of X and their images in Y by f. The distance d(x, y) between
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Figure 2. Overview of the four aliFreeFoldMulti strategies. aliFreeFoldMulti takes a set of RNA homologs as input. aliFreeFold samples 25 suboptimal
structures for each RNA sequence and computes a representative structure. (i) In the centroid strategy, aliFreeFoldMulti defines the structure of each
sequence as its suboptimal structure that is the closest to the centroid. (ii) In the adjusted-centroid strategy, aliFreeFoldMulti searches for a set of suboptimal
structures that minimize both the distances to the centroid and the sum of pairwise distances between each other. (iii) In the stem-embedding strategy,
aliFreeFoldMulti looks, for each sequence, for a set of stems of its suboptimal structures that forms a secondary structure and are the most similar to
the stems of the representative structure (computed by aliFreeFold). (iv) In the closest-suboptimal strategy, aliFreeFoldMulti defines the structure of each
sequence as its suboptimal structure that is the closest to the structure computed with the stem-embedding strategy.

Figure 3. Arc diagram of a RNA secondary structure illustrating a stem
(in orange), and the four information (lenStart, lenLoop, lenStem and
lenEnd) used to compute the alignment score between two stems.

any stem x in X and y in X makes it possible to compare the
location of stems x and y in their respective RNA sequences,
and is defined based on the following information on the lo-
cation of a stem s in its RNA sequence S (see Figure 3 for
an illustration): lenStart(s) is the length between the start of
the RNA sequence and the first 5′ nucleotide of the stem s;
lenLoop(s) is the length between the last 5′ nucleotide of the
stem s and the first 3′ nucleotide of the stem s, correspond-
ing to the length of the ‘loop’ inside the stem; lenEnd(s) is
the length between the last 3′ nucleotide of the stem s and
the end of the RNA sequence; and lenStem is the number
of pairs of nucleotides composing the stem. Based on this

information computed for each stem of X and Y, the dis-
tance d(x, y), for any (x, y) ∈ X × Y, is computed with this
formula:

d(x, y) = (lenStart(x) − lenStart(y))2

+(lenLoop(x) − lenLoop(y))2

+(lenEnd(x) − lenEnd(y))2

+(lenStem(x) − lenStem(y))2

Based on the pairwise distances computed between stems
of X and stems of Y, a greedy heuristic recursive algorithm
is used to infer an embedding f of X in Y which minimizes
the sum of distances between stems of X and their images
in Y by f (see Figure 4 for an illustration of the three ver-
sions of the heuristic recursive algorithm). At each stage of
the algorithm, a stem in x in X is selected, an optimal image
f(x) in Y is chosen to minimize d(x, f(x)), and the algorithm
is recursively applied on subsets of X and Y, corresponding
to the stems located respectively before x and f(x), after x
and f(x), or nested in x and f(x). The three versions named
‘start,’ ‘end’ and ‘best’ of the greedy heuristic recursive al-
gorithm have been developed. The three versions differ in
the strategy used in each stage of the algorithm to select
the stem x in X for which an optimal image in f(x) in Y is
chosen. The ‘start’ version consists in selecting the stem x
from X minimizing lenStart(x), i.e. which is the closest to
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Figure 4. Illustration of the first step of the three different recursive al-
gorithms of the stem-embedding strategies. Reference stems are the stems
of the representative structure predicted by aliFreeFold. Suboptimal stems
are the whole set of stems contained in the 25 suboptimal structures of the
target RNA sequence. The ‘start’ strategy begins with the leftmost refer-
ence stem. Then, the sub-problems sp1 and sp2 are considered. The ‘end’
strategy is similar to the ‘start’ strategy, except that it begins with the right-
most reference stem. The ‘best’ strategy starts with the closest stems in the
reference and the suboptimal sets. Then, recursively, the sub-problems sp1,
sp2 and sp3 are considered.

the start of the sequence. The ‘end’ version consists in se-
lecting the stem x from X minimizing lenEnd(x), i.e. which
is the closest to the end of the sequence. Lastly, the ‘best’
version consists in selecting a stem x from X not nested in
any other stem of X and minimizing the distance to any stem
in Y. The greedy heuristic algorithm is recursively applied,
at each stage of the method, on sub-problems delineated by
subsets of X and Y defined by the stem x selected in X and
its optimal image in f(x) in Y, until the considered subset of
X or Y is empty. In order to make the greedy heuristic less
sensitive to erroneous locally optimal choices, at each stage
of the method, the three most optimal images for the stem
x selected in X are tested and the image of x that yields the
best global optimum is kept. Lastly, the structure predicted
for an RNA sequence S is the structure comprising the im-
ages by f of the set of stems X.

Closest suboptimal strategy. The last strategy included in
aliFreeFoldMulti is an extension of the stem-embedding
strategy. It aims at computing a set of homologous sec-
ondary structures that are suboptimal structures close to
the structures predicted by the stem-embedding strategy. It
computes the suboptimal structure for each input RNA se-
quence that is the closest to the structure predicted by the
stem-embedding strategy, in terms of the distance computed
with the weighted n-motif representation.

Experimental setup

Datasets.

Small dataset. To evaluate the performance of al-
iFreeFoldMulti on case-study RNA-families, we used a
dataset composed of 30 noncoding RNA families ob-
tained from the BRALIBASE II (29) and MXSCARNA
dataset (30). These two datasets were previously built and
used in (29) and (30) to benchmark multiple sequence
alignment programs upon structural RNAs. Each family
is composed of a set of homologous sequences, each
associated with a corresponding secondary structure. In
each family, the redundant sequences were removed to
leave a single copy of each sequence. Families differ in the
number of homologous sequences, the average PID and
the average sequence length, respectively, ranging from 16
to 98 sequences, from ∼ 58% PID to ∼ 98% PID and from
∼48 nt to ∼463 nt length. Further characteristics of the
dataset are described in Additional File 1, Supplementary
Table S1.

Large dataset. For a large-scale evaluation of the meth-
ods, we extracted a larger dataset from the Rfam database
(version 14.1). Out of the 3016 ncRNA families avail-
able in Rfam, we selected all families composed of 10–100
RNA sequences, with maximum sequence length of 1000
nt. This resulted in 1125 families. Among these families,
we discarded 221 families for which there is no consensus
secondary structure, or that contain pseudoknots in their
structure. We also removed 27 families for which nucleotide
sequences contain character of the extended IUPAC code
(i.e. RYSWKMBDHV). Out of the remaining 877 RNA-
families, we finally discarded 14 families that yielded ‘out-
of-memory’ errors for the FoldAlignM method, or ‘infinite
loop’ errors for the RNAspa method. The final dataset is
composed of 863 RNA families that have an average num-
ber of 26.89 (±18.66) sequences per family, and an average
sequence length of 110.52 (±62.07) nt. Complete statistics
for the 863 families are available in Additional File 2, Sup-
plementary Table S1.

Compared methods. We selected six RNA secondary
structure prediction methods representing the different
strategies of comparative methods, for comparison with al-
iFreeFoldMulti in terms of prediction accuracy and com-
puting time.

i. FoldalignM (15,16) and TurboFoldII (17) use the align-
and-fold strategy. FoldalignM implements a multi-
threading version of the Sankoff algorithm (14) with
heuristics relying on a maximum length of the align-
ment � , and a maximum difference between any two
aligned subsequences �. This allows for reducing the
time complexity of the Sankoff algorithm from O(L6) to
O(L2� 2�2), where L is the sequence length. TurboFoldII
is a probabilistic approach that iteratively estimates
base pairing probabilities for each sequence based on
the thermodynamic nearest-neighbor model and poste-
rior nucleotide co-incidence probabilities obtained us-
ing a hidden Markov model (HMM) for pairwise align-
ments. After several iterations of refinement, posterior
co-incidence probabilities are used to compute the mul-
tiple sequence alignment and updated base-pair proba-
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bilities are used to predict RNA structure for each se-
quence.

ii. CentroidAlifold (23) and RNAalifold (20) use the align-
then-fold strategy. Their input is a multiple alignment of
homologous RNA sequences. CentroidAlifold is an al-
gorithm based on maximum expected accuracy. It max-
imizes the expected gain under a probability distribu-
tion of secondary structures for each RNA sequence.
RNAalifold computes a consensus structure according
to the partition function and base-pairing probability
matrix using RIBOSUM scoring matrices in addition
to the computation of MFE structure. CentroidAlifold
and RNAalifold infer a single consensus structure for
an RNA-family, but not a structure for each RNA se-
quence. In order to allow the comparison with methods
predicting a structure for each sequence, we used the ‘re-
fold.pl’ script from the ViennaRNA package (8) to ob-
tain a secondary structure for each sequence.

iii. RNAspa (24) uses the fold-then-align approach. It
uses the RNAsubopt method (8) from the ViennaRNA
package to first sample suboptimal structures for each
sequence. The set of suboptimal structures for each
RNA sequence is represented as layer of disconnected
vertices. RNAspa computes a similarity score alignment
for all pairs of alternative structures of two adjacent
layers, producing a directed acyclic graph with edges
weighted by the similarity scores. RNAspa then predicts
a secondary structure for each RNA sequence by find-
ing the shortest path by traversal from the top to the
bottom layer.
RNAcast (25) an alignment-free approach was not in-
cluded in the analysis because aliFreeFold (26) outper-
forms it. Moreover, RNAcast ran out of memory above
the threshold of 182 nt average sequence length, and it
is no longer supported for recent Linux distributions. A
webserver is available for RNAcast, but retrieving the
execution time is not possible.

Evaluation criteria for the prediction accuracy. We use
the performance metrics below to assess the accuracy of
predicted RNA structures. The positive predictive value
(PPV) represents the proportion of the predicted base pairs
that are retrieved in the reference structure. The sensitivity
(SENS) gives the ratio of the known base pairs of the ref-
erence structure found in the predicted ones. The Matthews
correlation coefficient (MCC) summarizes the SENS and
the PPV (31). PPV and SENS scores range between 0 and
1. A PPV score of 1 (resp. 0) means that all (resp. no) base
pairs in the reference structure are found in the predicted
structure. A SENS score of 1 (resp. 0) means that all (resp.
no) base pairs in the predicted structure are found in the
reference structure. MCC scores range between −1 and 1.
A MCC score of 1 (resp. −1) means that the overall predic-
tion is accurate (resp. inaccurate). SENS, PPV and MCC
scores are computed as follows:

SENSITIVITY = TP
TP + FN

POSITIVE PREDICTIVE VALUE = TP
TP + (FP − ε)

MATTHEW CORRELATION COEFFICIENT

= (TP ∗ TN) − ((FP − ε) ∗ FN)
√

(TP + (FP − ε))(TP + FN)(TN + (FP − ε))(TN + FN)

where the true positives (TPs), the true negatives (TNs), the
false negatives (FNs) and the false positives (FPs) represent,
respectively, the number of correctly predicted base pairs,
the number of nucleotide couples correctly identified as not
paired, the number of base pairs in the reference not pre-
dicted, and the number of wrongly predicted base pairs. �
represents the number of base pairs in the predicted struc-
tures that are compatible with base pairs in the reference.

RESULTS

Performances of aliFreeFoldMulti strategies

The first evaluation consisted in assessing the accu-
racy and computing time of RNA secondary predic-
tions obtained with the various aliFreeFoldMulti strate-
gies and sub-strategies. The different strategies were ap-
plied on the small and large datasets of RNA families.
For each sequence of each family, the MCC, PPV and
SENS scores between the predicted and expected struc-
tures were computed. For each score (i.e. MCC, PPV and
SENS) and each aliFreeFoldMulti strategy (i.e. centroid,
adjusted-centroid, stem-embedding start, stem-embedding
end, stem-embedding best, closest suboptimal start, closest
suboptimal end and closest suboptimal best), Figure 5 gives
two boxplots representing the maximum and average score
distributions for the large dataset. The sub-strategies ‘start,’
‘end’ and ‘best’ yielded similar results for each of the strate-
gies stem-embedding and closest suboptimal. Therefore, we
did not consider sub-strategies in the sequel, and we only
discuss the global results of the strategies stem-embedding
and closest suboptimal. Supplementary Figure S1A and B
in Additional File 1 show the maximum and average score
distributions for the small dataset, and the execution times
of each strategy for increasing sequence lengths.

Centroid and adjusted-centroid are the best strategies for
aliFreeFoldMulti. Based on Figure 5, we conclude that
centroid and adjusted-centroid are the best strategies for
aliFreeFoldMulti. The results show that these strategies
yielded the best results, i.e. the highest maximum and av-
erage MCC scores. The adjusted-centroid strategy yielded
results that are similar to the centroid strategy but with
a slightly higher average MCC score, but a slightly lower
maximum MCC score. The closest suboptimal strategy ob-
tains performance scores (MCC, PPC and SENS) that are
slightly lower than the two centroid-based strategies. The
stem-embedding strategy had the highest PPV scores, but
also the lowest SENS scores, which result in the lowest
MCC scores. This means that the stem-embedding strategy
found artificial structures that contain, on average, fewer in-
correct pairs of nucleotides but also a lower number of ex-
pected pairs of nucleotides.

The accuracies of all strategies correlate with aliFreeFold
accuracy. Given the high variances of scores within all
strategies, we split the large dataset (respectively the small
dataset) of RNA-families into three datasets according to
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Figure 5. Boxplots of the MCC, PPV and SENS scores compared to
expected structures on the large dataset of ncRNA families to assess
the prediction accuracy of aliFreeFoldMulti strategies. The x-axis dis-
plays the four aliFreeFoldMulti strategies: centroid (c), adjusted-centroid
(a–c), stem-embedding (s–e), and closest-suboptimal (sub). For stem-
embedding and closest-suboptimal there are three different results corre-
sponding to the substrategy used: ‘start,’ ‘end’ or ‘best.’ For each strategy,
the left/empty (resp. right/full) boxplot represents the distribution of the
maximum (resp. average) score. Structure prediction strategies and sub-
strategies are described under ‘Materials and Methods’ section.

the accuracy obtained using the initial aliFreeFold algo-
rithm. The first dataset named ‘Easy’ consists of the 357
(respectively 10) families for which the MCC score between
the representative RNA structure predicted by aliFreeFold
and the expected structure equaled 1. The second dataset
referred to as ‘Medium’ consists of the 289 (respectively 13)
families for which the MCC score fell between 0.7 and 1
(excluded). The third dataset labeled ‘Hard’ consists of the
217 (respectively 7) remaining families for which the MCC
was <0.7. Figure 6 shows the boxplots representing maxi-
mum and average score (MCC, PPV and SENS) distribu-
tions in families for each dataset and each strategy on the
large dataset. As expected, the splitting of the initial dataset
into three datasets drastically reduced the variance of the
MCC, PPV and SENS statistics in each dataset. The re-
sults in Figure 6 show that all strategies achieved higher ac-
curacy with the ‘Easy’ dataset (MCC median: ∼0.9) than
with the ‘Medium’ (MCC median: ∼0.8) and ‘Hard’ (MCC
median: ∼0.4) dataset. We observed similar results for the
small dataset in Additional File 1, Supplementary Figure
S2.

A strong decrease of the sensitivity of the stem-embedding
strategy. A comparison of the various strategies reveals
that the stem-embedding strategy performed almost as well
as the other strategies for the ‘Easy’ and ‘Medium’ datasets,
but it predicted significantly less accurate structures for the

Figure 6. Boxplots of the MCC, PPV and SENS scores to assess the
prediction accuracy of aliFreeFoldMulti strategies for the three datasets
‘Easy,’ ‘Medium,’ and ‘Hard’ of the large RNA-families dataset. The x-
axis displays the four aliFreeFoldMulti strategies: centroid (c), adjusted-
centroid (a–c), stem-embedding (s–e), and closest-suboptimal (sub). For
each strategy, the left/empty (resp. right/full) boxplot represents the dis-
tribution of the maximum (resp. average) score. Structure prediction strate-
gies and sub-strategies are described under ‘Materials and Methods’ sec-
tion.

‘Hard’ dataset. This is explained by a strong decrease of the
SENS score, especially for the maximum score.

The time efficiency of all strategies were comparable. Sup-
plementary Figure S1B in Additional File 1 shows that the
execution times of all strategies are very similar. Most of the
time spent is for the computation of the RNA-family repre-
sentative structure (aliFreeFold algorithm).

Performances of aliFreeFoldMulti and the five selected meth-
ods

The second evaluation consisted in comparing the predic-
tion results of the best-performing aliFreeFoldMulti strat-
egy (the centroid strategy) with five existing RNA fold-
ing methods: FoldalignM (15,16), TurboFoldII (17), Cen-
troidAlifold (23), RNAalifold (20) and RNAspa (24). For
each family, RNAspa, FoldalignM and TurboFoldII take
a FASTA file containing the RNA sequences of the family
as input. CentroidAlifold and RNAalifold require a mul-
tiple sequence alignment of the family as input. For the
latter two, we used the same multiple sequence alignments
of RNA families computed with MAFFT (32) with pa-
rameters that consider RNA folding. The MCC, PPV and
SENS scores between the predicted and expected structures
of each sequence of each family were computed for each
method. Figure 7A provides two boxplots representing the
maximum and average score distributions in families for
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Figure 7. (A) Boxplots of the MCC, PPV and SENS scores compared to expected structures on the large dataset of RNA families to assess the prediction
accuracy of the six methods: aliFreeFoldMulti, CentroidAlifold, RNAalifold, RNAspa, FoldalignM, and TurboFoldII. For each method, the left/empty
(resp. right/full) boxplot represents the distribution of the maximum (resp. average) score. (B) Running time analysis (for average sequence length in
families).

each score (i.e. MCC, PPV and SENS) and each method
for the large dataset. Figure 7B shows the execution times
of each method for increasing average sequence lengths in
the large dataset. Supplementary Figure S3A and B in Ad-
ditional File 1 provide the same results for the small dataset.

aliFreeFoldMulti achieves the highest maximum MCC scores
and the lowest computing times. TurboFoldII obtains the
highest average MCC and SENS scores, while aliFreeFold-
Multi obtains the highest maximum MCC, PPV and SENS
scores. The two align-then-fold methods CentroidAlifold
and RNAalifold obtain the highest maximum and aver-
age PPV scores, but also the lowest maximum and average
SENS scores with a high variance (Figure 7A). The methods
can be separated in three groups in terms of execution time.
The first group consists of the ‘align-and-fold’ approaches
(TurboFoldII and FoldalignM) and the ‘fold-then-align’
approach (RNAspa) which are the most time consuming.
The second group consists of the align-then-fold methods
(RNAalifold and CentroidAlifold). The third category con-
tains aliFreeFoldMulti, which is the fastest (Figure 7B).

The accuracies of all methods correlates with aliFreeFold ac-
curacy. Figure 8 shows the boxplots representing maxi-
mum and average scores (MCC, PPV and SENS) distri-
butions in families for each dataset described in the pre-
vious section (i.e. ‘Easy’, ‘Medium’ and ‘Hard’) and each
method. We observe that, for all methods, the MCC, PPV
and SENS scores decreased unidirectionally from the ‘Easy’
to the ‘Hard’ datasets. For all datasets, TurboFoldII always
has the highest average MCC scores, and aliFreeFoldMulti
always has the highest maximum MCC scores.

Figure 8. Boxplots of the MCC, PPV and SENS scores to assess the
prediction accuracy of aliFreeFoldMulti and the other five selected RNA
structure prediction methods for the three datasets ‘Easy,’ ‘Medium’ and
‘Hard’ of the large RNA-families dataset. The x-axis displays the six meth-
ods. For each method, the left/empty (resp. right/full) boxplot represents
the distribution of the maximum (resp. average) score.
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DISCUSSION

Summary of results

Centroid and adjusted-centroid are the best strategy for al-
iFreeFoldMulti, while stem-embedding is the worst. Anal-
ysis of the results for the various aliFreeFoldMulti strate-
gies shows that the simplest solutions, the centroid and
the adjusted-centroid strategies, yielded the best results. In
particular, the centroid strategy yielded the highest maxi-
mum MCC, PPV and SENS scores. The other strategies
developed with the aim to improve accuracy by search-
ing out similar structures of homologous RNA (adjusted-
centroid strategy) or by searching for structures that are
similar to the representative structure (stem-embedding and
closest-suboptimal strategies) did not outperform the cen-
troid strategy. Yet, the results are enlightening. In particular,
the stem-embedding strategy yielded the worst results. It re-
turned artificial structures that might combine stems from
different suboptimal structures. The low performance of the
stem-embedding strategy shows the importance to use sub-
optimal structures, and suggests that the predicted structure
should always be chosen from within the set of suboptimal
structures.

aliFreeFoldMulti: high maximum MCC scores and low com-
puting times. Comparison of the six RNA structure pre-
diction methods shows that aliFreeFoldMulti achieved
the highest maximum accuracy scores and the best time
efficiency. TurbofoldII outperformed aliFreeFoldMulti in
terms of average accuracy scores, but it requested more
time. The median (resp. average) execution time for Turbo-
FoldII is 214.8 (resp. 600.9) seconds, compared to 20.4 sec-
onds (resp. 48.5) for aliFreeFoldMulti for the 30 noncoding
RNA-families dataset. Like TurboFoldII, FoldalignM and
RNAspa were among the most time-consuming methods.

Analysis of the Three RNA-family subsets: ‘Easy,’ ‘Medium’
and ‘Hard’

Splitting the RNA-families datasets into three subsets made
it possible to reduce the high variance in the RNA fold-
ing accuracy of the various strategies of aliFreeFoldMulti
and the other five methods assessed. The accuracy of RNA
folding with aliFreeFoldMulti and the five methods selected
correlated with the accuracy of aliFreeFold. We conducted
further analyses to understand the causes of the different
performances of the methods on the three RNA family sub-
sets, with the aim to find new directions for the improvement
of aliFreeFoldMuli.

Number of sequences and average sequence length do not
fully explain the difference between ‘Easy,’ ‘medium,’ and
‘Hard’ RNA-family subsets. To better characterize the
three RNA-family subsets, we analyzed the distribution of
the average sequence length and the number of sequences
for the three subsets from the small and large RNA-families
datasets (Supplementary Figures S5 and 6, Additional File
1). The three subsets can be partially distinguished based on
average sequence length. The ‘Easy’ families had an aver-
age sequence length shorter than the ‘Medium’ and ‘Hard’
families (Supplementary Figure S6, Additional File 1). As

for the number of sequences, all three datasets had a simi-
lar median number of sequences per family (Supplementary
Figure S6, Additional File 1). Since average sequence length
is the most discriminating criterion, we plotted the distribu-
tion of RNA-sequence length of the 30 families from the
small dataset, ordered from the best to the lowest MCC
score for the RNA consensus structure predicted by al-
iFreeFold (see Supplementary Figure S7, Additional File
1). We observed no correlation between sequence length
and MCC values. Moreover, we can observe that some
families with relatively high sequence lengths have high
MCC values, such as ‘RF00168+Lysine’ (37 sequences;
median sequence length: ∼175 nt and MCC = 1.0) and
‘RF00012 + U3’ (17 sequences; median sequence length:
∼225 nt and MCC = 0.923). Therefore, number of se-
quences and average sequence length criterion were not suf-
ficient to fully characterize the three subsets.

Distribution of pairwise distances between the suboptimal
structures partially explains the difference between the ‘Easy,’
‘Medium’ and ‘Hard’ subsets. We conducted an additional
analysis to determine if the distribution of pairwise dis-
tances between the sampled suboptimal structures could
better characterize the three subsets ‘Easy’, ‘Medium’ and
‘Hard’. For each sequence, we computed the average of the
pairwise distances between the 25 suboptimal structures
sampled. We then plotted the distribution of this average
for each family ordered from the best to the lowest MCC
value for the RNA representative structure predicted by al-
iFreeFold for the small and large RNA-families datasets
(Supplementary Figures S8 and 9, Additional File 1). Re-
sults show that the pairwise distances between suboptimal
structures for the ‘Hard’ dataset are in average higher than
for the ‘Easy’ and ‘Medium’ datasets. This suggests that the
more variability there is between suboptimal structures, the
less accurate the prediction of the structure.

Accuracy of the best RNA suboptimal structure explains the
difference between the ‘Easy,’ ‘Medium’ and ‘Hard’ subsets.
aliFreeFoldMulti is based on the hypothesis that, in a sam-
ple of the 25 suboptimal structures for each sequence, there
is at least one suboptimal structure that has, on average,
80% correct base pairs (27). Additional results produced on
the small and large datasets of RNA families, show that this
hypothesis did not hold true for all RNA-families. Supple-
mentary Figures S10 and 11 in Additional File 1 plot the
distribution of the best MCC score of the suboptimal struc-
tures per sequence for each family from the small and large
datasets. For the ‘Easy’ subset, most of the families had a
median of the maximum MCC scores distribution of 1.0
with a very low variance. For ‘Medium’ families, the median
fell between 0.7 and 1.0. For ‘Hard’ families, the median
ranged between 0.4 and 0.9. Most of the RNA sequences in
the ‘Hard’ families had lower than the expected 80% cor-
rect base pairs (Additional File 1: Supplementary Figure
S10), which explains the low average scores of aliFreeFold-
Multi for these families. However, we observe that for each
family, there is at least one sequence with one suboptimal
structure that has more than 80% correct base pairs. This
explains the high maximum accuracy scores of aliFreeFold-
Multi, and the previously reported outperformance of al-
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iFreeFold for predicting representative consensus structures
(26). Thus, we can conclude that the prediction accuracy
of aliFreeFold and aliFreeFoldMulti is strongly related to
the accuracy of the set of suboptimal structures generated.
On the other hand, supplementary Figure S10 in Additional
File 1 also shows that for the ‘Easy’ families, aliFreeFold-
Multi predicted RNA suboptimal structures that were not
the most accurate generated. For most sequences in the
‘Easy’ dataset, the highest MCC score was 1.0, while the
average MCC score of aliFreeFoldMulti was ∼0.85 (Sup-
plementary Figure S4, Additional File 1). Therefore, there
is still room for improvement in the prediction accuracy of
aliFreeFoldMulti, while preserving its low computing times.

Conclusion and perspectives

We described an alignment-free method named aliFeeFold-
Multi and its four strategies to predict secondary structures
of multiple RNA homologs. aliFeeFoldMulti is an exten-
sion of the aliFreeFold algorithm that was previously de-
veloped to predict a representative secondary structure of
multiple RNA homologs by using a vector representation
of their suboptimal structures. Among the strategies de-
veloped in aliFeeFoldMulti, we showed that the centroid-
based strategies were the best to predict secondary struc-
tures for all sequences of a RNA family. Yet, the analysis of
the other two strategies, namely the stem-embedding and
the closest-suboptimal strategies, allowed to highlight the
importance of the use of suboptimal structures rather than
artificial structures. The comparison of the performances
of aliFreeFoldMulti to the five selected other RNA struc-
ture prediction methods showed that aliFreeFoldMulti is
the fastest and best performing method in terms of maxi-
mum MCC score. In terms of average MCC scores, Turbo-
FoldII is the best performing methods, while aliFreeFold-
Multi achieve performances that are comparable to the four
others approaches. The splitting of the initial RNA-families
dataset into three datasets based on the MCC score of the
consensus structure predicted by aliFreeFold allowed to
show that all methods had the same dynamic on the RNA
structure prediction accuracy.

The results herein show that there is a significant poten-
tial for improving aliFreeFoldMulti to obtain more accurate
predictions of RNA structure by using a more appropri-
ate approach for exploring the set of suboptimal structures.
This improved exploration of suboptimal structures would
lead to more accurate results in average while maintaining
low computation times. We showed that the selection of the
first 25 suboptimal structures is not always sufficient to ob-
tain the most accurate predictions in average (Supplemen-
tary Figures S10 and 11, Additional file 1). Therefore, we
also need to define intermediate criteria and methods to bet-
ter characterize RNA families in order to define suboptimal
structure sampling strategies according to the characteris-
tics of each RNA family. Another future direction is to re-
fine the aliFreeFoldMulti strategy in order to always deter-
mine the most accurate suboptimal structure among the set
of suboptimal structures generated.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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