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Abstract

Since the novel coronavirus (COVID-19) outbreak in China, and due to the open accessibil-

ity of COVID-19 data, several researchers and modellers revisited the classical epidemio-

logical models to evaluate their practical applicability. While mathematical compartmental

models can predict various contagious viruses’ dynamics, their efficiency depends on the

model parameters. Recently, several parameter estimation methods have been proposed

for different models. In this study, we evaluated the Ensemble Kalman filter’s performance

(EnKF) in the estimation of time-varying model parameters with synthetic data and the real

COVID-19 data of Hubei province, China. Contrary to the previous works, in the current

study, the effect of damping factors on an augmented EnKF is studied. An augmented EnKF

algorithm is provided, and we present how the filter performs in estimating models using

uncertain observational (reported) data. Results obtained confirm that the augumented-

EnKF approach can provide reliable model parameter estimates. Additionally, there was a

good fit of profiles between model simulation and the reported COVID-19 data confirming

the possibility of using the augmented-EnKF approach for reliable model parameter

estimation.

Introduction

The outbreak of the novel coronavirus disease (COVID-19) in early December 2019 in

Wuhan, China, attracted many researchers to evaluate the dynamics of infectious COVID-19

virus using various mathematical models [1–17]. Mathematical compartmental models, such

as SIR (Susceptible—Infectious—Recovered) [18, 19], in epidemiology, are generally expressed

by a system of ordinary differential equations (ODE). Recent studies on COVID-19 modelling

includes using the basic SIR model [12, 18, 19] or its extension (modified) versions such as

SEIR (Susceptible—Exposed—Infectious—Recovered) [7, 10, 11, 19–21], SIRD (Susceptible—

Infectious—Recovered—Dead) [1–4, 16, 17, 22] and SEIRD (Susceptible—Exposed—Infected

—Recovered—Dead) [13–15].

There are many significant practical importance of epidemiological modelling via computer

simulation, which includes understanding the disease and dynamics of the infectious virus,
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e.g. predicting the number of new cases [23]. Also, the outcome of modelling and simulations

can provide vital information to governments and decision-makers [23]. However, a mathe-

matical model’s performance and reliability depend on uncertainties in the model and the

model parameters [24]. While identifying accurate parameters of models, e.g. infection rate

and mortality rates, is an essential exercise in mathematical modelling, precise prediction of

parameters is a difficult task [23].

Model parameters can be estimated by solving inverse problems using observational data

[24]. Some recent works on inverse COVID-19 modelling with different models include works

of Wan et al. [7], Sun et al. [10], Libotte et al. [18], Lobato et al. [2], Li et al. [11], Anastassopou-

lou et al. [3], Loli Piccolomini and Zama [14], Korolev [15], Ndaïrou et al. [9], Ifguis et al. [12],

Engbert et al. [21], Yang et al. [20], Arroyo-Marioli et al. [25], and Ghostine et al. [26]. Recent

methods of inverse modelling for parameter estimation include the least-square techniques

and optimization algorithms [3, 10, 12, 14, 15], Differential Evolution method [18], Stochastic

and Multiobjective Fractal Search algorithm [2], and data assimilation methods [11, 20, 21,

25, 26].

Introduced by Geir Evenson [27], the ensemble Kalman filter (EnKF) is a data assimilation

technique that can be employed to update both model parameters and states variables with

their associated uncertainties [28]. Yang et al. [20] used the EnKF for joint state-parameter

estimation, where one of the SEIR model parameters, the time-varying rate of infection, was

estimated. Similarly, Li et al. [11] used the Ensemble Adjustment Kalman Filter (EAKF) on the

augmented state-parameter space to estimate a modified deterministic SEIR model’s parame-

ters. The augmented state-parameter can cause the EnKF to fail due to a strong nonlinear rela-

tion between the model parameters and its state [29, 30]. To overcome this, Engbert et al. [21]

adopted a two-stage approach where the EnKF was initially used to estimate the states, fol-

lowed by the likelihood-based inference of one of the SEIR model parameters.

Arroyo-Marioli et al. [25] applied the Kalman filter to estimate the time-varying growth

rate of the COVID-19 cases. This was followed by an estimation of the time-varying effective

reproduction number of the coronavirus disease. Finally, the time-varying effective reproduc-

tion number and disease transmission rate were employed by the SIR model in tracking the

dynamics of COVID-19. Furthermore, Ghostine et al. [26] demonstrated the effectiveness of a

joint-EnKF based assimilation scheme in estimating eight constant parameters of an extended

SEIR model using the COVID-19 data.

The entire population is vulnerable to the disease at the first level of the outbreak. However,

fewer individuals of size S are susceptible through control measures such as restriction of

movements, self-isolation, and social distancing [31, 32]. While the initial number of suscepti-

ble individuals, S(0), is required for inverse modelling, estimating the actual population size

under study can be challenging [31, 33, 34]. In the recent studies considering inverse COVID-

19 modelling, several assumptions or methods were used to choose the total population size,

N. These include assuming a fixed value for N, e.g. population of a city or a country [3, 7, 9–12,

14, 15, 21] or using a normalised version of a compartment model [2, 18, 20].

During the COVID-19 pandemic, there was more control of individual movements due to

restrictions imposed by various governments. The restrictions included lockdown of cities,

social distancing and quarantine measures. Other preventive measures were hand sanitation

and wearing face masks. Considering the implementation of restrictions and preventive mea-

sures, in this study, we assumed that the infection rate, recovery rate and death rates of

COVID-19 cases were all time-dependent. Estimating time-varying parameters of a model can

be challenging, and the inverse problem may demand richer models [25].

Our contribution in this work includes evaluating the ensemble Kalman filter’s capability to

estimate the time-varying parameters of the SIRD model. To overcome any challenges with
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the estimation of time-varying parameters, we used the EnKF with an augmented state-param-

eter scheme. To mitigate the problem associated with the nonlinearity between parameters

and state, we tested the efficiency of the EnKF with different values of the damping factor [30,

35]. Additionally, we provide the EnKF algorithm to estimate the time-varying parameters.

The proposed method is demonstrated with test cases using synthetic data and the real

COVID-19 data of Hubei province, China. There were some outliers in the reported number

of cumulative cases of COVID-19 in the Hubei due to the change in diagnosing and revision

of the definition of COVID-19 cases by the National Health Commission of the People’s

Republic of China [3, 25, 36–38]. The time-varying model parameters were estimated using

both the reported data of cumulative cases of COVID-19 in the Hubei province and for data

consistency, using systematically modified data after removing the outliers.

The rest of the paper is structured as follows. We review the SIRD model and the ensemble

Kalman filter algorithm for inverse modelling. Firstly, we demonstrate the use of EnKF using

synthetic data. The effect on the estimated parameters using EnKF with different damping

constant is illustrated with numerical simulations results using the synthetic case. Secondly, we

show the usefulness of EnKF using the real COVID-19 data of Hubei province, China. Finally,

we discuss the test cases results and end with the conclusion.

Materials and methods

Mathematical model

SIRD (Susceptible, Infectious, Recovered, and Dead) is a four-compartment model that has

been widely used as a forecasting method of infectious disease [1–4, 16, 17, 22, 34]. In the

SIRD model, the number of susceptible individuals (S), infected individuals (I), recovered indi-

viduals (R), and dead individuals (D) vary with time (t) as follows [2, 16, 17]:

dS
dt
¼
� b

N
IS

dI
dt
¼
b

N
IS � gI � dI

dR
dt
¼ gI

dD
dt

¼ dI

ð1Þ

where β is the transmission rate (infection), γ is the recovery rate, and δ is the death rate. The

model estimation using COVID-19 data employs data on diagnosed cases. Hence, in that

empirical context, δ can be better considered as the case fatality rate. Following Calafiore et al.

[16] and Ianni and Rossi [34], N is defined as the fraction of the total population size that is

affected by the contagion.

The model assumes that each individual who has already been infected can transmit the

virus to those susceptible. Furthermore, the time length is considered short so that births and

deaths not related to the virus are neglected. The SIRD model does not consider the effects of

exposure, quarantine, confinement, or an asymptomatic population. This model is suitable for

the case without any protection measures and restriction on activities, e.g. wearing masks and

lockdown measures [22]. The capability of the simple SIRD model to capture the dynamics of

COVID-19 has been demonstrated by Fanelli and Piazza [39] and Anastassopoulou et al. [3].

In the model, N(t) = S(t) + I(t) + R(t) + D(t) which is assumed constant [1, 2, 34]. The solu-

tion of the system of ODE depends on the initial conditions S0 = S(0), I0 = I(0), R0 = R(0), and
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D0 = D(0) for the susceptible, infected, recovered, and death populations, respectively. How-

ever, the initial number of susceptible population, S(0) = N(0) − I(0) − R(0) − D(0), is usually

unknown since N0 = N(0) is typically unknown [16, 34]. This study assumes that the entire

population, i.e. Hubei province, is vulnerable to the disease at the first level of the outbreak,

and we let N = N(t) = N(0). However, it is noted that this number can be influenced by several

factors such as geographical, social, and economic characteristics of the region under study.

Factors such as restricted movements of individuals, lockdown of cities, social distancing,

quarantine measures, and preventive measures such as hand sanitation and wearing face

masks allow the transmission rate to vary over time [25, 40, 41]. Hence, the transmission,

recovery and death rates were all allowed to be time-dependent in this study. Similar to Avila-

Ponce de León et al. [40] and Gupta et al. [41], the three time-varying parameters were defined

as follows:

The infection rate: the time-varying infection rate before and after lockdown is described by

bðtÞ ¼

b0; t < tlockdown

b0 exp �
t � tlockdown

tb

 !

þ b1; t � tlockdown:

8
>><

>>:

ð2Þ

β(t) is a function of three characteristic constants β0, β1 and τβ. Before lockdown, β(t) = β0 is a

constant. When the lockdown is imposed at time t = tlockdown, β(t) decreases exponentially

from β0+β1 to the final value β1 with a characteristic time of decrease τβ.
The recovery rate: With a new disease such as COVID-19, the health care system and medi-

cal staff have to learn and adopt new therapeutic procedures, including treatment of patients

with new symptoms [40, 41]. Hence, the recovery time for patients may change with time. In

this study, γ(t) is described by the function

gðtÞ ¼ g0 þ
g1

1þ expð� t þ gtÞ
; ð3Þ

where γ0 is the initial rate of recovery, and after t = γτ the final recovery rate becomes γ0+γ1.

The death rate: the death rate may also decrease with time due to factors such as adaptation

of the pathogen and development of advanced treatments and vaccinations, including non-

pharmaceutical interventions such as social distancing, lockdown of cities and increase in pub-

lic awareness about the disease [40, 41]. The death rate δ(t) is described using the function

dðtÞ ¼

d0; t < tlockdown

d0 exp �
t � tlockdown

td

� �

þ d1; t � tlockdown;

8
><

>:
ð4Þ

where at time t = tlockdown, δ0 + δ1 is the initial death rate that decreases exponentially to the

final value δ1 with a characteristic time of decrease τδ.
For the SIRD model to simulate a particular epidemic with the three time-varying parame-

ters, the nine characteristic constants (β0, β1, τβ, γ0, γ1, τγ, δ0, δ1, τδ), need to be estimated via

inverse modelling.

The ensemble Kalman filter for parameter estimation

Evensen [27] introduced the ensemble Kalman filter (EnKF), an algorithm for sequential data

assimilation problems. Several papers are available for the derivation of the ensemble Kalman

Filter (EnKF), including its algorithm, e.g. [42–45]. An ensemble of states is employed to
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approximate forecast states statistical information, including the model covariance matrix.

The states are estimated by assimilating observations into the model in accordance with the

Kalman filter formula [45]. The EnKF can be further adapted to estimate both model states

and the unknown parameters using an augmented state-parameter scheme [26, 44, 46]. The

steps of the augmented EnKF are summarized below [26, 44, 46].

Consider a discrete nonlinear model:

skþ1 ¼ Sðsk; ykÞ þ wkþ1; ð5Þ

ykþ1 ¼ yk; ð6Þ

ykþ1
¼Mðskþ1; ykþ1Þ þ ekþ1 ð7Þ

where sk = [Sk Ik Rk Dk] is the vector of the state variables at time t = k, S is the nonlinear opera-

tor (SIRD model (1)), yk ¼ ½b0k
; b1k

; tbk ; g0k
; g1k

; tgk ; d0k
; d1k

; tdk � is the vector of parameters that

are assumed to remain constant in time, wk+1 is the model noise that is assumed to follow

zero-mean Gaussian noise with covariance matrix Qk+1, yk+1 is the vector of observation

(active number of infected cases, cumulative number of recovered cases, and cumulative num-

ber of death cases), M is the observation operator which connects the observed values to the

state values of the model and ek+1 is the observation noise that is assumed to follow zero-mean

Gaussian noise with covariance matrix Rk+1.

At the forecast step, state variables, sk+1, and parameters, θk+1, are augmented to form a vec-

tor

xkþ1 ¼
skþ1

ykþ1

" #

: ð8Þ

For an ensemble of size n, an initial forecast ensemble of augmented vectors Xkþ1 ¼

½xf1kþ1; x
f2
kþ1; . . . ; xfnkþ1� at t = k+1 is assumed known. The superscript fi for i = 1, 2, . . ., n is the ith

forecast member of the ensemble X. Each ith member of the ensemble is used to generate ith

realization of the model state vector using the forward model S. A set of corresponding mea-

surement vector, Ykþ1 ¼ ½y
f1
kþ1; . . . ; yfnkþ1�, is then generated where yf ikþ1 ¼Mðxf ikþ1Þ 2 R

p
.

p denotes the number of observations at t = k + 1, and in this study p = 3.

In the analysis (assimilation) step, a perturbed observation vector, ŷ i
kþ1
¼ ŷkþ1 þ eikþ1

, for

each ith member of the ensemble is obtained using the current available observed data

ŷkþ1 2 R
p. The random perturbations eikþ1

� N ð0;Rkþ1Þ [46]. The ith forecast member of Xk+1

is then updated using the difference between perturbed observations and measurements

according to:

xaikþ1 ¼ xf ikþ1 þ Kkþ1½ŷ i
kþ1
� yf ikþ1�; i ¼ 1; . . . ; n; ð9Þ

where xaikþ1 represents the ith analyzed (updated) member of Xk+1 and Kk+1 is the Kalman gain

matrix calculated as

Kkþ1 ¼ Cf
xykþ1
ðCf

yykþ1
þ Rkþ1Þ

� 1
: ð10Þ
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In Eq (10), Rk+1 is the observation covariance matrix, and the covariance matrices Cf
xykþ1

and Cf
yykþ1

are defined as [45]:

Cf
xykþ1
¼

1

n � 1

Xn

i¼1

xf ikþ1 � �x f
kþ1

� �
½yf ikþ1 � �y f

kþ1
�
T
;

Cf
yykþ1
¼

1

n � 1

Xn

i¼1

yf ikþ1 � �y f
kþ1

� �
½yf ikþ1 � �y f

kþ1
�
T
:

ð11Þ

where �x f
kþ1
¼ 1

n

Pn

i¼1

xf ikþ1 and �y f
kþ1
¼ 1

n

Pn

i¼1

yf ikþ1 represent the ensemble averages.

At each jth EnKF iteration, each member of Xk+1, i.e xf ikþ1 for i = 1, . . ., n, is updated by

assimilating perturbed observations using Eq (9). Henceforth, one EnKF iteration corresponds

to one assimilation cycle. The procedure is iterated with the updated ensemble until a user-

defined stop criterion is met, e.g. stopping criteria based on the maximum number of itera-

tions or setting a threshold of the change of parameter values between two consecutive EnKF

iterations. After the final iteration, the average of the ensemble is taken as the best estimate of

the states and the unknown parameters, and the spread of the ensemble as the error variance

[47].

Damped-EnKF and convergence

The nonlinear relations between the model parameters and the measurements can cause the

ensemble variance of parameters to collapse after a few cycles during the update step, leading

to filter inbreeding (divergence) [30, 48]. In previous studies, Hendricks Franssen and Kinzel-

bach [30] and Rasmussen et al. [35, 49] showed that using a damping factor mitigates filter

inbreeding and improves the parameter update in the assimilation step. The damping factor in

the update step reduces spurious covariance resulting from an abrupt update of parameters

[28, 30]. By applying a damping factor, α, in Eq (9), the ith member of the ensemble is updated

using

xaikþ1 ¼ xf ikþ1 þ aKkþ1½ŷ i
kþ1
� yf ikþ1�; i ¼ 1; . . . ; n: ð12Þ

0� α� 1 where α = 0 means no update of parameters during the assimilation step, and α =

1 means the basic scenario without any damping effect. In this study, the damping factor is

only applied on parameter updates keeping the states updates undamped. To evaluate the

influence of the damping factor on the performance of EnKF, different scenarios with α = 0.1

to 1.0, in step size of 0.1, were explored in this study.

In this study, the EnKF iterations (assimilation steps) are repeated until the following con-

vergence criterion is satisfied:

ykþ1 � yk
yk

�
�
�
�

�
�
�
� � tol ¼ 0:001: ð13Þ

The complete procedure for estimating uncertain and unknown model parameters using

the ensemble Kalman filter is summarized in Algorithm 1.

Algorithm 1 Augmented EnKF for estimation of model parameters
1: Initialize:
n = No. of ensemble members
Convergence tol = 0.001, r = 1
s = [SIRD], θ = [β0, β1, τβ, γ0, γ1, τγ, δ0, δ1, τδ]
obs (time-series data): Îk, R̂k, D̂k for k = 0, 1, . . ., tobs
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generate an initial ensemble xi
0
¼

si
0

yi
0

h i
for i = 1, . . ., n.

2: while r > tol do
3: for k = 0 to tobs do
4: get observations: ŷk ¼ ½Îk; R̂k; D̂k�

5: set Rk ¼ diag½s2
I ;s

2
R; s

2
D�, where ðsI;sR;sDÞ ¼ 0:1� ðÎk; R̂k; D̂kÞ

6: for i = 1 to n do
7: measurements: yik ¼MðxikÞ
8: perturb observations: ŷ i

k ¼ ŷk þ eik, eik � N ð0;RkÞ

9: end for
10: compute cross-covariance: Cxyk

¼ 1

n� 1

Pn
i¼1

xik � �xk
� �

½yik � �yk�
T

11: compute covariance: Cyyk
¼ 1

n� 1

Pn
i¼1

yik � �yk
� �

½yik � �yk�
T

12: compute Kalman gain: Kk ¼ Cxyk
ðCyyk

þ RkÞ
� 1.

13: for i = 1 to n do
14: assimilate (update): xaik ¼ xik þ aKk½ŷ i

k � yik�
15: xikþ1

 xaik
16: end for

17: convergence criterion: r yk � yk� 1

yk� 1

�
�
�

�
�
�

18: end for
19: end while

20: return xikþ1
¼

sikþ1

yikþ1

h i
and estimated parameter: �ykþ1 ¼

1

n

Pn
i¼1
y
i
kþ1

Applications of EnKF in inverse modelling

The proposed damped-EnKF-based parameter estimation technique was applied to two test

cases considering synthetic and real data. Firstly, we use the synthetic data to study the effect

of different damping factors on the quality of the estimated parameters by the filter. This is fol-

lowed by studying the sensitivity of the filter with different ensemble size. Finally, the EnKF

with the selected damping factor and the ensemble size is used in the second test case using the

real data.

Parameter estimates with synthetic data

In the first test case, the performance of the EnKF was assessed using simulated data

with synthetic observations. Table 1 shows the model parameters,

yk ¼ ½b0k
; b1k

; tbk ; g0k
; g1k

; tgk ; d0k
; d1k

; tdk �, used to generate the synthetic data (observations).

The model parameter values in Table 1 are referred as “true” (target) values. The system of

ODE (Eq (1)) was solved numerically for, 0� t� 100, with initial values I(0) = 350, R(0) = 1,

Table 1. Parameters used in synthetic data generation.

Parameter value unit

β0 0.256 1/day

β1 0.001 1/day

τβ 14.39 day

γ0 0.017 1/day

γ1 0.06 1/day

τγ 30.5 day

δ0 0.024 1/day

δ1 0.001 1/day

τδ 21.6 day

https://doi.org/10.1371/journal.pone.0256227.t001
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D(0) = 7, and S(0) = N − 350 − 7 − 1, using MATLAB’s (version R2016a) ode45 solver. The

population size N and tlockdown were taken as 60M and 15, respectively. Synthetic observations

were then recorded by extracting state values I(t), R(t) and D(t) representing the active num-

ber of infected cases, the cumulative number of recovered cases and the cumulative number

of death cases.

The inverse problem involves employing EnKF to estimate the initially assumed true values

of the parameters using synthetically generated observed values of I(t), R(t) and D(t). To study

the effect of different damping factor on the filter’s performance, an ensemble of size n = 200

was chosen. The use of the EnKF with a 200-member ensemble has recently been shown to

produce desirable results [26]. We use the state-parameter augmented EnKF, where θ = [β0, β1,

τβ, γ0, γ1, τγ, δ0, δ1, τδ] and s = [SIRD], and the augmented vector is

x0 ¼ ½sT0 y
T
0
�: ð14Þ

Each state ensemble is initialised, for i = 1, 2 . . ., n, using normal distributions as follows:

si
0
¼ max½s0ð1þ m � sÞ; 0� ð15Þ

where s � N ð0; 1Þ and μ is set to 20%. Initial ensemble for parameter values, for i = 1, 2 . . ., n,

were randomly drawn from uniform distribution: ðb
i
0
Þ

0
� Uð0:2; 0:6Þ, ðbi

1
Þ

0
� Uð0:05; 0:15Þ,

ðti
b
Þ

0
� Uð10; 30Þ, ðgi

0
Þ

0
� Uð0:015; 0:045Þ, ðgi

1
Þ

0
� Uð0:02; 0:06Þ, ðti

g
Þ

0
� Uð11; 33Þ,

ðd
i
0
Þ

0
� Uð0:005; 0:015Þ, ðd

i
1
Þ

0
� Uð0:01; 0:03Þ and ðti

d
Þ

0
� Uð12:5; 37:5Þ. The time span

between two EnKF assimilation steps was taken as dt = 1day. Hence, the observations ŷ t 2 R
3
,

i.e. values of I(t), R(t) and D(t), were assumed to be known at t = 0, 1, . . ., 100.

In the assimilation step, perturbed observations are generated using ŷ t. Therefore, the per-

turbed observations ŷ i
k ¼ ŷk þ eik, for i = 1, 2, . . ., n. The additive noise eik � N ð0;RkÞ where

Rk ¼ diag½s2
I ; s

2
R; s

2
D�. σI, σR and σD are the observation errors taken as 10% of the observed

data values at time t = k. For convergence criteria, we set the tolerance value in Eq (13) as

tol = 0.001. With the above setting, the proposed method was applied to retrieve the “target”

(true) value of the model parameters using ten different damping constants. The accuracy of

the proposed method was assessed by computing the Relative Mean Absolute Error (RMAE)

of the simulated model state as

RMAE ¼
1

N

XN

j¼1

jyðjÞ � sðjÞj
jyðjÞj

; ð16Þ

where y(j) is the observed state, s(j) is the simulated state using the estimated parameters, and

N is the sample size of the observed data.

Fig 1 shows the percentage error in the estimated parameters using EnKF (ensemble size,

n = 200) with different damping factors. In this synthetic case, the best performance of EnKF

is achieved by using the basic scenario without any damping effect, i.e. with α = 1. The most

difficult parameter to estimate was τβ that even with the basic scenario had an error of around

13% in the estimated value. Fig 2 shows the RMAE of the model states simulated using the

EnKF estimated parameters with different damping factors. With the basic scenario, the com-

puted RMAE’s was the least, with a value of less than 1%. The variability of the estimated

parameters and RMAE with different damping factors led us to choose the EnKF with the

basic scenario for the remaining test cases in this study.

The sensitivity of the filter with different ensemble size is also studied. The augmented basic

EnKF assimilation system was executed using six different ensemble sizes: n = 50, 100, 200,

300, 400, and 500. Fig 3 compares the RMAE of the simulated model states (infected, recovered
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Fig 1. Comparison of errors in estimated parameters. The percentage error in the estimated parameters using EnKF

(ensemble size, n = 200) with different damping factors.

https://doi.org/10.1371/journal.pone.0256227.g001

Fig 2. Comparison of RMAE with different damping factors. Relative Mean Absolute Error of the simulated model

states (infected, recovered and death cases) as a function of damping factor.

https://doi.org/10.1371/journal.pone.0256227.g002
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and death cases) using the estimated parameters with different ensemble size. The result shows

a considerable improvement in the performance by the filter beyond the ensemble size of 50.

However, for n� 200, there is not much improvement in the filter’s performance. For simplic-

ity and computational cost reasons, an ensemble of size 200 is chosen for the rest of the test

cases in this study.

Fig 4 shows the estimated parameter evolutions using the basic augmented EnKF with

n = 200. At the final EnKF iteration (assimilation cycles), the ensemble’s standard deviations

around the average are considered the uncertainty (error) in the final estimate. Initially, the

standard deviations around the mean are more significant, and as the parameters converge to

the target values, they become tiny and are not easily visible in the plots. This suggests a high

confidence level in the final estimates of the model parameters.

Table 2 presents the parameters estimated together with their associated uncertainties. All

parameter estimates either converged to their target values or close to them. The parameter τβ
had the largest error (13%) in its estimated value. The results show that an ensemble of size

n = 200 is sufficient to capture the true parameters.

Fig 5 shows the best-fit parameters of the time-varying infection, recovery and death rates.

There is a good fit between synthetically generated (truth), and the model estimated variation

of β(t), γ(t) and δ(t). Fig 6 shows the curve fitting accuracy between the observations and the

simulated results of the SIRD model using the estimated parameters. There is a good fit of pro-

files indicating that the true model states are captured well through data assimilation using

synthetic observations. In addition to computing RMAE to numerically quantify the accuracy

and agreement between the observations and model-simulated results, the coefficient of deter-

mination, R2, values are computed using

R2 ¼ 1 �
XN

j¼1

ðyðjÞ � sðjÞÞ2=
XN

j¼1

ðyðjÞ � �yÞ2
" #

ð17Þ

where the variables y, s and N are as defined in Eq (16). Table 3 lists the RMAE and R2 values

of the model states simulated using the EnKF estimated parameters. The RMAE values are less

Fig 3. Comparison of RMAE with ensemble size. RMAE of the number of the infected, recovered, death cases as a

function of ensemble size.

https://doi.org/10.1371/journal.pone.0256227.g003
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Fig 4. Evolution of the parameter estimates for the first test case (synthetic data). Estimated parameters using

augmented EnKF (α = 1 and ensemble size n = 200). In each plot, the blue line represents the target value of the model

parameters, and the solid black line represents the EnKF mean value. The uncertainties (standard deviation curves)

around the mean values are filled in grey.

https://doi.org/10.1371/journal.pone.0256227.g004
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Table 2. Parameter estimates for the first test case (synthetic data). EnKF estimated parameters with their associated uncertainties.

Parameter Target value Initial Uniform Range EnKF estimate % error in estimated value

β0 0.256 [0.2,0.6] 0.25597±0.00054 -0.01%

β1 0.001 [0.05,0.15] 0.00113±0.00048 13.00%

τβ 14.39 [10,30] 14.2672±0.59056 -0.85%

γ0 0.017 [0.015,0.045] 0.01692±0.00042 -0.47%

γ1 0.06 [0.02,0.06] 0.06008±0.00042 0.13%

τγ 30.5 [11,33] 30.4511±0.11467 -0.12%

δ0 0.024 [0.005,0.015] 0.02403±0.00010 0.125%

δ1 0.001 [0.01,0.03] 0.00101±0.00078 1.00%

τδ 21.6 [12.5,37.5] 21.5592±0.24538 -0.19%

https://doi.org/10.1371/journal.pone.0256227.t002

Fig 5. Comparison of time varying parameters. Best fit parameters of the time-varying infection, recovery and death

rates.

https://doi.org/10.1371/journal.pone.0256227.g005
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Fig 6. Profiles obtained using the SIRD model with true and estimated parameters. The plots show the accuracy of

the curve fitting between the synthetic observations and the simulated profiles obtained with the estimated parameters.

https://doi.org/10.1371/journal.pone.0256227.g006

Table 3. Performance of SIRD model with estimated parameters. RMAE and R2 values of the simulated states.

Indicator Active cases (I) Recovered cases (R) Death cases (D)

RMAE (%) 1.44 0.96 0.54

R2 0.9997 0.9995 0.9998

https://doi.org/10.1371/journal.pone.0256227.t003
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than 1% for recovered and death cases and less than 2% for active cases. Also, all R2 values are

closer to 1, confirming a good quality fit of the simulated profiles with the observations.

Parameter estimates with real (COVID-19) data

COVID-19 data. In the second test case, the model parameters with their associated

uncertainties were estimated using the reported COVID-19 data of Hubei province, China.

Our analysis used the publicly available COVID-19 data from the GitHub repository by the

Center for Systems Science and Engineering (CSSE) at Johns Hopkins University [50]. The

repository provides time-series data for the cumulative number of confirmed cases C(t), the

cumulative number of recovered cases R(t), and the cumulative number of death cases D(t).
The data were double-checked against the reported statistics by the National Health Commis-

sion (NHC) of the People’s Republic of China (PRC) (http://www.nhc.gov.cn/xcs/yqtb/list_

gzbd.shtml). The daily new confirmed COVID-19 cases data was taken from the reported data

by NHC.

In December of 2019, the first case of COVID-19 was reported in Wuhan, Hubei province

[5, 6]. The COVID-19 outbreak resulted in a restriction of individual’s movements in the city

due to quarantine measures. The city of Wuhan was placed under lockdown beginning Janu-

ary 23, 2020, and the last city of Hubei province (Xiangyang city) was locked down on January

27, 2020 [7–9]. In our study, we used the time-series data from January 22, 2020 (t = 0) to

April 13, 2020 (t = 82). Fig 7 shows the cumulative number of cases (blue dots) in the Hubei

province from t = 0 to t = 82. On February 12, 2020, there was a surge in the reported number

of new cases, as seen by the jump in the cumulative number of cases at t = 20 in Fig 7. The sud-

den increase of 14,840 new cases on February 12, 2020, was due to the change in diagnosis

Fig 7. Cumulative number of COVID-19 cases. Cumulative number of COVID-19 cases in Hubei province, China.

Blue dots represents the reported data and black dots represents the modified (reconstructed) time-series data from

January 22, 2020 (t = 0) to April 13, 2020 (t = 82).

https://doi.org/10.1371/journal.pone.0256227.g007

PLOS ONE The ensemble Kalman filter and epidemiological models

PLOS ONE | https://doi.org/10.1371/journal.pone.0256227 August 19, 2021 14 / 25

http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml
http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml
https://doi.org/10.1371/journal.pone.0256227.g007
https://doi.org/10.1371/journal.pone.0256227


classification rule and revision of the definition of COVID-19 cases by the National Health

Commission of the PRC [3, 25, 36–38].

To study the effect of data quality on the filter’s performance, the model parameters were

estimated using both the reported data of cumulative cases and for data consistency, using sys-

tematically modified data. The modified data was obtained after removing the outliers and cre-

ating a new data series for the cumulative number of cases from the daily new cases. The

reported 14,840 confirmed cases on February 12, 2020, included 13,332 clinical cases con-

firmed by the new diagnosis classification rule [51]. Recently, attempts have been made to

remove such outliers from COVID-19 data and reconstruct a new time series from the number

of new cases, e.g. Arroyo-Marioli et al. [25], Fu et al. [52], and Liu et al. [53].

We reconstructed the time-series data for the cumulative number of cases following the

methods similar to that presented in Fu et al. [52] and Liu et al. [53]. It is noted that 4,823

new cases were reported on February 13, 2020. Compared to other days, this huge number of

cases may also include cases that failed to meet the earlier diagnosis classification rule. For the

number of new cases on February 12 and 13, we set it to 14,480 − 13,332 = 1,508. The extra

13,332 + 4,82 − 1,508 = 16,647 cases were added to the reported number of new cases (New-
Case) from January 22 to February 14 in proportion to the original daily increment of the new

cases. The new time-series data for the cumulative number of cases was obtained using C(t) =

C(t − 1) + NewCase(t). The modified cumulative number of cases is shown with black dots in

Fig 7. The number of infected (active) cases were then obtained using

IðtÞ ¼ CðtÞ � RðtÞ � DðtÞ: ð18Þ

Time-varying parameter estimation. As in the synthetic case, nine parameters describing

the three time-varying model parameters, (β(t), γ(t) and δ(t)), were estimated using the

observed time-series data of I(t), R(t) and D(t). To study the effect of the quality of the reported

data on the filter’s performance, two models were estimated using different observed time-

series data. Firstly, we used the values of I(t) obtained using Eq (18), where C(t) is the reported

values. We refer to this as case_orig. Secondly, I(t) was obtained using the modified values of

C(t), and we refer to this as case_mod.

The population size of the Hubei province was taken as N = 59M (https://data.stats.gov.cn/

english/easyquery.htm?cn=E0103). For both, case_orig and case_mod, the initial state ensem-

ble is generated using Eq (15) as in synthetic case with s0 = [S(0), I(0), R(0), D(0)], where

S(0) = N − I(0) − R(0) − D(0) with R(0) = 28 and D(0) = 17 from the reported data. I(0) for

case_orig and case_mod is 399 and 431, respectively. tlockdown is set to 5. Similar to the synthetic

case, the initial ensemble for parameter values was randomly drawn from a uniform distribu-

tion with the initial range of values presented in Table 4. All other EnKF parameters and set-

tings were the same as for the synthetic case.

The observed reported data of I(t), R(t) and R(t) are assimilated until the stopping criterion,

Eq (13), is met. If the convergence criterion is not met once all observations are assimilated,

the EnKF assimilation process is repeated with a different initial state ensemble. Figs 8 and 9

show the estimated parameter evolutions for case_orig and case_mod, respectively. The shaded

areas show the uncertainties in the final estimate around the mean values. For case_orig, it

took a long time to achieve convergence (333 assimilation cycles) compared to case_mod,

which met convergence with 250 assimilation cycles. With case_orig and case_mod, the param-

eter β1 had the largest uncertainty in its final estimate. On the other hand, both cases had a

small uncertainty in the estimation of β0.
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Table 5 presents the parameters estimated together with their associated uncertainties for

case_orig and case_mod. The EnKF estimated different model parameters for case_orig and

case_mod. Fig 10 compares the best-fit parameters of the estimated time-varying infection,

recovery and death rates of case_orig and case_mod. Even though there are some differences

between the estimated parameters from case_orig and case_mod, the estimated β(t) from the

two cases show similar profiles. However, we notice some differences in the estimated γ(t) and

δ(t) in the two cases between t = 0 and t = 25. A possible cause for this can be attributed to

modifying time-series data in the same time range.

Finally, in Fig 11, we show the curve fitting accuracy between the observations, i.e.

reported I(t), R(t) and D(t), and the simulated results of the estimated model for case_orig and

case_mod. We see a good fit for the infected population (active cases) for case_mod. However,

there is a misfit with case_orig between t = 5 to t = 30. After t = 30, both the cases show similar

profiles with a good fit. Likewise, in comparison with case_orig, case_mod shows a slightly bet-

ter fit of the recovered population. However, both cases underestimate the recovered popula-

tion between t = 20 to t = 30. Both cases well estimate the dead population. Overall, case_orig
and case_mod show a good fit of the recovered and death populations, while case 1 shows an

improvement in the estimation of the infected population. This is confirmed by the R2 values

of the simulated states for the two cases, as presented in Table 6.

Discussion

Recent works on the COVID-19 modelling using COVID-19 data of China include the works

of Libotte et al. [18], Lobato et al. [2], Li et al. [11] and Cooper et al. [54]. To estimate the

parameters using Stochastic Fractal Search (SFS) and Multiobjective Stochastic Fractal Search

(MOSFS) algorithm, Lobato et al. [2] used a normalized version of the SIRD model using data

of China. Similarly, Libotte et al. [18] used the normalized version of the SIR model and

employed the Differential Evolution (DE) method to estimate the model parameters. Cooper

et al. [54] estimated the SIR model via data fitting with a nonlinear function using COVID-19

data of China. Similarly, Li et al. [11] used an SEIR model based on deterministic assumptions

and applied the EAKF to estimate model parameters using the data of China.

The transmission rate, β, is considered as an important parameter that needs to be esti-

mated for epidemic modelling [29]. Table 7 presents the comparison between the EnKF esti-

mated infection rate, β(0), with the estimated β from the recent works mentioned above. The

values in Table 7 are directly taken from the reported results of five different methods (SFS,

MOSFS, DE, EAKF and data fitting) presented in the reference literature [2, 11, 18, 54]. We

Table 4. Initial parameter values for case_orig and case_mod. Initial ensemble for parameter values randomly drawn

from a uniform distribution with an initial range of values as presented below.

Parameter Initial Uniform Range Unit

β0 [0.1,0.9] 1/day

β1 [0.001,0.002] 1/day

τβ [20,5] day

γ0 [0.001,0.02] 1/day

γ1 [0.01,0.1] 1/day

τγ [40,7] day

δ0 [0.001,0.0] 1/day

δ1 [0.001,0.002] 1/day

τδ [7,20] day

https://doi.org/10.1371/journal.pone.0256227.t004
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observe that the EnKF estimated value of β = 0.3848 is very close to the values estimated from

other methods in [2, 11, 18, 54]. This means that the infection rate was similar irrespective of

the population size. In Fig 10, we see that the recovery rate from case_orig and case_mod is ini-

tially slower and later reaches a constant value of β� 0.074, corresponding to a recovery time

Fig 8. Evolution of the parameter estimates for case_orig. In each plot, the solid black line represents the EnKF

mean value. The uncertainties (standard deviation curves) around the mean values are filled in grey.

https://doi.org/10.1371/journal.pone.0256227.g008
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Fig 9. Evolution of the parameter estimates for case_mod. In each plot, the solid black line represents the EnKF

mean value. The uncertainties (standard deviation curves) around the mean values are filled in grey.

https://doi.org/10.1371/journal.pone.0256227.g009
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of�14 days. The estimated value of β agrees with the median recovery time of 2 weeks for

mild COVID-19 cases as reported by the World Health Organisation [55].

In this study, the best performance was achieved with a damping factor of α = 1. The EnKF

method presented may not be the best method for estimating a basic SIR model and thus

should be considered as an alternative for inverse modelling. Other more straightforward

methods and optimization techniques such as least-square techniques [3, 10, 12, 14, 15], Dif-

ferential Evolution method [18], and Stochastic and Multiobjective Fractal Search algorithm

[2] can be employed. An advantage of using EnKF lies in the fact that it can provide a reliable

uncertainty in the estimated parameter values. Hence, the EnKF makes it easier to quantify

estimation uncertainty. Moreover, in comparison to other optimization methods, the observed

data is assimilated in real-time with EnKF. EnKF is a derivative-free method in the sense that

it does not require derivatives of the model function. This gives the EnKF an advantage over

other optimization techniques that require derivatives, such as an extended Kalman filter.

Hence, the EnKF can be used with any forward model, including complex and high dimen-

sional models. However, the EnkF can be computationally demanding, especially with a larger

ensemble size.

Our study’s obvious limitation is determining an optimal value of the damping factor for

inverse modelling using the EnKF. It is important to emphasize that COVID-19 data of only

Hubei province, China, was used in this study. Also, the inverse modelling was performed

using the data after January 22, 2020, when there was more control of individual movements

due to the Chinese government’s various restrictions. Further studies are warranted to find an

optimal value of the damping factor. The one straightforward recommendation is to apply the

proposed method using COVID-19 data of other countries to identify any similarities in the

damping factor.

Two cases considering the real data, case_orig and case_mod, were used to study the perfor-

mance of EnKF in terms of model estimation. Even though there was a slight difference

between the estimated models from the two cases, one can apply a different procedure to

remove the outliers from the reported data and obtain another time-series data for the infected

(active) number of cases, e.g. one may adopt the method presented in Arroyo-Marioli et al.

[25]. Moreover, different forms of time-varying parameters can be used in this study, e.g. Yang

et al. [20] estimated the transmission (infection) rate, β(t), as a piecewise constant function in

time while Arroyo-Marioli et al. [25] used a random walk model for β(t).
However, the results obtained from the use of the EnKF demonstrate its usefulness in esti-

mating the unknown and uncertain parameters of an epidemic model. Moreover, the EnKF

Table 5. Parameter estimates for the second test case (real data). EnKF estimated parameters with their associated

uncertainties for case_orig and case_mod.

Parameter unit Estimated (case_orig) Estimated (case_mod)

β0 1/day 0.3848±0.0107 0.4264±0.0133

β1 1/day 0.0012±0.0002 0.0015±0.0002

τβ day 9.2746±0.4398 7.4757±0.3995

γ0 1/day 0.0086±0.001 0.0117±0.0012

γ1 1/day 0.0664±0.0023 0.0628±0.0027

τγ day 30.6556±0.7933 31.1524±0.8684

δ0 1/day 0.0073±0.0003 0.0047±0.0003

δ1 1/day 0.0007±0.0001 0.0008±0.0001

τδ day 12.7739±0.6605 16.3735±1.4076

https://doi.org/10.1371/journal.pone.0256227.t005
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results show that it is possible to identify the time-varying model parameters with uncertain

observational data.

Conclusion

In this study, we evaluated an augmented Ensemble Kalman Filter’s capability to estimate

time-varying model parameters using two types of observational data, i.e., synthetic data and

with COVID-19 data of Hubei province, China. Furthermore, we investigated the effect of the

damping factor on the performance of the EnKF. Three time-varying SIRD model parameters

were determined by estimating nine constant parameters.

The best performance of EnKF was obtained using the basic EnKF scheme. Good perfor-

mance was achieved with a small ensemble size of 200. The results presented in this study

shows that epidemiological models can be estimated using EnKF even from imperfect data

that can result from missing, incomplete or incorrect data. As an alternative to existing

Fig 10. Comparison of time varying parameters with real data. The best-fit parameters of the estimated time-

varying infection, recovery and death rates of case_orig and case_mod.

https://doi.org/10.1371/journal.pone.0256227.g010
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Fig 11. Comparison of profiles. The simulated profiles considering the estimated parameters for case_orig (in solid

red lines) and case_mod (in solid black lines). The plots show the accuracy of the curve fitting between the simulated

and observed data (blue dots for reported data and black dots for modified active cases).

https://doi.org/10.1371/journal.pone.0256227.g011
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optimization techniques, one can use the EnKF algorithm presented in this paper to estimate

uncertain and unknown model parameters with their associated uncertainties.
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