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Abstract

We consider the feasibility of reusing existing control data obtained in genetic association studies in order to reduce costs
for new studies. We discuss controlling for the population differences between cases and controls that are implicit in studies
utilizing external control data. We give theoretical calculations of the statistical power of a test due to Bourgain et al (Am J
Human Genet 2003), applied to the problem of dealing with case-control differences in genetic ancestry related to
population isolation or population admixture. Theoretical results show that there may exist bounds for the non-centrality
parameter for a test of association that places limits on study power even if sample sizes can grow arbitrarily large. We apply
this method to data from a multi-center, geographically-diverse, genome-wide association study of breast cancer in African-
American women. Our analysis of these data shows that admixture proportions differ by center with the average fraction of
European admixture ranging from approximately 20% for participants from study sites in the Eastern United States to 25%
for participants from West Coast sites. However, these differences in average admixture fraction between sites are largely
counterbalanced by considerable diversity in individual admixture proportion within each study site. Our results suggest
that statistical correction for admixture differences is feasible for future studies of African-Americans, utilizing the existing
controls from the African-American Breast Cancer study, even if case ascertainment for the future studies is not balanced
over the same centers or regions that supplied the controls for the current study.
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Introduction

A genetic association study estimating the main effects of single

nucleotide polymorphisms (SNPs) or other genetic variants upon

the risk of a rare or common disease in minority populations is a

setting in which it is especially attractive to consider the use of

existing genotype data as a supplementary or even a primary

source of controls. DNA samples may be expensive and difficult to
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obtain, and response rates are often lower in minority populations

[1]. Researchers might consider using an already available ‘‘stand

in’’ population sample as controls, provided that genotype

frequencies are equivalent to those in the population from which

controls would be drawn. There are however two immediate

concerns raised, one fundamental and the other technical in

nature: The fundamental question is whether or not the controls

are sampled from the same underlying population (or populations)

as are the cases – or more generally the feasibility and ‘‘cost’’

(generally loss of statistical power) of controlling for case/control

differences if they arise. The technical question is whether

differences in genotyping, including differences in DNA prepara-

tion, and in the actual markers genotyped in cases and controls,

i.e. when the platforms are not identical so that imputation is relied

upon to make up the difference, may introduce false positive (or

false negative) associations.

Consider the problem of conducting a genetic association study

aimed at discovering genetic variants related to the risk of a

disease, where there already exists extensive genotyping data,

perhaps publicly available, for members of similar populations. If

the disease under consideration is rare (so that genotype

frequencies for controls may be expected to be the same as in

the general population) then it is intuitively appealing to consider

using existing control data from studies of other rare diseases (or

population-based studies if they exist) to reduce the cost or increase

the statistical power of an association study. From the classical

case-control literature, a study that uses 1:m matching of controls

to each of n cases will be equivalent in power to a 1:1 matched

study with N~2n m
(1zm)

cases (and an equal number of controls).

Thus a study with a large number of controls, m, for each case will

have nearly twice the effective sample size of a 1:1 matched study

[2].

Note that 1:m matched studies (with m.1) are only cost

effective if it is more costly or difficult to obtain additional cases

than it is to obtain additional suitable controls since the increment

in effective sample by (for example) doubling the number of case-

control pairs (in a 1:1 matching) is twice that of adding two new

controls to each existing pair (to achieve 1:3 matching) to a study

even though the total number of participants is the same. If

however the cost of adding an additional control is far less than

that of adding an additional case (because control data is already

available) then adding the almost ‘‘free’’ controls is highly

attractive although the returns diminish as more and more

controls are added, with the increment in effective sample size

governed by m/(m+1).

This paper considers these issues from both theoretical and

empirical perspectives. We apply a recent generalization [3–6] of

the testing procedure of Bourgain et al [7] to the situation where

population substructure (in the broad sense), including admixture

and relatedness between subjects, is estimated from marker data

rather than being assumed to be known as the basis for our

theoretical considerations of study power. We point out below the

relationship between this procedure and that of the more widely

known principal components technique [8]. Our empirical

investigation of the use of existing controls utilizes data from a

genome-wide association study (GWAS) of breast cancer in

African American women, namely the African American Breast

Cancer (AABC) study, in which cases and controls come from a

total of 9 different studies widely distributed geographically

throughout the United States. African Americans are a relatively

understudied group (compared to European Americans) in studies

of genetic susceptibility. African Americans are admixed with

Europeans and (in some cases) with Hispanics (themselves an

admixed group) and Native Americans [9,10]. We examine

empirically the false positive rates that occur when cases from one

geographical location or study within the AABC study are

combined with controls from other AABC locations or studies,

as well as the success (and cost in terms of loss of effective sample

size) of adjustment for the observed population differences in

global genetic ancestry when analyzing such illustrative data sets

derived from the AABC study.

Methods

Statistical Methods
We utilize an approach derived from that of Bourgain et al [7]

which has been discussed extensively in recent papers [3–5]. This

approach for accounting for relatedness between subjects in

association tests adopts a ‘‘retrospective’’ approach towards the

problem of testing for disease associations using marker data, in

which (as in the Armitage test) the allele frequency of a variant is

related to case-control status. In vector notation we have

Sj~(S1j ,S2j , . . . ,SNtotj)
T of observed values for a given SNP j.

Here Ntot is the total number of subjects (cases+controls) in the

study, and SNP values Sij are coded as (0,1,2) for the number of

copies of a specified allele, j, carried by subject i. (This coding of

SNP genotype implies that we are interested in additive models for

the relationship between disease risk and genotype but the

approach can readily be extended to other codings). The

retrospective approach models the mean of Sj as a function of

case-control status. If we define the Ntot|2 design matrix C to

have rows (1 ci) where ci is case-control status (0 or 1) for subject i

then the mean, mj, of Sj is written as

mj~Cbj with bj~ b1j , b2j

� �T

Relatedness between subjects induces a covariance matrix for the

number of copies of a given SNP of form

Cov(Sj)~s2
j K ð1Þ

with s2
j specific to each SNP but with the same matrix K for all

Author Summary

This paper discusses and provides unique insight into an
important problem raised by the current state of genetic
studies into disease susceptibility, namely whether we can
reuse genetic data from participants genotyped as
controls in one study when cases (people with a disease
of interest) are obtained from other studies, or whether
each new study needs its own controls. We are interested
in whether studies where cases and controls are sampled
differently will give correct answers and are as powerful
statistically as when new control data is also genotyped.
Because of the huge investments made recently in large
scale genotyping of cases and controls for various
diseases, this is a timely question. This question is
especially important in understanding the genetic causes
of disease in as-yet relatively understudied population
groups, such as African-Americans, in order to speed up
progress when this is possible. We give theoretical results
about the power of studies that reuse existing control
genotypes based on statistical considerations. We also
provide analysis of real data from a major study of the
genetic causes of breast cancer in African-American
women in order to shed practical light upon this issue.

Reuse of Existing Genotype Data

PLoS Genetics | www.plosgenetics.org 2 September 2010 | Volume 6 | Issue 9 | e1001096



SNPs. In fact, for known pedigree relationships, and unrelated

founders, this matrix K has diagonal elements equal to 1zhi

where hi is the inbreeding coefficient for subject i and each off-

diagonal element, Kij , is twice the kinship coefficient for the

relationship between subjects i and j [7].

It is worth noting that in general the topic of relatedness

includes what is often considered to be population substructure.

For example consider two large but isolated populations (freely

mixing within each population) that have been separated for many

generations. While a random sample of people from the same

population (with sample size small relative to the population size)

might be considered unrelated to each other when considering

that population separately, when considering the two populations

together people from one isolated population are considered to be

related to each other, relative to those in the other population. In

particular, genetic markers will, through a process of random drift

and other factors, be able to distinguish members from the two

populations, and this will be detectable when calculation of the K
matrix is performed. A standard method of simulating genetic

markers for divergent populations stemming from the same

ancestral population (e.g. the Balding-Nichols model [11]) can

readily be shown to produce covariance matrices of the form of

expression (1).

If K and s2
i are both known then the best linear unbiased

estimate (BLUE) of the regression vector bj is of weighted least

squares form

b̂bj ~(CTK{1C){1CTK{1Sj

and the variance covariance matrix of the estimates is in the form

of

Vj:Var(b̂bj)~s2
j (CTK{1C){1

Thus inference on the significance of the allele frequency

difference between cases and controls may be based upon the

Wald test statistic

T2~( b̂b2j )2=Vj ½2,2� ð2Þ

with Vj ½2,2� the (2,2) element of Vj

In general of course, K and s2
j are not known, except in the case

of known pedigrees and unrelated founders, where K can be

computed from first principles. The estimation of K using marker

data has been considered by a number of authors and both

method of moments [4,5] and maximum likelihood methods [3]

have been considered. A method of moments estimator of K can

be concisely written [5] as

K̂K~
1

M

XM

j~1

(Sj{2pj1)(Sj{2pj1)T

4pj(1{pj)
ð3Þ

and the estimate of s2
j as

ŝs2
j ~1=(N{2)ST

j ½K{1{K{1C(CTK{1C){1CTK{1�Sj

One value of this approach, which is exploited here, is that it is

relatively easy to compute the power of the Wald T2 test if we can

hypothesize a form of the relatedness matrix K. For a given form

for K (below we consider several forms for both isolated population

models and more complex admixed populations) then for a given

sample size, Ntot, a given allele frequency for a causal SNP, and a

hypothesized difference in allele frequencies between cases and

controls (which can then be related to odds ratios in typical case/

control analysis) we can compute the non-centrality parameter of

T2 (and hence the power of the test) as

l2~( b2j )2=Vj ½2,2� ð4Þ

We illustrate the computation of this non-centrality parameter for

a number of important special cases in the results section below. It

is worth noting now, however, that the Bourgain test appears to be

reasonably powerful compared to other procedures, and can

sometimes be considered as a compromise between the principal

components method [8] and genomic control [12]. We attempt to

justify this last statement in the results section below.

In addition to the Bourgain test we used several well known

tools for addressing population structure in the AABC data. For

example we computed eigenvectors through the use of the

program EIGENSTRAT [8]. Briefly, each eigenvector explains

a proportion of the genetic variation among samples in the analysis

so that the leading eigenvector explains the greatest variation,

followed by the second eigenvector, and so forth. The full set of

eigenvectors form an orthonormal basis so that each eigenvector is

scaled on the unit interval and linearly independent from all other

eigenvectors. Note that the EIGENSTRAT procedure is operating

on the same estimated K matrix, K̂K, that we have described above.

To assess ancestry within the AABC study in relation to

reference populations from HapMap, we performed a principal

components analysis based on ancestry informative markers that

were genotyped in both the AABC study and the HapMap Phase 3

populations. The 2,546 ancestry informative markers (contained

within the Illumina 1M genotyping array which was used in the

AABC scan) were selected based on low inter-marker correlation

and high correlation to a previously determined eigenvector that

explained African and European ancestry.

We quantified percent African ancestry for each of the nine

AABC study populations by running the program STRUCTURE

for each study population. The program implements a Markov

Chain Monte Carlo algorithm that provides the posterior

estimates of the proportion of ancestry from each of k clusters

for each individual, where k is specified by the investigator. For

each AABC study population, we assigned k = 3, including

genotypes from the same ancestry informative markers used in

PCA genotyped in YRI, CEU, and JPT from HapMap Phase 3.

Studies in AABC
AABC included 9 epidemiological studies of breast cancer

among African American women, which comprise a total of 3,153

cases and 2,831 controls. Below is a brief description of these

studies.

The Multiethnic Cohort Study (MEC). The MEC is a

prospective cohort study of 215,000 men and women in Hawaii

and Los Angeles [1] between the ages of 45 and 75 years at

baseline (1993–1996). Through December, 31 2007, a nested

breast cancer case-control study in the MEC included 556 African

American cases (554 invasive and 12 in situ) and 1,003 African

American controls. An additional 178 African American breast

cancer cases (ages: 50–84) diagnosed between June 1, 2006 and

December 31, 2007 in Los Angeles County (but outside of the

MEC) were combined with the MEC samples in the analysis.

The Los Angeles component of The Women’s Con-

traceptive and Reproductive Experiences (CARE) Study.

The NICHD Women’s CARE Study is a large multi-center

Reuse of Existing Genotype Data
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population-based case-control study that was designed to examine the

effects of oral contraceptive (OC) use on invasive breast cancer risk

among African American women and white women ages 35–64 years

in five U.S. locations [13]. Cases in Los Angeles County were

diagnosed from July 1, 1994 through April 30, 1998, and controls

were sampled by random-digit dialing (RDD) from the same

population and time period; 380 African American cases and 224

African American controls were included in stage 1 of the scan.

The Women’s Circle of Health Study (WCHS). The

WCHS is an ongoing case-control study of breast cancer among

women of European and African descent residing in the New York

City boroughs (Manhattan, the Bronx, Brooklyn and Queens) and

in seven counties in New Jersey (Bergen, Essex, Hudson, Mercer,

Middlesex, Passaic, and Union) [14]. Eligible cases included

women diagnosed with invasive breast cancer between 20 and 74

years of age; controls were identified through RDD. The WCHS

contributed 272 invasive African American cases and 240 African

American controls to stage 1 of the GWAS.

The San Francisco Bay Area Breast Cancer Study

(SFBC). The SFBC is a population-based case-control study of

invasive breast cancer in Hispanic, African American and non-

Hispanic White women conducted between 1995 and 2003 in the

San Francisco Bay Area [15]. African American cases, ages 35–79

years, were diagnosed between April 1, 1995 and April 30, 1999,

with controls identified through RDD. Stage 1 included 172

invasive African American cases and 231 African American

controls from SFBC.

The Northern California Breast Cancer Family Registry

(NC–BCFR). The NC-BCFR is an on-going population-based

family study conducted in the Greater San Francisco Bay Area,

and is one of 6 sites collaborating in the Breast Cancer Family

Registry (BCFR), an international consortium funded by NCI

[16]. African American breast cancer cases in NC-BCFR were

diagnosed after January 1, 1995 and between the ages of 18 and

64 years; population controls were identified through random digit

dialing (RDD). Stage 1 genotyping was conducted for 440 invasive

African American cases and 53 African American controls.

The Carolina Breast Cancer Study (CBCS). The CBCS is

a population-based case-control study conducted between 1993

and 2001 in 24 counties of central and eastern North Carolina

[17]. Cases were identified by rapid case ascertainment system in

cooperation with the North Carolina Central Cancer Registry and

controls were selected from the North Carolina Division of Motor

Vehicle and United States Health Care Financing Administration

beneficiary lists. Participants’ ages ranged from 20 to 74 years. For

stage 1, DNA samples were provided from 656 African American

cases with invasive breast cancer and 608 African American

controls.

The Prostate, Lung, Colorectal, and Ovarian Cancer

Screening Trial (PLCO) Cohort. PLCO, coordinated by the

U.S. National Cancer Institute (NCI) in 10 U.S. centers, enrolled

during 1993–2001 approximately 155,000 men and women, aged

55–74 years, in a randomized, two-arm trial to evaluate the

efficacy of screening for these four cancers [18]. A total of 64

African American invasive breast cancer cases and 133 African

American controls contributed to stage 1 of the GWAS.

The Nashville Breast Health Study (NBHS). The NBHS is

a population-based case-control study of incident breast cancer

conducted in the Tennessee [19]. The study was initiated in 2001

to recruit patients with invasive breast cancer or ductal carcinoma

in situ, and controls, recruited through RDD between the ages of

25 and 75 years. NBHS contributed 310 African American

invasive cases (57 in situ), and 186 African American controls to

the stage 1 analysis.

Wake Forest University Breast Cancer Study (WFBC).

African American breast cancer cases and controls in WFBC were

recruited at Wake Forest University Health Sciences from

November 1998 through December 2008 [20]. Controls were

recruited from the patient population receiving routine

mammography at the Breast Screening and Diagnostic Center.

Age range of participants was 30–86 years. WFBC contributed

125 cases (116 invasive and 9 in situ) and 153 controls to the stage

1 analysis.

Genotyping
Genotyping in stage 1 was conducted using the Illumina

Human1M-Duo BeadChip. Of the 5,984 samples from these

studies (3,153 cases and 2,831 controls), we attempted genotyping

of 5,932, removing samples (n = 52) with DNA concentrations

,20 ng/ul by pico green assay. After clustering the genotype data

we removed samples based on the following exclusion criteria: 1)

unknown replicates ($98.9% genetically identical) that we were

able to confirm (only one of each duplicate was removed, n = 15);

2) unknown replicates that we were not able to confirm through

discussions with study investigators (pair or triplicate removed,

n = 14); 3) samples with call rates ,95% after a second attempt

(n = 100); 4) samples with #5% African ancestry (n = 36)

(discussed below); and, 5) samples with ,15% mean heterozygos-

ity of SNPs in the X chromosome and/or similar mean allele

intensities of SNPs on the X and Y chromosomes (n = 6) (these are

likely to be males).

In the analysis, we removed SNPs with ,95% call rate or minor

allele frequencies (MAFs) ,1%. To assess genotyping reproduc-

ibility we included 138 replicate samples; the average concordance

rate was 99.95% (.99.93% for all pairs). We also eliminated SNPs

with genotyping concordance rates ,98% based on the replicates.

The final analysis dataset included 3,016 cases and 2,745 controls,

with an average SNP call rate of 99.7% and average sample call

rate of 99.8%. Hardy-Weinberg equilibrium (HWE) was not used

as a criterion for removing SNPs for this analysis.

Results

Non-Centrality Parameter for the Bourgain Test in the
Case of Isolated Populations

We use the Balding Nichols model [11] for allele frequency

differences between isolated populations. In this model allele

frequencies for a SNP in modern data populations are distributed

according to a beta distribution B 1{F
F

p, 1{F
F

(1{p)
� �

with p the

ancestral allele frequency of that SNP. In this model the variance

of the modern day allele frequency is Fp(1{p), thus F is a

parameter specifying the degree of separation between the modern

day and ancestral population. As described in Rakovski and Stram

2009 [4] if genotypes are obtained for randomly sampled

individual from two modern day isolated populations using this

model and the separation of each modern day population from the

ancestral population equals Fk (for k~1,2) statistic then the

covariance matrix, s2
j K between subjects for the jth SNP will have

diagonal terms equal to 2pj(1{pj)(1zF1) for members of the first

population, diagonal terms equal to 2pj(1{pj)(1zF2) for

members of the second, off diagonal terms of 4pj(1{pj)F1,

4pj(1{pj)F2, or zero for pairs of individuals who are either both

from the first population, both from the second population or from

different populations respectively. Here pj is the frequency in the

ancestral population of SNP j. Consider now a study in which all

cases come from one isolated population, and all controls from

another. Assume for simplicity that F1~F2~F (both populations

have the same degree of separation from their ancestral source),

Reuse of Existing Genotype Data
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and that the number of cases and controls are both equal to N so

that total sample size is 2N (the calculations below can be readily

altered for different matching fractions if necessary). Thus we can

write the variance of the estimator of the case-control difference

for SNP j as

Var(b̂bj)~s2
j (CTK{1C){1

with the first column of C being a vector of 1’s and the second

column of C a vector of 1’s and 0’s indicating case-control (and

population) status. Using a readily derived formula for the inverse

of an N|N matrix of compound symmetric form

a b ::: b

b a ::: b

..

. ..
.

P
..
.

b b ::: a

2
666664

3
777775

{1

~

1

a2z(N{2)ab{(N{1)b2

az(N{2)b {b ::: {b

{b az(N{2)b ::: {b

..

. ..
.

P
..
.

{b {b ::: az(N{2)b

2
6666664

3
7777775

we can easily write

Var(b̂b2j
)~2pj(1{pj)

4(N{2)Fz2

N
ð5Þ

Thus the non-centrality parameter, l2 = b2j
2=Var(b̂b2j) of a test of

association does not increase linearly in N, but rather is bounded

above by the value
b2,j

2

8Fpj(1{pj)
. This can impose severe limi-

tations on the power of any study in which there are such

differences. To put this in perspective, consider two isolated

populations which are each separated from their ancestral

population with an F value of 0.0005, and consider an allele that

exhibits 40 percent frequency in the ancestral population. The

variance of the difference between the two isolated modern day

populations in the frequency of this allele is equal to 2pj(1{pj)F so

that we would expect by chance that there is a about a 1.5 percent

difference in allele frequencies between cases and controls for such

an allele. Consider now the detection, in a study of 5,000 cases and

5,000 controls, of a disease-causing allele of the same frequency

associated with a 10 percent difference in allele frequencies between

cases and controls (b2j = .2). The difference in allele frequencies is

approximately 6 times larger than expected due to population

differences, and can be seen to correspond to an odds ratio for

disease, under a multiplicative risk model, of 1.5 per copy of the risk

allele. From equation (2) the non-centrality parameter

b2j
2=Var(b̂b2j) will be equal to 34.73 in this case; on the other hand

if F between cases and controls is 0 the non-centrality parameter

will equal 208.33. Thus a study that would, given no differences

between cases and controls in population of origin, have

overwhelming power (..9999) to reject the null hypothesis at a

genome wide level significance (p,10{8) is, under this alternative,

reduced to having power of only 56 percent after correcting for the

differences in origins of cases and controls. The survey of European

populations by Nelis et al [21] estimates fixation indices, Fst, (which

can be equated to F under the Balding Nichols model) between

populations in SNP allele frequencies which range from less than

.001 between neighboring populations to 0.023 for Southern Italy

versus parts of Finland. Because our F values as defined above are

between present day and ancestral populations the fixation indices

calculated between present day populations by Nelis et al need to be

multiplied by K to be consistent with our definition of F . Thus the

example we have given (F~:0005) corresponds only to the nearest

neighbor populations in Europe and would appear to throw into

doubt any thought of using control data not perfectly matched in

ancestry to cases.

Admixed Populations
While the calculations given above appear to be pessimistic

regarding the usefulness of shared control data it is important to

note that the completely isolated population model is naı̈ve and

makes assumptions not applicable to the study subjects for the

AABC study or indeed for most modern populations. Therefore we

broaden our discussion to admixed populations, specifically, when

the DNA from both cases and controls come from groups that are

admixed from the same two ancestral populations. We consider this

in two parts, first deriving results for comparisons between

‘‘completely’’ admixed populations, i.e. where the two populations

have different levels of admixture between the ancestral popula-

tions, but when there is no within-population heterogeneity in

ancestry. Next we focus on the much more realistic setting of

incompletely admixed populations serving as cases and controls.

Completely admixed populations. Here we consider each

of two populations of interest (one supplying cases and the other

controls) as consisting of randomly mating populations derived by

admixture from the same two ancestral populations. In the first

modern day population we assume that a1|100 percent of the

ancestors are from the first ancestral population and the remaining

(1{a1)|100 percent are from the other ancestral population.

In the second population the fractions are a2 and (1{a2)
respectively. We further assume that the two ancestral populations

are themselves derived from a single earlier ancestral population

and that the F values of these populations compared to the earlier

populations are both equal to the same value. Under these

simplifying assumptions (which can be readily relaxed if need be)

we can easily derive the covariance matrix for a SNP vector Sj

between subjects to have elements

Var(Sij ) = 2 pj 1{pj

� �
1zF 1z2 a1

2{2a1

� �� �
for subject i in

the first population (i.e. cases)

Cov(Sij ,Skj ) = 4 pj 1{pj

� �
F 1z2 a1

2{2 a1

� �
for both subjects i

and k in the first population

Var(Sij ) = 2 pj 1{pj

� �
1zF (1z2 a2 a2{1ð Þ)ð Þ for subject i in

the second population (i.e. controls)

Cov(Sij ,Skj ) = 4 pj 1{pj

� �
F 1z2 a2

2{2 a2

� �
for both subjects i

and k in the second population and finally

Cov(Sij ,Skj ) = 4 pj 1{pj

� �
F 1z2 a1 a2{a1{a2ð Þ for subjects i

and k in different populations

With sampling of N cases from the first modern day admixed

population and N controls from the second after repeated use of

the matrix formulae for the inverse of a compound symmetric

matrix we can compute the variance term for b̂b2, j as the [2,2]

element of the variance covariance matrix, Var(b̂b),

Var(b̂b2, j)~s2
j (CTK{1C){1

½2,2� ð6Þ

as

1

N
2pj(1{pj)|(2{2Fa1

2z4a1
2FN{8a1FNa2z2Fa1

{3Fz4Fa2{4Fa2
2z4FNa2

2zF (1z2a2
2{2a2))
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This expression is bounded from below by the quantity

8pj(1{pj)F (a1{a2)2.

We see that this bound is zero only if either F~0 or if a1~a2.

The non-centrality parameter will (as in the previous example)

then again be bounded from above. Consider for example two

groups of ‘‘completely’’ admixed modern-day subpopulations one

with 25 percent of ancestry from one ancestral population (and 75

percent from the other population) and the other with 20 percent

ancestry from the first ancestral population (and 80 percent from

the second). If we take the fixation index, Fst value of 0.153 of

Nelis et al for (applicable for HapMap Yorubans versus HapMap

Europeans) and the allele frequency and odds ratios as above (40

percent and 1.5 per copy respectively) then the non-centrality

parameter l2~b2, j
2=Var(b̂b2, j) will be equal to 72.77 compared to

208.33 in the non-mixed case, leading again to loss of power

although not as extreme as in the previous example.

Incompletely admixed groups. The above example is still

unrealistic because we have assumed that all members within each

of the two study populations (cases and controls) have exactly the

same fraction of ancestry coming from the two differing ancestral

groups: a1 from population 1 for the cases and a2 from population

1 for the controls. This is not what is seen in most complex

population groups today, and is not what we see in the AABC data

considered below. Instead in modern admixed populations there is

a relatively wide range of within-population admixture

proportions. If there is overlap due to ancestry for cases and

controls then tests like the Bourgain test, principal components,

multidimensional scaling [22], and genomic matching [23,24]

have a much greater likelihood of success than in the previous

examples. Again we use the Bourgain test to quantify this. For

example we can assume a distribution of values of the admixture

fraction in the case and control samples while keeping a difference

‘‘on average’’ in ancestry between the two groups. We then can

calculate ‘‘appropriate’’ values of the matrix K and use this in

additional calculations. For our purposes the beta distribution

provides a reasonably flexible model for the distribution of

individual values of the admixture proportion in a modern day

admixed population. Figure 1 gives a plot of the density function

for a number of beta distributions. The beta distribution is usually

described in terms of two parameters, r and s with the mean of the

beta distribution equal to
r

rzs
and the variance equal to

rs

(rzs)2(rzsz1)
. For convenience we re-parameterize this

distribution in terms of its mean, a~
r

rzs
, and a heterogeneity

parameter, h, with r~a=h, so that s~(1{a)=h. Thus samples

from this distribution have mean a and variance a 1{að Þ h

hz1
.

This parameterization is useful when comparing the overlap of

two beta distributions with different means but similar within

group variances as in Figure 1.

We consider now the non-centrality parameter for the Bourgain

test when two incompletely admixed populations are used as cases

and controls where there is an overall difference in admixture

fraction in the two populations but where each population is

heterogeneous with respect to the fraction of ancestry from the two

mixing populations. Figure 2 plots the non-centrality parameter

(NCP) for the Bourgain test against the number, N, of cases and

controls (1:1 case-control ratio for N pairs) for the example used

above (a risk variant of frequency 40 percent overall, and a OR for

disease equal to 1.5 per copy) it is clear from the figure that the

non-centrality parameter is very much determined by the degree

of heterogeneity in admixture percentage within each population

(cases versus controls) as parameterized here by h.

AABC Study Results
Our analysis focuses upon (1) estimating a more appropriate

model for the distribution of ancestry in the data from the AABC

data than the homogeneous ‘‘complete’’ admixture described

above, (2) checking the adequacy of this model, enriching it if

necessary, and (3) describing the implications of the model for the

likely power to detect associations in studies in which all cases

come from outside the AABC study populations, and controls are

chosen from within the AABC. We can partly mimic such studies

by making up ‘‘pseudo’’ case-control studies using the data from

the different study sites within the AABC study.

Principal components analysis of the AABC study. We

used the EIGENSTRAT program to calculate the eigenvectors and

eigenvalues of the matrix K̂K given in expression (3) using the set of

2,457 AIMs described above. We first noted that the first eigenvalue

of K̂K was much larger than the remaining eigenvalues (504.85

compared to 29.71 for the next largest). We strongly suspected that

the eigenvector associated with this eigenvalue corresponds to the

fraction of European ancestry based on CEU of HapMap. To clarify

this we ran the program STRUCTURE on AABC study data and

included HapMap genotype data (CEU, YRI, and CBT+YRI) for

these same AIMs. The first eigenvector of the AABC data was highly

correlated (r = 0.991) with the estimate of STRUCTURE for the

percentage of European ancestry. For illustrative purposes we added

the HapMap subject’s data to the EIGENSTRAT analysis and

plotted the first 4 eigenvectors in Figure 3.

Variation among AABC study sites in admixture

percentage. Figure 4 shows box plots of the STRUCTURE

estimates of the fraction of European ancestry according to AABC

study site. For each study site, we estimated the mean and variance of

the distribution and related those by the method of moments to the two

parameters (a and h) in our parameterization described above. The

estimate a of average European ancestry varied significantly by study,

from approximately 0.25 for the MEC cohort and other studies in

California to approximately 0.19 for the CBCS and other studies in the

East and South-east United States. The heterogeneity parameter also

varied by site but was generally estimated to be close to 1/7 for all sites,

which indicated a large degree of overlap between the admixture

fractions even between the most different studies.

Other population structure in the AABC study. If the only

ancestry differences among the control populations sampled by the

AABC study relates to fraction of European versus African ancestry

then our previous analysis would indicate that very little loss of

power, compared to using perfectly matched controls, would result

from a case-control study that uses African American cases, and one

(or all) of the AABC control samples as convenience controls, after

adjustment for differences in European versus African ancestry.

Figure 3 gives evidence for some degree of admixture with an Asian

as well as European group, which we assume [10] is largely due to

admixture with Native American or Hispanic populations. The

requirement of controlling for this additional admixture will also

affect the power of using the AABC study as a source of shared

controls, as would other types of admixture or population

stratification. In order to quantify the total effect of the significant

eigenvectors in the AABC data we did the following: Using the

Tracy-Widom statistic as incorporated into EIGENSTRAT we

estimated the number of ‘‘significant’’ eigenvalues (i.e. those

significantly larger than the remaining eigenvalues) and hence the

‘‘significant’’ eigenvectors. Using these significant eigenvectors we

formed a ‘‘smoothed’’ version of the matrix K as

K
_

~
X‘
i~1

(wi{e)ViVi
TzeI ð7Þ
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where e~
1

Ntot{‘

XNtot

‘z1

wi. Here ‘ is the number of significant

eigenvectors of K̂K, the Vi, are the eigenvectors and wi is the

associated eigenvalue. Formula (7) gives a full rank estimate

which has the same first ‘ eigenvectors and eigenvalues as K̂K as

well as the same trace (sum of all N eigenvalues). We use this to

estimate non-centrality parameters for several example studies,

Figure 1. Plot of the density function of beta distributions parameterized by mean a and heterogeneity factor h. On each subplot the
density is shown for two choices of a namely a = 0.2 (solid line) and a = 0.25 (dotted lines).
doi:10.1371/journal.pgen.1001096.g001
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based on the AABC data. We found that approximately the first

200 eigenvalues were nominally significant (at a 5 percent type I

error rate) using the Tracy-Widom statistic and considered the

effect of adjusting for a range of 1 to all 200 eigenvectors in our

calculations. Fewer than all 200 eigenvectors likely to needed in a

realistic analysis, here we are examining an extreme case. The

fact that this many eigenvectors are nominally significant may be

due in part to not controlling for multiple comparisons or may

also be reflective of unsuspected close or distant relatedness

between certain participants.

Specifically we considered a breast cancer study in which all

African-American cases (n1 = 635) came from the CBCS and all

controls (n0 = 990) came from the Los Angeles component of the

MEC. Accordingly we extracted the 1625 by 1625 submatrix

(corresponding to these selected cases and controls) of K
_

for use in

the calculation of noncentrality parameters. The basic idea is to

Figure 2. Plot of non-centrality parameter for the Bourgain test for a case-control study using two incompletely admixed
populations as sources of cases and controls respectively. The parameters chosen refer to a test of a variant associated with disease which
has 40 percent overall allele frequency and which is associated with a 10 percent difference in frequency between cases and controls (OR = 1.5 per
copy). Cases are assumed to have average admixture percentage of 20 percent and controls 25 percent. The within population heterogeneity is
specified by a single common heterogeneity parameter h as used in Figure 1.
doi:10.1371/journal.pgen.1001096.g002
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calculate Var(b̂b2) using the estimate of K for this study, compared to

a study of the same size but where cases and controls are sampled

from the same non-admixed population. Because the appropriate K
and s2

j is not known, but is estimated from the data, our analysis of

power becomes slightly more complicated than above. For a given

SNP, j, we estimated the variance of b̂b2 by the scalar

½1=(N{2)�ST
j K

_
{1{K

_
{1C(CTK

_
{1C){1CT K

_
{1

h i
Sj|(CTK

_
{1C){1

½2,2� ð8Þ

The expected value of this variance estimate can be written as

tracef½1=(N{2)� K
_{1

{K
_{1

C(CTK
_{1

C){1CT K
_{1

h i
E(SjS

T
j )g|(CTK

_{1
C){1

½2,2� ð9Þ

The expected value E(SjS
T
j ) depends upon the details of admixture

and other types of population structure in this subset of AABC

participants and can be written as

Figure 3. Principal components plots of AABC and selected HapMap samples.
doi:10.1371/journal.pgen.1001096.g003

ð8Þ

ð9Þ
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E(SjS
T
j )~mjm

T
j zs2

j K: ð10Þ

In a study of homogeneous non-admixed case and control

populations, and under the null hypothesis that b2 is zero, this

reduces to 4pj
211Tz2pj(1{pj)I where pj is the allele frequency of

marker j. Substituting expression (10) into expression (9) with either

K = I (for a homogeneous study) or for K~~KK (for our example)

allows us to compare the variance of the estimators when a total of ‘
eigenvectors are adjusted for in our hypothesized case-control study,

compared to the homogeneous study. Figure 5 plots the values of

expression (9) for varying values of ‘ for a marker with frequency 20

percent. It appears that correcting for increasing numbers of

eigenvectors (at least beyond the first two components) has relatively

little effect on Var(b̂b2) and hence on study effective sample size and

power. Even using all 200 ‘‘significant’’ eigenvectors in the

calculation of the smoothed estimator K
_

only increases the variance

of the estimator by about 7 percent relative to a study that needs no

correction. Of course we also need to confirm that the false positive

rate for the Bourgain test is properly controlled for by using a

particular number, ‘, of eigenvectors. Figure 6 gives a quantile-

quantile (QQ) plot of the ({log10) p-values from tests of

association of each of the AIMs used to estimate K with case-

control status in our hypothesized study, while using either 0

(uncorrected), 1 (the CEU – YRI component), 10, or 200

eigenvectors to form K
_

. Here the uncorrected analysis is very

highly over-dispersed with a very large number of associations

globally significant (using the Bonferonni test). However even

using just 1 eigenvector appears to give a reasonably adequate

control of the type I error while correcting for 200 gives nearly

perfect control, with little loss of additional power (as indicated in

Figure 5).

Discussion

We have adopted a somewhat non-standard approach in relying

upon the Bourgain test rather than principal components [8] or

related methods [22–24] to control for population structure in a

GWAS of a minority population with cases/controls drawn from

multiple studies with different designs and recruitment approach-

es. We have done this mainly because we can give certain

theoretical results for the Bourgain test when assuming specific

forms for the true kinship matrix K using this procedure. It is

worth noting that the Bourgain test can be regarded as a random

Figure 4. Plot of estimate of proportion of African ancestry from STRUCTURE by participating AABC study.
doi:10.1371/journal.pgen.1001096.g004
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effects version of the usual principal components method. In

particular the Bourgain model can be alternatively described as a

model for the mean of Sj conditional upon all Ntot eigenvectors of

K as

mj~Cbjzcj,1V1zcj,2V2z � � � cj,Ntot
VNtot ð10Þ

Now consider the coefficients cj,1 . . . cj,N as being independent

random effects with mean zero and variances equal to sj
2 times

the associated eigenvalues, w1 . . . wN of K. Averaging over all the

random cj,i will yield the unconditional mean Cbj and variance

covariance matrix s2
j K. Our ‘‘smoothed’’ estimate, K̂K, of K is

motivated by expression (10), and choosing a value of ‘ is

analogous to choosing the number of eigenvectors to be used as

fixed effects by EIGENSTRAT. The random effects framework

also highlights the relationship between the Bourgain procedure

and the genomic control method of Devlin and Roeder [25]. In

genomic control one additional parameter that governs the

dispersion of the test statistic is used to assess the association

between Sj and case-control status. In the smoothed version of the

Bourgain test introduced here, we choose a total of ‘ such

parameters.

We have shown that if cases and controls come from genetically

distinct populations but ones that have only recently diverged (so

that the parameter F is very small) then some limited power

remains to detect true marker associations so long as the true value

of b2 is very large compared to the ‘‘typical’’ differences between

cases and controls seen with the other markers. This is also

analogous in interpretation to the genomic control method.

However our explicit description of the upper bound on the

noncentrality parameter of the association test for such a study

clearly shows the limits of this design, and by implication, the

Figure 5. Plot of variance. Plot of the variance of b̂b2 according to the
number, ‘, of eigenvectors adjusted for in the Bourgain test of
association.
doi:10.1371/journal.pgen.1001096.g005

Figure 6. Quantile-quantile plot of p-values from association tests in the hypothesized case-control study in which cases from the
CBCS and controls from the MEC are used. The plotted values indicate adjustment for 0 (uncorrected heavy solid line), 1 (dashed line), 10
(dotted line) and 200 (thin solid line) eigenvectors, by using these components in the calculation of K

_

.
doi:10.1371/journal.pgen.1001096.g006
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limits of the genomic control procedure as well. Basically neither of

these two methods behaves ‘‘properly’’ from a statistical point of

view as sample size increases, i.e. the non-centrality parameter

under an alternative hypothesis (and hence power) does not

increase correspondingly. In genomic control the overdispersion

parameter that the procedure corrects for increases with sample

size, while for the Bourgain test the noncentrality parameter is

bounded from above.

For case-control studies involving two or more similarly

admixed populations that differ in admixture fraction, the key

issue in assessing the power of a study using cases from one

population and controls from another is in determining the within-

population heterogeneity of the admixture fractions, relative to the

between population differences in average admixture. If the

within-population heterogeneity is small then the situation is

equivalent to the case of isolated populations, i.e., there will be a

bound on the power of a study to detect an effect with the bound

determined by the upper limit on the noncentrality parameter as a

function of N as computed above.

Despite the concerns raised in our theoretical considerations, in

our assessment of the observed marker data from the AABC study

we tentatively conclude that reuse of controls data from this study

in future work may be statistically feasible. While there are clear

differences in average admixture fraction between studies these are

dwarfed by the within-study heterogeneity. Other signs of hidden

structure in the AABC studies (as evidenced by additional

eigenvalues which are significant by the Tracy-Widom test) do

not appear to have a very large impact (Figure 5) on the power of

our hypothetical study using the CBCS and MEC cases and

controls respectively. Control for the first few (1–200 in our case)

eigenvectors appears to dramatically reduce false positive

associations with very little power loss (about a 7 percent reduction

in effective sample size) relative to studies of homogeneous sets of

cases and controls. We have used a specific set of ancestry

informative markers in our analysis but the existence of genome-

wide data for the AABC allows for considerable latitude in

selecting SNPs to control for admixture, and even randomly

selected SNPs, if enough are considered, can be used for

admixture correction. Our use of the Bourgain test when

considering the feasibility of a particular study design allows us

to consider noncentrality parameters (and hence power) in

particularly simple and helpful ways. While we have focused on

the Bourgain method to correct for admixture differences in the

AABC study our specific finding (that little loss in power is

anticipated when re-using control data from this study) is likely to

apply also to fixed-effects methods such as treating principal

components or STRUCTURE estimates of percentage ancestry

from ancestral populations as covariates. Our reasoning is based

upon the close relationship between the principal components

methods and the random effects rationale for the Bourgain test as

given in equation (10) and also on the high correlation seen

between STRUCTURE estimates of African ancestry in the

AABC study and the first eigenvector from principal components.
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