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Herbal drugs have drawn substantial interest as effective analgesic agents; however, their therapeutic mechanisms remain to be
fully understood. To address this question, we performed a network pharmacology study to explore the system-level mechanisms
that underlie the analgesic activity of Jakyak-Gamcho decoction (JGd; Shaoyao-Gancao-Tang in Chinese and Shakuyaku-Kanzo-
To in Japanese), an herbal prescription consisting of Paeonia lactiflora Pallas and Glycyrrhiza uralensis Fischer. Based on
comprehensive information regarding the pharmacological and chemical properties of the herbal constituents of JGd, we
identified 57 active chemical compounds and their 70 pain-associated targets. -e JGd targets were determined to be involved in
the regulation of diverse biological activities as follows: calcium- and cytokine-mediated signalings, calcium ion concentration and
homeostasis, cellular behaviors of muscle and neuronal cells, inflammatory response, and response to chemical, cytokine, drug,
and oxidative stress. -e targets were further enriched in various pain-associated signalings, including the PI3K-Akt, estrogen,
ErbB, neurotrophin, neuroactive ligand-receptor interaction, HIF-1, serotonergic synapse, JAK-STAT, and cAMP pathways.
-us, these data provide a systematic basis to understand the molecular mechanisms underlying the analgesic activity of
herbal drugs.

1. Introduction

Pain is a major healthcare and socioeconomic issue
worldwide that severely affects the overall health, quality of
life, daily activities, and productivity of patients, and it places
a substantial financial burden on healthcare systems and
society [1–6]. Based on the pathophysiological mechanisms,
pain is classified into (i) nociceptive and (ii) nonnociceptive
neuropathic pain [7–21]. Nociceptive pain is caused by the
activation and stimulation of nociceptors and pain pathways
driven by inflammation, chemicals, or physical events, and it
is subdivided into somatic and visceral [7–21]. Neuropathic
pain develops due to damage, injury, dysfunction, or disease
of the somatosensory nervous system, and it is further

classified into central and peripheral [7–21]. At present,
opioid analgesics, nonsteroidal anti-inflammatory drugs
(NSAIDs), and non-anti-inflammatory antipyretic analgesic
agents serve as primary therapies for pain alleviation
[6, 15, 22–28]. However, current treatment options for pain
management are still associated with limited efficacy and
unwanted adverse effects [6, 15, 22–28]. Meanwhile, herbal
drugs and multicomponent-multitarget-multipathway pol-
ypharmacological therapeutics have received considerable
attention for pain treatment because of their important
analgesic effects with fewer side effects and toxicity [29–36].

Jakyak-Gamcho decoction (JGd; Shaoyao-Gancao-Tang
in Chinese and Shakuyaku-Kanzo-To in Japanese) is an
herbal drug that consists of Paeonia lactiflora Pallas and
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Glycyrrhiza uralensis Fischer, which has been prescribed for
the treatment of various types of pain, gynecological dis-
eases, arthritic diseases (e.g., osteoarthritis and arthralgia),
and muscular diseases (myalgia, muscle tension, spasm, and
cramps) [30, 37–48]. Previous studies have demonstrated
the various therapeutic properties of JGd, including its
analgesic, anti-inflammatory, antispasmodic, and anti-
allergic effects [30, 37–40, 43, 44, 46–55]. Among the diverse
effects of this herbal drug, the most common therapeutic use
of JGd is to alleviate pain arising from cancer, diabetes,
neuropathy, and muscle and arthritis diseases
[30, 37–40, 44, 46–48], which makes it one of the most
frequently prescribed oral analgesic agents in East Asia [56].
-e analgesic mechanisms of JGd include the modulation of
spinal α2-adrenoceptors, transient receptor potential
vanilloid 1 (TRPV1) channels, calcium and Sirt1 signalings,
muscle contraction and relaxation, and chemokine and
cytokine expression [39, 44, 46, 51, 57–60]. However, the
pharmacological properties of JGd at the systemic level need
to be explored.

Because of the complex pharmacological nature of
multicompound-multitarget-multipathway agents, there is
often a fundamental limitation in investigating their com-
prehensive mechanisms of action based only on conven-
tional biological experimental methodologies [61–68]. To
overcome such challenges, network pharmacology, an in-
tegrative research field that systematically combines com-
putational systems biology, network science, medicine,
pharmacology, mathematics, and physics, has emerged as
one of the most effective approaches for the mechanistic
exploration of polypharmacological drugs, such as herbal
medicines [61–68]. -e goal of this integrative science is to
unveil the mechanisms of disease pathogenesis and drug
activity that are coordinated through the interactions among
diverse biological components such as genes, proteins, cells,
tissues, and organs [61–68]. Previous network pharmacology
studies successfully investigated the polypharmacological
properties of herbal drugs by identifying their active com-
pounds and key therapeutic targets and further elucidating
the distinct system-level pharmacological effects and
mechanisms (e.g., therapeutic modulation of biological
processes such as proliferation, apoptosis, cell cycle regu-
lation, angiogenesis, oxidation and reduction, insulin
metabolism, and inflammation) for the treatment of various
diseases, including cancer, diabetes, arthritis, and ischemic
stroke, which are exerted by the synergistic interplay be-
tween multiple compounds and targets contained in herbal
drugs [61–79]. In the present network pharmacology study,
we aimed to uncover the molecular mechanisms that un-
derlie the analgesic properties of JGd with a system’s
perspective.

2. Materials and Methods

2.1. Screening of Active Chemical Compounds in Jakyak-
Gamcho Decoction. Information on chemical compounds
comprising the herbal constituents of JGd was investigated
using the Traditional Chinese Medicine Systems Pharma-
cology (TCMSP) database [80]. -en, based on their

absorption, distribution, metabolism, and excretion
(ADME) properties (i.e., oral bioavailability (OB), Caco-2
permeability, and drug-likeness (DL)), chemical compounds
that satisfy the following criteria were screened and deter-
mined to be bioactive as previously suggested [63, 80, 81]
using the TCMSP [80]: OB≥ 30%, Caco-2 permeability≥ -
0.4, and DL≥ 0.18. In brief, OB is the proportion of orally
administered drug compounds that enter the general cir-
culation, and it is one of the most crucial considerations in
the design and development of a drug [80, 82]. Of note,
compounds with an OB larger than 30% are commonly
regarded as effectively absorbed in the human body [80, 82].
Caco-2 permeability is an important index for the investi-
gation of intestinal permeability and drug efflux that is based
on an evaluation of the rate of absorption and diffusion of a
compound across Caco-2 human intestinal cells [80, 83–85].
In general, a chemical compound is considered not per-
meable in the intestinal epithelium if its Caco-2 permeability
is lower than −0.4 [86, 87]. DL is a widely used measurement
that qualitatively assesses whether a certain compound is
physicochemically and structurally suitable for use as a drug
[80, 88]. Note that the average DL of all drugs is 0.18, and
therefore, it is commonly used as the threshold to determine
the pharmacological potential of a compound [80, 88].

2.2. Target Identification. Human targets of the active
chemical compounds of JGd were investigated using various
databases and models, including the PharmMapper [89],
search tool for interactions of chemicals (STITCH) 5 [90],
Swiss Target Prediction [91], similarity ensemble approach
(SEA) [92], systematic drug targeting tool (SysDT) [93], and
weighted ensemble similarity (WES) [94].-e pain-associated
human genes and proteins were investigated from the Dis-
GeNET [95], -erapeutic Target Database [96], GeneCards
[97], Comparative Toxicogenomics Database [98], Human
Genome Epidemiology Navigator [99], Online Mendelian
Inheritance in Man [100], Pharmacogenomics Knowledge-
base [101], and DrugBank [102], using the medical subject
headings term “Pain” (ID: D010146) forHomo sapiens species.

2.3. Network Construction. -e herbal medicine-active
chemical compound (H-C), active chemical compound-target
(C-T), and target-pathway (T-P) networks were generated by
connecting the herbal medicines with their active chemical
compounds, the compounds with their targets, and the targets
with the signaling pathways in which they are enriched. -e
protein-protein interaction (PPI) network was generated
using the STRING database (interaction confidence score-
≥ 0.9) [103]. Analysis and visualization of networks were
performed with Cytoscape software [104]. A network is
composed of nodes (e.g., herbal medicines, chemical com-
pounds, targets, or pathways) and edges (or links) describing
the interactions among the nodes [105]. -e degree is defined
as the number of links of a node [105].

2.4. Contribution Index Evaluation. -e network-based ef-
ficacy-based contribution index (CI) of active chemical
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compounds of JGd was evaluated following previous pro-
cedures as follows [81]:

NE(j) � 􏽘
n

i�1
di,

CI(j) �
cj × NE(j)

􏽐
m
i�1 ci × NE(i)

× 100%,

(1)

where m is the number of chemical compounds, n is the
number of targets of chemical compound j, di is the number
of links of target i of chemical compound j, and ci (or cj) is
the number of previous studies having “pain” and com-
ponent i (or j) in their title or abstract searched from the
PubMed database (https://pubmed.ncbi.nlm.nih.gov/). -e
chemical compounds with the highest CIs were regarded as
contributing more to the pharmacological activity of a
certain herbal drug [81].

2.5. Functional Enrichment Analysis. Gene ontology (GO)
enrichment analysis was performed with g:Profiler [106].
Pathway enrichment analysis was performed with Kyoto
Encyclopedia of Genes and Genomes database [107].
Functional association analysis was conducted using Gen-
eMANIA [108].

2.6. Molecular Docking Analysis. -e structures of chemical
compounds of JGd and their targets were obtained from the
PubChem [109] and RCSB Protein Databank [110] data-
bases, respectively. -en, the molecular docking scores
between the chemical compounds and the targets were
assessed using AutoDock Vina [111]. Of note, a certain
chemical compound is regarded as having high binding
affinity to a target if the corresponding docking score is less
than or equal to −5.0 [112, 113].

3. Results

-e network pharmacology study for the exploration of
analgesic mechanisms of JGd was conducted as follows
(Figure 1). Detailed information regarding the chemical
constituents of JGd was obtained from the comprehensive
biomolecular databases, and the bioactive compounds were
investigated using their ADME characteristics (Figure 1).
-e human targets of the active chemical compounds were
identified from various databases and models that assess
chemical-protein interactions (Figure 1). -en, we inte-
grated the extensive herbal drug-related data into networks
and performed network pharmacology analysis (Figure 1).

3.1. Active Chemical Compounds of Jakyak-Gamcho
Decoction. Detailed information regarding the chemical
compounds present in JGd was obtained from TCMSP [80]
(Supplementary Table S1), and the active compounds were
defined as those with OB≥ 30%, Caco-2 permeability≥−0.4,
and DL≥ 0.18, as described previously [63, 80, 81]. Some
components were also determined to be active because of the

substantial amount contained in JGd and their reported
relevant pharmacological activity [42, 57, 114–128], al-
though they did not meet the criteria. As a result, 111 active
chemical compounds were obtained for JGd (Supplementary
Table S2).

3.2. Targets of Jakyak-Gamcho Decoction. We identified the
targets of the active chemical compounds of JGd using the
following databases and models for the investigation of
chemical-protein interactions: Swiss Target Prediction [91],
STITCH 5 [90], PharmMapper [89], SEA [92], SysDT [93],
andWES [94].-erefore, 70 human pain-associated and 137
nonpain-associated targets were obtained for JGd (Sup-
plementary Table S3).

Paeonia lactif lora
Pallaser 

Glycyrrhiza uralensis
Fischer

Active compounds

Network pharmacology analysis

Pain
Jakyak-Gamcho decoction

Jakyak-Gamcho decoction targets Disease targets

Figure 1: A schematic diagram illustrating the network phar-
macology exploration of the analgesic mechanisms of Jakyak-
Gamcho decoction.
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3.3.NetworkPharmacology-BasedAnalysis of Jakyak-Gamcho
Decoction. To perform network pharmacology-based anal-
ysis of the pharmacological features of JGd, we constructed
an herbal medicine-active chemical compound-target (H-C-
T) network composed of 129 nodes (two herbal medicines,
57 active chemical compounds, and 70 pain-associated
targets) and 217 links (Figure 2 and Supplementary Table S3)
using comprehensive information regarding the herbal drug.
We found that quercetin (number of targets� 36) and
kaempferol (number of targets� 11) have relatively many
targets (Figure 2 and Supplementary Table S3), implying that
they might be important active compounds for the thera-
peutic activity of JGd. In addition, 27 human genes/proteins
were found to be targeted by two or more active chemical
compounds of JGd (Figure 2), suggesting a poly-
pharmacological mechanism.

To investigate the biological interaction relationship be-
tween the JGd targets, we generated a PPI network (58 nodes
and 174 links) comprising the targets (Figure 3). Next, we
searched for hubs, specific nodes with a high degree in the
network that are shown to have crucial biological functions
and promising therapeutic potential [129, 130]. In the anal-
ysis, hubs were determined as nodes for which the degree was
greater than or equal to twice the average node degree of the
network [131, 132]. -e results showed that PIK3R1
(degree� 25), HSP90AA1 (degree� 15), EGFR (degree� 14),
AKT1 (degree� 13), LPAR1 (degree� 13), LPAR2 (degree�

13), and LPAR3 (degree� 13) were hubs (Figure 3), implying
that they might be the key targets responsible for the analgesic
activity of JGd. -ese hubs were shown to be involved in the
regulation of pain-related processes and could function as
potent targets to induce analgesic effects. -e PIK3R1 gene
was suggested to have the potential to function as a pain-
related regulator according to the genetic interaction analysis
[133], and its expression level might be associated with os-
teoarthritis pathogenesis [134]. Upregulation of the
HSP90AA1 gene was observed in patients with fibromyalgia
[135–137], and pharmacological inhibition of heat shock
protein 90 (HSP90; encoded by HSP90AA1) was shown to
alleviate monoarthritis-induced pain [138]. -e activation of
epidermal growth factor receptor (EGFR; encoded by EGFR)
and AKT (encoded by AKT1) is associated with the devel-
opment and enhancement of diverse types of pain, and their
therapeutic modulation might be associated with analgesic
properties [139–156]. Lysophosphatidic acid receptor 1
(encoded by LPAR1) activity is involved in pain behavior
arising from bone cancer, inflammation, diabetes, and neu-
ropathy, and its pharmacological or genetic ablation might
reduce the pain response [157–165]. Lysophosphatidic acid
receptor 3 (encoded by LPAR3) plays crucial roles in the
development and maintenance of neuropathic pain, and its
blockade exerts analgesic effects [163, 166, 167].

We further assessed the CIs of the active chemical
compounds of JGd to assess their pharmacological contri-
bution to the analgesic effect of the herbal drug as described
earlier [81, 168]. As a result, quercetin was shown to have the
highest CI (91.83%) (Supplementary Figure S1), which
suggests that this chemical compound might be the primary
contributor to the analgesic activity of JGd.

Together, these data indicate the system-level pharma-
cological properties of the analgesic activity of JGd.

3.4. Functional Enrichment Investigation of Jakyak-Gamcho
Decoction Networks. To investigate the molecular mech-
anisms underlying the analgesic effect of JGd, we carried
out GO enrichment analysis of the targets. As a result, the
JGd targets were enriched in GO terms involved in the
modulation of a variety of biological activities, such as
calcium- and cytokine-mediated signalings, calcium ion
concentration and homeostasis, cellular behaviors of
muscle and neuronal cells, inflammatory response, and
response to chemical, cytokine, drug, and oxidative stress
(Supplementary Figure S2), which are in accordance with
the previously reported molecular mechanisms of the
herbal drug [40, 41, 44, 46, 49, 55, 58–60, 169–172]. In
addition, GeneMANIA analysis indicated that the JGd
targets might functionally interact via diverse mecha-
nisms (Supplementary Figure S3), implying the similarity
in their pharmacological roles.

Because various signaling pathways were reported to be
associated with the initiation, transmission, perception, and
maintenance of pain [12, 14, 20, 144, 155, 173–186], we carried
out pathway enrichment analysis.We found that the JGd targets
were enriched in the following signalings: “PI3K-Akt signaling
pathway,” “Neuroactive ligand-receptor interaction,” “Estrogen
signaling pathway,” “cAMP signaling pathway,” “Chemokine
signaling pathway,” “JAK-STAT signaling pathway,” “Neuro-
trophin signaling pathway,” “AMPK signaling pathway,”
“Dopaminergic synapse,” “ErbB signaling pathway,” “HIF-1
signaling pathway,” “Insulin signaling pathway,” “mTOR sig-
naling pathway,” “Serotonergic synapse,” “Adipocytokine sig-
naling pathway,” “Drugmetabolism - cytochromeP450,” “IL-17
signaling pathway,” “TNF signaling pathway,” “Arachidonic
acidmetabolism,” and “VEGF signaling pathway” (Figure 4 and
Supplementary Figure S2). -ese signalings are well-known
pain-regulating pathways and function as therapeutic targets of
analgesic and pain-relieving drugs. -e activities of adenosine
monophosphate-activated kinase (AMPK), ErbB, mammalian
target of rapamycin (mTOR), phosphoinositide 3-kinase
(PI3K)-Akt, tumor necrosis factor (TNF), or vascular endo-
thelial growth factor (VEGF) signaling pathways are involved
with the development and maintenance processes of various
types of pathological pain, and their functional modulation
might relieve neuropathic, nociceptive, and bone cancer pain
[144, 149, 150, 155, 156, 187–226]. Furthermore, the activity of
PI3K-Akt and the adipocytokine pathway further correlates
with the severity of neuropathic and inflammatory pain, and
their targeting agents exert analgesic effects [227–229]. -e
estrogen pathway serves as a modulator of the processing and
sensitivity of visceral and mechanical pain responses [230–235].
Previous studies have shown the involvement of cyclic aden-
osine monophosphate (cAMP), chemokine, Janus kinase-
(JAK-) signal transducer and activator of transcription (STAT),
neurotrophin, and hypoxia-inducible factor (HIF) pathways in
the initiation and persistence of inflammatory, cancer, and
neuropathic pain, as well as their role as pharmacological
mediators of analgesic approaches [141, 224, 236–265]. -e
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impaired regulation of insulin signaling might promote the
development of and pain sensation with diabetic neuropathy,
which can be alleviated by its functional restoration [266–269].
-e interleukin- (IL-) 17 pathway plays a crucial role in cellular
mechanisms of pain pathogenesis and maintenance in various

diseases including multiple sclerosis, prostatitis, intervertebral
disk degeneration, femoral head osteonecrosis, and neuropathy;
its inhibitionmight block the generation and persistence of pain
[270–282]. Arachidonic acid metabolism is associated with the
generation and secretion of diverse biomolecular substances
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responsible for the induction of inflammation and pain, and it is
mainly involved in the mechanisms of action of NSAIDs
[283–288]. Moreover, the serotonergic and dopaminergic
synapse pathways are key neurotransmitters responsible for
modulating the intensity and duration of pain, and their
therapeutic interventions have been shown to attenuate pain
behaviors [289–292].

Collectively, these results demonstrate the molecular-
and pathway-level mechanisms underlying the analgesic
activity of JGd.

3.5. Molecular Docking Evaluation. To investigate the
binding potential of the chemical compounds of JGd
components for the targets, we evaluated their molecular
docking activity. As a result, 95.09% of the binding inter-
actions between the active chemical components of JGd and
the hub targets was found to have docking scores equal to or
lower than −5.0 (Figure 5 and Supplementary Table S4),
indicating their therapeutic binding potential. Of note, the
protein structures for LPAR2 and LPAR3 were unavailable
in the RCSB Protein Databank [110]; therefore, they were
excluded from the analysis.

4. Discussion

Herbal medicines are increasingly being acknowledged as
effective analgesic and pain-relieving agents owing to their
promising therapeutic activity with fewer side effects
[29–36]. JGd is a well-known herbal drug that alleviates pain
induced by multiple diseases such as peripheral neuropathy,
myalgia, arthralgia, and diabetes [30, 37–40, 44, 46–48], and
it is one of the most frequently prescribed oral analgesics in
East Asia [56]. Previous studies have attempted network
pharmacology analyses to investigate the mechanisms

underlying JGd for the treatment of osteoarthritis and
Parkinson’s disease [293, 294]; however, its network-per-
spective analgesic properties have not been fully elucidated.
-erefore, this network pharmacology study attempted to
investigate system-level mechanisms that underlie the an-
algesic activity of JGd. -e ADME evaluation and network
pharmacology investigation identified 57 active chemical
compounds in JGd and their 70 pain-associated human
molecular targets. Further enrichment analysis indicated
that JGd targets were enriched with GO terms related to the
modulation of biological activities, involving calcium- and
cytokine-mediated signalings, calcium ion concentration
and homeostasis, cellular behaviors of muscle and neuronal
cells, inflammatory response, and response to chemical,
cytokine, drug, and oxidative stress, consistent with the
previously reported molecular mechanisms of the herbal
drug [40, 41, 44, 46, 49, 55, 58–60, 169–172]. We further
showed that JGdmight target various pain signalings to exert
its analgesic and pain-relieving effects, which involve the
PI3K-Akt, estrogen, ErbB, neurotrophin, neuroactive li-
gand-receptor interaction, HIF-1, serotonergic synapse,
JAK-STAT, and cAMP pathways.

-e analgesic activity of the chemical components of JGd
has been previously reported. (+)-Catechin and pinocembrin
produce analgesic, antineuropathy, and antinociceptive effects
[295–297]. Albiflorin might play a pharmacological role as an
analgesic, antineuropathy, and antinociceptive compound that
can reduce pain intensity via the functional modulation of
calcium channels, mitogen-activated protein kinase (MAPK)
pathways, and various cytokines and chemokines [127, 298].
Moreover, formononetin, glabridin, glycyrrhizin, and paeonol
exhibit anti-inflammatory, antinociceptive, and analgesic ac-
tivities by inhibiting the generation of inflammatory cytokines
and signaling molecules, thereby attenuating the pain responses
[117, 120, 299–302]. Gallic acid could also have potential anti-
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inflammatory, antioxidant, and neuroprotective effects that
could improve neuropathic pain, neuronal damage, and injury
[119, 303, 304]. Glycyrrhizin and naringenin reduce inflam-
matory and neuropathic pain-like behaviors by modulating the
secretion of inflammation-associated cytokines and mediators,
as well as the activities of cyclic guanosine monophosphate
(cGMP) and nuclear factor kappa-light-chain-enhancer of ac-
tivated B cells (NF-κB) signalings [120, 301, 305–314]. Iso-
liquiritigenin was reported to possess analgesic, antispasmodic,
and relaxant properties [315, 316]. Isorhamnetin ameliorates the
pain intensity of diabetic neuropathy via its neuroprotective,
antioxidative, and anti-inflammatory effects [317]. Kaempferol
shows anti-inflammatory, antioxidant, and analgesic effects,
which relieve the pain symptoms of gastritis, pancreatitis, and
diabetic neuropathy [318–320]. In addition, liquiritigeninmight
suppress neuropathic pain by improving thermal, cold, and
mechanical hyperalgesia [116]. Mairin (betulinic acid) has been
shown to exert anti-inflammatory, antinociceptive, antipyretic,
and analgesic effects, thereby alleviating visceral pain and
chemotherapy-, infection-, and diabetes-associated neuropa-
thies [321–326]. Quercetin reduces pain arising from inflam-
mation, cancer, chronic prostatitis/chronic pelvic pain
syndrome, arthritis, and muscle injury by inhibiting the in-
duction of oxidative stress and activating inflammatory and
adrenergic pathways, neurotransmitters, and cytokines
[327–334]. In addition, quercetin further modulates the activity
of a variety of pathways, including Toll-like receptor, mTOR,
protein kinase Cε (PKCε)-TRPV1, p70 ribosomal S6 kinase
(p70S6K), and P2X4 receptor signalings, as well as oxidative
stress- and inflammation-associated mediators to exert its
analgesic effects against diverse types of neuropathic pain
[214, 335–347]. β-Sitosterol shows analgesic, antinociceptive,
and anti-inflammatory activities [348–353]. -ese studies re-
garding the chemical components of JGd provide the phar-
macological basis for the analgesic activities of this herbal drug.

Based on the network pharmacological analyses, the
following studies would contribute to the improvement of
herbal drug therapies: (i) an assessment of the therapeutic

efficacy of JGd analgesic activity in specific diseases that are
associated with distinct types of pain, such as cancer, os-
teoarthritis, myalgia, arthralgia, and diabetes; (ii) a com-
prehensive exploration of the system-level mechanisms of
analgesic properties of the herbal drug from diverse phar-
macological perspectives, involving antinociceptive, anti-
inflammatory, muscle relaxant, and antipyretic effects; and
(iii) an investigation of the safety and effectiveness of
combined treatment with JGd and widely used analgesic
agents, including celecoxib, tramadol, and acetaminophen
[24, 56, 354].

To conclude, we investigated the systems’ perspective
pharmacological properties of JGd, a widely prescribed
analgesic herbal drug [56]. Based on the network phar-
macological approach, we investigated 57 active chemical
compounds and their 70 pain-related targets responsible
for the analgesic activity of JGd. -e targets of JGd were
associated with the modulation of biological functions
such as calcium- and cytokine-mediated signalings,
calcium ion concentration and homeostasis, cellular
behaviors of muscle and neuronal cells, inflammatory
response, and response to chemical, cytokine, drug, and
oxidative stress, which suggests the molecular mecha-
nisms of JGd treatment. In addition, the enrichment
analysis indicated that the targets are involved in various
pathways that are associated with the pathophysiology of
pain, including the PI3K-Akt, estrogen, ErbB, neuro-
trophin, neuroactive ligand-receptor interaction, HIF-1,
serotonergic synapse, JAK-STAT, and cAMP pathways.
-e overall data offer a novel systematic view of the
polypharmacological characteristics of herbal drugs and a
mechanistic basis for their clinical implications for pain
treatment.

Data Availability

-e data used to support the findings of this study are in-
cluded within the article and supplementary materials file.
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Figure 5: Molecular docking analysis of interactions between the active chemical compounds of Jakyak-Gamcho decoction and hub targets.
(a) Calycosin-AKT1 (score� −7.5). (b) Gancaonin O-AKT1 (score� −5.7). (c) Quercetin-AKT1 (score� −6.4). (d) Quercetin-EGFR
(score� −8.0). (e) Xambioona-EGFR (score� −10.5). (f ) Glabridin-HSP90AA1 (score� −8.3). (g) Xambioona-HSP90AA1 (score� −9.1).
(h) Mairin-LPAR1 (score� −8.4). (i) Calycosin-PIK3R1 (score� −7.9). (j) Quercetin-PIK3R1 (score� −6.3).
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treatments for chronic pain: efficacy and mechanisms,”
Nature Reviews Neurology, vol. 10, no. 3, pp. 167–178, 2014.

[15] P. W. Mantyh, “Cancer pain and its impact on diagnosis,
survival and quality of life,” Nature Reviews Neuroscience,
vol. 7, no. 10, pp. 797–809, 2006.

[16] P. W. Mantyh, D. R. Clohisy, M. Koltzenburg, and
S. P. Hunt, “Molecular mechanisms of cancer pain,” Nature
Reviews Cancer, vol. 2, no. 3, pp. 201–209, 2002.

[17] B. Morlion, “Pharmacotherapy of low back pain: targeting
nociceptive and neuropathic pain components,” Current
Medical Research and Opinion, vol. 27, no. 1, pp. 11–33, 2011.

[18] J. Nijs, L. Leysen, N. Adriaenssens et al., “Pain following
cancer treatment: guidelines for the clinical classification of
predominant neuropathic, nociceptive and central sensitiza-
tion pain,” Acta Oncologica, vol. 55, no. 6, pp. 659–663, 2016.

[19] S. Omoigui, “-e biochemical origin of pain—proposing a
new law of pain: the origin of all pain is inflammation and the
inflammatory response. Part 1 of 3—a unifying law of pain,”
Medical Hypotheses, vol. 69, no. 1, pp. 70–82, 2007.

[20] M. -akur, A. H. Dickenson, and R. Baron, “Osteoarthritis
pain: nociceptive or neuropathic?” Nature Reviews Rheu-
matology, vol. 10, no. 6, pp. 374–380, 2014.

[21] S. Y. Yoon and J. Oh, “Neuropathic cancer pain: prevalence,
pathophysiology, and management,” 
e Korean Journal of
Internal Medicine, vol. 33, no. 6, pp. 1058–1069, 2018.

[22] L. J. Crofford, “Adverse effects of chronic opioid therapy for
chronic musculoskeletal pain,” Nature Reviews Rheumatol-
ogy, vol. 6, no. 4, pp. 191–197, 2010.

[23] P. G. Fine, “Analgesia issues in palliative care: bone pain,
controlled release opioids, managing opioid-induced con-
stipation and nifedipine as an analgesic,” Journal of Pain &
Palliative Care Pharmacotherapy, vol. 16, no. 1, pp. 93–97,
2002.

[24] S.-J. Kim and J. T. Seo, “Selection of analgesics for the
management of acute and postoperative dental pain: a mini-
review,” Journal of Periodontal & Implant Science, vol. 50,
no. 2, pp. 68–73, 2020.

[25] A.-M. Malfait and T. J. Schnitzer, “Towards a mechanism-
based approach to pain management in osteoarthritis,”
Nature Reviews Rheumatology, vol. 9, no. 11, pp. 654–664,
2013.

[26] A. D. Nelson and M. Camilleri, “Opioid-induced con-
stipation: advances and clinical guidance,” 
erapeutic
Advances in Chronic Disease, vol. 7, no. 2, pp. 121–134, 2016.

[27] K. G. Tolman, “Hepatotoxicity of non-narcotic analgesics,”

e American Journal of Medicine, vol. 105, no. 1, pp. 13S–
19S, 1998.

[28] A. S. Yekkirala, D. P. Roberson, B. P. Bean, and C. J. Woolf,
“Breaking barriers to novel analgesic drug development,”
Nature Reviews Drug Discovery, vol. 16, no. 8, pp. 545–564,
2017.

[29] L. Chen and A. Michalsen, “Management of chronic pain
using complementary and integrative medicine,” BMJ,
vol. 357, Article ID j1284, 2017.

[30] T. Hyodo, T. Taira, T. Takemura et al., “Immediate effect of
shakuyaku-kanzo-to on muscle cramp in hemodialysis pa-
tients,” Nephron Clinical Practice, vol. 104, no. 1,
pp. c28–c32, 2006.

8 Evidence-Based Complementary and Alternative Medicine

http://downloads.hindawi.com/journals/ecam/2020/6628641.f1.docx


[31] T. Kono, N. Mamiya, N. Chisato et al., “Efficacy of gosha-
jinkigan for peripheral neurotoxicity of oxaliplatin in pa-
tients with advanced or recurrent colorectal cancer,” Evid
Based Complement Alternat Med, vol. 2011, Article ID
418481, 8 pages, 2011.

[32] Y. Luo, C.-Z. Wang, R. Sawadogo, T. Tan, and C.-S. Yuan,
“Effects of herbal medicines on pain management,” 
e
American Journal of Chinese Medicine, vol. 48, no. 1,
pp. 1–16, 2020.

[33] M. Nishioka, M. Shimada, N. Kurita et al., “-e kampo
medicine, goshajinkigan, prevents neuropathy in patients
treated by FOLFOX regimen,” International Journal of
Clinical Oncology, vol. 16, no. 4, pp. 322–327, 2011.

[34] M. Tawata, A. Kurihara, K. Nitta, E. Iwase, N. Gan, and
T. Onaya, “-e effects of goshajinkigan, a herbal medicine,
on subjective symptoms and vibratory threshold in patients
with diabetic neuropathy,” Diabetes Research and Clinical
Practice, vol. 26, no. 2, pp. 121–128, 1994.

[35] B. Yanju, L. Yang, B. Hua et al., “A systematic review and
meta-analysis on the use of traditional Chinese medicine
compound kushen injection for bone cancer pain,” Sup-
portive Care in Cancer, vol. 22, no. 3, pp. 825–836, 2014.

[36] C.-S. Yuan, S. R. Mehendale, C.-Z. Wang et al., “Effects of
Corydalis yanhusuo and Angelicae dahuricae on cold pres-
sor-induced pain in humans: a controlled trial,” 
e Journal
of Clinical Pharmacology, vol. 44, no. 11, pp. 1323–1327,
2004.

[37] K. Fujii, S. Okamoto, K. Saitoh et al., “-e efficacy of sha-
kuyaku-kanzo-to for peripheral nerve dysfunction in pac-
litaxel combination chemotherapy for epithelial ovarian
carcinoma,” Gan To Kagaku Ryoho, vol. 31, no. 10,
pp. 1537–1540, 2004.

[38] H. Fujiwara, T. Urabe, K. Ueda et al., “Prevention of ar-
thralgia and myalgia from paclitaxel and carboplatin com-
bination chemotherapy with shakuyaku-kanzo-to,” Gan To
Kagaku Ryoho, vol. 27, no. 7, pp. 1061–1064, 2000.

[39] T. Hidaka, T. Shima, K. Nagira et al., “Herbal medicine
shakuyaku-kanzo-to reduces paclitaxel-induced painful
peripheral neuropathy in mice,” European Journal of Pain,
vol. 13, no. 1, pp. 22–27, 2009.

[40] F. Hinoshita, Y. Ogura, Y. Suzuki et al., “Effect of orally
administered shao-yao-gan-cao-tang (shakuyaku-kanzo-to)
on muscle cramps in maintenance hemodialysis patients: a
preliminary study,” 
e American Journal of Chinese Med-
icine, vol. 31, no. 3, pp. 445–453, 2003.

[41] K. K. Lee, Y. Omiya, M. Yuzurihara, Y. Kase, and
H. Kobayashi, “Antispasmodic effect of shakuyakukanzoto
extract on experimental muscle cramps in vivo: role of the
active constituents of Glycyrrhizae radix,” Journal of Eth-
nopharmacology, vol. 145, no. 1, pp. 286–293, 2013.

[42] J. j. Liu, Y. Cheng, Y. y. Shao et al., “Comparative phar-
macokinetics and metabolites study of seven major bioactive
components of shaoyao-gancao decoction in normal and
polycystic ovary syndrome rats by ultra high pressure liquid
chromatography with tandem mass spectrometry,” Journal
of Separation Science, vol. 42, no. 15, pp. 2534–2549, 2019.

[43] Y. Y. Shao, Z. P. Chang, Y. Cheng et al., “Shaoyao-Gancao
decoction alleviated hyperandrogenism in a letrozole-in-
duced rat model of polycystic ovary syndrome by inhibition
of NF-κB activation,” Bioscience Reports, vol. 39, no. 1,
Article ID BSR20181877, 2019.

[44] F. Sui, H.-Y. Zhou, J. Meng et al., “A Chinese herbal de-
coction, shaoyao-gancao tang, exerts analgesic effect by
down-regulating the TRPV1 channel in a rat model of

arthritic pain,” 
e American Journal of Chinese Medicine,
vol. 44, no. 7, pp. 1363–1378, 2016.

[45] K. Takahashi and M. Kitao, “Effect of TJ-68 (shakuyaku-
kanzo-to) on polycystic ovarian disease,” International
Journal of Fertility and Menopausal Studies, vol. 39, no. 2,
pp. 69–76, 1994.

[46] S. Tsuji, K. Yasuda, G. Sumi et al., “Shakuyaku-kanzo-to
inhibits smooth muscle contractions of human pregnant
uterine tissue in vitro,” Journal of Obstetrics and Gynaecology
Research, vol. 38, no. 7, pp. 1004–1010, 2012.

[47] K. Yamamoto, H. Hoshiai, and K. Noda, “Effects of sha-
kuyaku-kanzo-to on muscle pain from combination che-
motherapy with paclitaxel and carboplatin,” Gynecologic
Oncology, vol. 81, no. 2, pp. 333-334, 2001.

[48] T. Yoshida, T. Sawa, T. Ishiguro, A. Horiba, S. Minatoguchi,
and H. Fujiwara, “-e efficacy of prophylactic shakuyaku-
kanzo-to for myalgia and arthralgia following carboplatin
and paclitaxel combination chemotherapy for non-small cell
lung cancer,” Supportive Care in Cancer, vol. 17, no. 3,
pp. 315–320, 2009.

[49] I. C. Chen, T. H. Lin, Y. H. Hsieh et al., “Formulated Chinese
medicine shaoyao gancao tang reduces tau aggregation and
exerts neuroprotection through anti-oxidation and anti-
inflammation,” Oxid Med Cell Longev, vol. 2018, Article ID
9595741, 16 pages, 2018.

[50] H. Fujinami, S. Kajiura, T. Ando, H. Mihara, A. Hosokawa,
and T. Sugiyama, “Direct spraying of shakuyakukanzoto
onto the duodenal papilla: a novel method for preventing
pancreatitis following endoscopic retrograde chol-
angiopancreatography,” Digestion, vol. 91, no. 1, pp. 42–45,
2015.

[51] N. Kaifuchi, Y. Omiya, H. Kushida, M. Fukutake,
H. Nishimura, and Y. Kase, “Effects of shakuyakukanzoto
and its absorbed components on twitch contractions in-
duced by physiological Ca2+ release in rat skeletal muscle,”
Journal of Natural Medicines, vol. 69, no. 3, pp. 287–295,
2015.

[52] Y. Sakai, T. Tsuyuguchi, T. Ishihara et al., “Confirmation of
the antispasmodic effect of shakuyaku-kanzo-to (TJ-68), a
Chinese herbal medicine, on the duodenal wall by direct
spraying during endoscopic retrograde chol-
angiopancreatography,” Journal of Natural Medicines,
vol. 63, no. 2, pp. 200–203, 2009.

[53] L. Shen, W.-J. Cong, X. Lin et al., “Characterization using
LC/MS of the absorption compounds and metabolites in rat
plasma after oral administration of a single or mixed de-
coction of shaoyao and gancao,” Chemical and Pharma-
ceutical Bulletin, vol. 60, no. 6, pp. 712–721, 2012.

[54] L. Shen, R.-w. Hu, X. Lin et al., “Pharmacokinetics of
characteristic effective ingredients from individual and
combination shaoyao and gancao treatement in rats using
HPLC fingerprinting,” European Journal of DrugMetabolism
and Pharmacokinetics, vol. 37, no. 2, pp. 133–140, 2012.

[55] Y. Zhang, X. Jia, J. Yang et al., “Effects of shaoyao-gancao
decoction on infarcted cerebral cortical neurons: suppres-
sion of the inflammatory response following cerebral is-
chemia-reperfusion in a rat model,” BioMed Research
International, vol. 2016, Article ID 1859254, 14 pages, 2016.

[56] T. Ushida, D. Matsui, T. Inoue et al., “Recent prescription
status of oral analgesics in Japan in real-world clinical set-
tings: retrospective study using a large-scale prescription
database,” Expert Opinion on Pharmacotherapy, vol. 20,
no. 16, pp. 2041–2052, 2019.

Evidence-Based Complementary and Alternative Medicine 9



[57] L.-M. Feng, Y.-Y. Chen, D.-Q. Xu et al., “An integrated
strategy for discovering effective components of shaoyao
gancao decoction for treating neuropathic pain by the
combination of partial least-squares regression and multi-
index comprehensive method,” Journal of Ethno-
pharmacology, vol. 260, Article ID 113050, 2020.

[58] Y. Omiya, Y. Suzuki, M. Yuzurihara et al., “Antinociceptive
effect of shakuyakukanzoto, a kampo medicine, in diabetic
mice,” Journal of Pharmacological Sciences, vol. 99, no. 4,
pp. 373–380, 2005.

[59] J. Zhang, C. Lv, H.-n. Wang, and Y. Cao, “Synergistic in-
teraction between total glucosides and total flavonoids on
chronic constriction injury induced neuropathic pain in
rats,” Pharmaceutical Biology, vol. 51, no. 4, pp. 455–462,
2013.

[60] D. Zheng, J. Zhang, R. Wang, C. Lu, X. Guo, and H. J. Wang,
“Administration of the influence of shaoyao gancao de-
coction extracts on IL-6 IL-1β and TNF-α in the chronic
constriction injury rat model of neuropathic pain,” Chinese
Archives of Traditional Chinese Medicine, vol. 4, p. 36, 2013.

[61] P. Poornima, J. D. Kumar, Q. Zhao, M. Blunder, and
T. Efferth, “Network pharmacology of cancer: from un-
derstanding of complex interactomes to the design of multi-
target specific therapeutics from nature,” Pharmacological
Research, vol. 111, pp. 290–302, 2016.

[62] W. Y. Lee, C. Y. Lee, Y. S. Kim, and C. E. Kim, “-e
methodological trends of traditional herbal medicine
employing network pharmacology,” Biomolecules, vol. 9,
no. 8, p. 362, 2019.

[63] H. S. Lee, I. H. Lee, S. I. Park, and D. Y. Lee, “Network
pharmacology-based investigation of the system-level mo-
lecular mechanisms of the hematopoietic activity of Samul-
Tang, a traditional Korean herbal formula,” Evidence-Based
Complementary and Alternative Medicine, vol. 2020, Article
ID 9048089, 17 pages, 2020.

[64] R. He, S. Ou, S. Chen, and S. Ding, “Network pharmacology-
based study on the molecular biological mechanism of action
for compound kushen injection in anti-cancer effect,”
Medical Science Monitor, vol. 26, Article ID e918520, 2020.

[65] J. L. Mi, C. Liu, M. Xu, and R. S. Wang, “Network phar-
macology to uncover the molecular mechanisms of action of
LeiGongTeng for the treatment of nasopharyngeal carci-
noma,” Medical Science Monitor Basic Research, vol. 26,
Article ID e923431, 2020.

[66] Y. Wang, B. Dong, W. Xue et al., “Anticancer effect of radix
astragali on cholangiocarcinoma in vitro and its mechanism
via network pharmacology,” Medical Science Monitor,
vol. 26, Article ID e921162, 2020.

[67] T. Xu, Q. Wang, and M. Liu, “A network pharmacology
approach to explore the potential mechanisms of huangqin-
baishao herb pair in treatment of cancer,” Medical Science
Monitor, vol. 26, Article ID e923199, 2020.

[68] S. Q. Zhang, H. B. Xu, S. J. Zhang, and X. Y. Li, “Identifi-
cation of the active compounds and significant pathways of
Artemisia annua in the treatment of non-small cell lung
carcinoma based on network pharmacology,” Medical Sci-
ence Monitor, vol. 26, pp. e923624-1–e923624-11, 2020.

[69] Z. Hu, M. Yang, L. Yang et al., “Network pharmacology-
based identification of the mechanisms of Shen-Qi com-
pound formula in treating diabetes mellitus,” Evidence-Based
Complementary and Alternative Medicine, vol. 2020, Article
ID 5798764, 15 pages, 2020.

[70] Y. Jiang, M. Zhong, F. Long, and R. Yang, “Deciphering the
active ingredients and molecular mechanisms of

Tripterygium hypoglaucum (Levl.) hutch against rheumatoid
arthritis based on network pharmacology,” Evidence-Based
Complementary and Alternative Medicine, vol. 2020, Article
ID 2361865, 9 pages, 2020.

[71] D. H. Li, Y. F. Su, C. X. Sun, H. F. Fan, and W. J. Gao, “A
network pharmacology-based identification study on the
mechanism of Xiao-Xu-Ming decoction for cerebral ische-
mic stroke,” Evidence-Based Complementary and Alternative
Medicine, vol. 2020, Article ID 2507074, 8 pages, 2020.

[72] W. Liu, Y. Fan, C. Tian et al., “Deciphering the molecular
targets and mechanisms of HGWD in the treatment of
rheumatoid arthritis via network pharmacology and mo-
lecular docking,” Evidence-Based Complementary and Al-
ternative Medicine, vol. 2020, Article ID 7151634, 13 pages,
2020.

[73] H. Qian, Q. Jin, Y. Liu et al., “Study on the multitarget
mechanism of sanmiao pill on gouty arthritis based on
network pharmacology,” Evidence-Based Complementary
and Alternative Medicine, vol. 2020, Article ID 9873739,
11 pages, 2020.

[74] B. Ren, L. Tan, Y. Xiong et al., “Integrated analysis of the
mechanisms of Da-Chai-Hu decoction in type 2 diabetes
mellitus by a network pharmacology approach,” Evidence-
Based Complementary and Alternative Medicine, vol. 2020,
Article ID 9768414, 21 pages, 2020.

[75] W.Wang, Y. Zhang, J. Luo, R. Wang, C. Tang, and Y. Zhang,
“Virtual screening technique used to estimate the mecha-
nism of Adhatoda vasica nees for the treatment of rheu-
matoid arthritis based on network pharmacology and
molecular docking,” Evidence-Based Complementary and
AlternativeMedicine, vol. 2020, Article ID 5872980, 12 pages,
2020.

[76] K. Xiao, K. Li, S. Long, C. Kong, and S. Zhu, “Potential
molecular mechanisms of Chaihu-Shugan-San in treatment
of breast cancer based on network pharmacology,” Evidence-
Based Complementary and Alternative Medicine, vol. 2020,
Article ID 3670309, 9 pages, 2020.

[77] K. Yang, L. Zeng, and J. Ge, “Exploring the pharmacological
mechanism of Danzhi Xiaoyao powder on ER-positive breast
cancer by a network pharmacology approach,” Evidence-
Based Complementary and Alternative Medicine, vol. 2018,
Article ID 5059743, 20 pages, 2018.

[78] C. Zhang, Y. Liao, L. Liu et al., “A network pharmacology
approach to investigate the active compounds and mecha-
nisms of musk for ischemic stroke,” Evidence-Based Com-
plementary and Alternative Medicine, vol. 2020, Article ID
4063180, 14 pages, 2020.

[79] J. Zhou, Q. Wang, Z. Xiang et al., “Network pharmacology
analysis of traditional Chinese medicine formulaXiao Ke Yin
Shui treating type 2 diabetes mellitus,” Evidence-Based
Complementary and Alternative Medicine, vol. 2019, Article
ID 4202563, 15 pages, 2019.

[80] J. Ru, P. Li, J. Wang et al., “TCMSP: a database of systems
pharmacology for drug discovery from herbal medicines,”
Journal of Cheminformatics, vol. 6, p. 13, 2014.

[81] S. J. Yue, L. T. Xin, Y. C. Fan et al., “Herb pair Danggui-
Honghua: mechanisms underlying blood stasis syndrome by
system pharmacology approach,” Scientific Reports, vol. 7,
Article ID 40318, 2017.

[82] C. K. Wang and D. J. Craik, “Cyclic peptide oral bioavail-
ability: lessons from the past,” Biopolymers, vol. 106, no. 6,
pp. 901–909, 2016.

[83] Y. Kono, A. Iwasaki, K. Matsuoka, and T. Fujita, “Effect of
mechanical agitation on cationic liposome transport across

10 Evidence-Based Complementary and Alternative Medicine



an unstirred water layer in caco-2 cells,” Biological &
Pharmaceutical Bulletin, vol. 39, no. 8, pp. 1293–1299, 2016.

[84] D. A. Volpe, “Variability in caco-2 and MDCK cell-based
intestinal permeability assays,” Journal of Pharmaceutical
Sciences, vol. 97, no. 2, pp. 712–725, 2008.

[85] M. N. Garcia, C. Flowers, and J. D. Cook, “-e caco-2 cell
culture system can be used as a model to study food iron
availability,” 
e Journal of Nutrition, vol. 126, no. 1,
pp. 251–258, 1996.

[86] Y. Li, J. Zhang, L. Zhang et al., “Systems pharmacology to
decipher the combinational anti-migraine effects of Tianshu
formula,” Journal of Ethnopharmacology, vol. 174, pp. 45–56,
2015.

[87] J. Zhang, Y. Li, X. Chen, Y. Pan, S. Zhang, and Y. Wang,
“Systems pharmacology dissection of multi-scale mecha-
nisms of action for herbal medicines in stroke treatment and
prevention,” PLoS One, vol. 9, no. 8, Article ID e102506,
2014.

[88] A. Y. Lee, W. Park, T.-W. Kang, M. H. Cha, and J. M. Chun,
“Network pharmacology-based prediction of active com-
pounds and molecular targets in Yijin-Tang acting on
hyperlipidaemia and atherosclerosis,” Journal of Ethno-
pharmacology, vol. 221, pp. 151–159, 2018.

[89] X. Wang, Y. Shen, S. Wang et al., “PharmMapper 2017
update: a web server for potential drug target identification
with a comprehensive target pharmacophore database,”
Nucleic Acids Research, vol. 45, no. W1, pp. W356–W360,
2017.

[90] D. Szklarczyk, A. Santos, C. vonMering, L. J. Jensen, P. Bork,
and M. Kuhn, “Stitch 5: augmenting protein-chemical in-
teraction networks with tissue and affinity data,” Nucleic
Acids Research, vol. 44, no. D1, pp. D380–D384, 2016.

[91] A. Daina, O. Michielin, and V. Zoete, “Swis-
sTargetPrediction: updated data and new features for effi-
cient prediction of protein targets of small molecules,”
Nucleic Acids Research, vol. 47, no. W1, pp. W357–W364,
2019.

[92] M. J. Keiser, B. L. Roth, B. N. Armbruster, P. Ernsberger,
J. J. Irwin, and B. K. Shoichet, “Relating protein pharma-
cology by ligand chemistry,” Nature Biotechnology, vol. 25,
no. 2, pp. 197–206, 2007.

[93] H. Yu, J. Chen, X. Xu et al., “A systematic prediction of
multiple drug-target interactions from chemical, genomic,
and pharmacological data,” PLoS One, vol. 7, no. 5, Article
ID e37608, 2012.

[94] C. Zheng, Z. Guo, C. Huang et al., “Large-scale direct tar-
geting for drug repositioning and discovery,” Scientific Re-
ports, vol. 5, Article ID 11970, 2015.
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