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Objective: To describe best practices for manual nutritional analyses of data from
passive capture wearable devices in free-living conditions.

Method: 18 participants (10 female) with a mean age of 45 ± 10 years and mean BMI
of 34.2 ± 4.6 kg/m2 consumed usual diet for 3 days in a free-living environment while
wearing an automated passive capture device. This wearable device facilitates capture
of images without manual input from the user. Data from the first nine participants
were used by two trained nutritionists to identify sources contributing to inter-nutritionist
variance in nutritional analyses. The nutritionists implemented best practices to mitigate
these sources of variance in the next nine participants. The three best practices to
reduce variance in analysis of energy intake (EI) estimation were: (1) a priori standardized
food selection, (2) standardized nutrient database selection, and (3) increased number
of images captured around eating episodes.

Results: Inter-rater repeatability for EI, using intraclass correlation coefficient (ICC),
improved by 0.39 from pre-best practices to post-best practices (0.14 vs 0.85, 95% CI,
respectively), Bland–Altman analysis indicated strongly improved agreement between
nutritionists for limits of agreement (LOA) post-best practices.

Conclusion: Significant improvement of ICC and LOA for estimation of EI following
implementation of best practices demonstrates that these practices improve the
reproducibility of dietary analysis from passive capture device images in free-
living environments.

Keywords: passive device, energy intake, dietary analysis, food record, photograph, best practices,
reproducibility
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INTRODUCTION

Self-report methods of dietary intake such as written diet diaries,
food frequency questionnaires, and photographic food records
are commonly used to estimate dietary intake. Photographic
food records are beneficial in their ease of use for participants
compared to traditional written diet diaries, do not rely on recall
by the participant, and have been validated for accuracy (1–
5). Photographic food records typically contain two images, a
pre- and post-ingestion photograph of the meal, taken by the
participant at the correct distance, angle, and observing any
other instructions to obtain clear photographs, such as cutting
sandwiches in half to display fillings clearly or including a
fiducial marker in the image as a size marker (6, 7). Though
photographic food records have been shown to reduce participant
burden in comparison to written diet diaries (4, 7, 8), there
are still challenges associated with them, such as being able to
identify specific food brands, nutritional claims (e.g., fat free, low
sodium), and preparation methods in pre- and post-ingestion
images with no other visible details (9). Passive capture methods
may overcome some of these challenges by capturing multiple
images at predetermined time intervals, without any action from
the participant (10–14).

Emerging technologies present the opportunity to enhance
dietary intake estimation by passively measuring eating activity
in free-living settings with minimal user interaction. Collecting
near-continuous data in the context of daily life to observe eating
behavior and dietary intake has proven extremely difficult for
researchers and burdensome for participants (15, 16). Wearable
sensors can lessen the burden by passively collecting data while
users go about their daily lives. Technological advances in dietary
assessment tools include: (i) web-based self-administered 24-
h recall tool, which aims to reduce respondent burden (17);
(ii) mobile device-assisted ecological momentary assessment
(mEMA), which focuses on reducing recall bias by collecting real-
time data in free-living environments (18), (iii) photo-assisted
and image-based dietary assessments, which attempt to reduce
respondent burden and recall bias (19), and (iv) wearable sensors,
which offer a suite of measurement tools that seek to tackle the
limitations of other methods (15, 16).

Compared to photographic food records, where only two
photos, one before and one after a meal, need to be analyzed
by a trained nutritionist, passive capture methods necessitate
viewing dozens of images at each eating episode to find the
clearest image/s for analysis and including images of food
preparation and/or packaging information, which increases
nutritionist analysis time and cost.

The aim of this analysis was to document common sources of
variation during manual nutritional analysis of passive capture
diet records in free-living conditions and establish best practices
for these analyses.

METHODS

Participants
This was a multi-site study. Data were collected at Brown
University and Boston University, the University of Alabama

processed the passive capture data, and nutritional analysis was
carried out by the Colorado Clinical and Translational Sciences
Institute (CCTSI) Nutrition Core. The first nine participants (five
females) with a mean (± SD) age of 42 ± 6 years (range: 37–
56 years) and body mass index (BMI) of 36.3± 5.0 kg/m2 (range:
29.6–42.2) were designated as the pre-best practices cohort.
The next nine participants (five females) with a mean age of
48 ± 13 years (range: 24–62 years) and BMI 32.0 ± 8.7 kg/m2

(range: 28.3–37.0) were designated the post-best practices
cohort. Pre-best practices participants were 50% Caucasian, 25%
Hispanic or Latino, 12.5% Black or African American, and
12.5% Portuguese. Post-best practices participants were 62.5%
Caucasian, 25% Hispanic or Latino, and 12.5% Black or African
American. Individuals who smoked or with temporo-mandibular
joint disease, dysphagia, or other difficulties chewing and/or
swallowing were excluded from participation.

Written informed consent was obtained from all individuals
prior to participation in the study. The University of Rhode
Island Institutional Review Board (URI IRB) approved this
study. Participants included in the study were asked to wear
the Automatic Ingestion Monitor (AIM-2) (20) device for
seven consecutive days under free-living conditions for at least
12 h per day during waking hours. The AIM-2 is a wearable
passive capture device containing an accelerometer and an
optical sensor monitoring activation of the temporalis muscle
for eating detection. A machine learning algorithm running on
the device detected eating in real time and triggered a wide-
angle camera aligned with the eye gaze when eating was detected.
Photographs were passively captured at 15 s intervals. Any item
in the field of view was captured as an image, including foods,
beverages, containers, food labels, food preparation, and non-
food images. Not all images were complete (i.e., half of a plate
was out of the field of view; partial food labels) and others
contained information useful to nutritionists (e.g., images of
cutlery drawers, backpacks). Images were reviewed by a single
researcher at each site and any considered private were removed
prior to storage and analysis (20).

Selecting Days for Analysis
Three days of dietary intake were analyzed per participant. For
each participant there was an a priori primary sequence of the
three days for analysis (two weekdays and one weekend day).
For this sequence, Friday was considered a weekend day (21). If
any of the days in the primary sequence did not meet inclusion
criteria of weartime and eating episodes, the nutritionists used
the remaining sequence of days (two weekdays and two weekend
days) to replace the day(s) that did not meet the criteria (even
if all days were weekdays). To be considered complete for data
collection, a day had to have a minimum of 8 h of AIM wear time
and at least two eating episodes between midnight and 11:59 pm.
If a total of 3 days that met inclusion criteria could not be reached
following utilization of all four alternate days, the participant was
defined non-compliant and excluded from analysis.

Dietary Analysis
Analysis of diet records was performed using the AIM
Image Annotation Software (version V4.4). Images around
each computer-derived eating episode were captured from
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micro-camera on the AIM-2 device (20). Two nutritionists
independently analyzed resultant images for each participant.
All nutritionists in the CCTSI Nutrition Core undergo
standardized training before analyzing dietary intake
data from clinical studies (22). For analysis of passive
capture device food records, nutritionists are required
to have a ≥ 0.85 intraclass correlation coefficient (ICC)
inter-operator reliability, and validation tests are repeated
quarterly (23).

Each food shown in images for an eating episode was entered
in the AIM software by trained nutritionists who estimated food
type, ingredients, preparation method (e.g., frying vs baking),
and consumed amounts. Nutritionists used the United States
Department of Agriculture (USDA) nutrient database (24) as
the default because it contains nutritional information for the
largest number of food items. This is an important consideration
in free-living situations. If a food was not found in the USDA
database, the Food and Nutrient Database for Dietary Studies
(FNDDS) (24, 25) or the Branded Food Products Database
(BFPD) (26) database was searched to find the best match for the
food item.

Identification of Common Sources of
Error
Initial comparison of analyses between independent
nutritionists using the pre-best practices cohort (n = 8, as
two participants did not have compliant weartime) showed
large variance in daily energy intake (EI; Figure 1). After
analysis, nutritionists, as a group, reviewed the statistical
results from the pre- best practices cohort and identified
three common occurrences that led to the large variance
in EI, macronutrients, sodium, and fiber estimation: (1)
inconsistency of energy and nutrient values between nutrient
databases for the same food (e.g., one slice of a 14′′ cheese
thin crust pizza), (2) the default USDA database not
providing detailed food preparation options, and (3) capture
of an insufficient number of images of eating episodes to
observe and analyze the eating episode (average of 5 ± 0.23
images/eating episode).

Implementation of Best Practices
To resolve these issues, nutritionists conducted ten 60-min
training analyses with all three nutritionists analyzing 56 days
of eating episodes from the first eight (8) participants. During
the training sessions, nutritionists determined the following best
practices were necessary to improve analysis of passive capture
images and reduce variability among nutritionists: (1) a priori
standardization of food selection for commonly consumed,
high energy density foods, (2) re-evaluating nutrient database
hierarchy when analyzing images, and (3) reprogramming the
AIM-2 to capture a higher number of images around eating
episodes The group training sessions also established a protocol
for food items that could not be easily identified. Nutritionists
continuously bring items they cannot identify to the entire
group to discuss on a regular basis. The food record is
first marked as incomplete, and photos of the eating episode

in question are researched and discussed by all nutritionists
and the director. Once a solution is agreed upon, this food
item is added to the standard operating procedure (SOP) for
future reference. Instead of a nutritionist forming a conclusion
independently on a unique food item, this practice prevents
drift and keeps all nutritionists aligned for data entry practices
over time.

Standardizing Food Selection
By selecting the same food and serving size but using different
nutrient databases, USDA vs FNDDS for example, nutritionists
can attain a large difference in daily EI. For example, using
the same measure of a food (one slice = 1/8 of a 14′′ thin-
crust cheese pizza), there is a 202.4 kcal difference between the
highest and lowest choice for exactly the same food and serving
size (Supplementary Table 1). So, if a participant consumed a
slice of pizza without showing the pizza box, each nutritionist
might select a different choice from the nutrient database,
which increases inter-nutritionist variance, even when choosing
exactly the same consumed amount and type of food. For
foods like pizza, the large variance in energy values between
choices is exacerbated by the fact that more than one slice is
usually consumed at each meal. Because of the EI differences
caused by variance in choice, we assigned a priori choices
for entry of commonly consumed high energy density foods.
In the pre-best practices analysis, pizza was consumed by
six of eight participants, hamburgers/cheeseburgers by four of
eight, chicken nuggets by five of eight, chicken strips/tenders
by four of eight, and tater tots by four of eight, so those
foods were included the resultant a priori food selection guide
(Supplementary Table 2).

Foods were grouped by type in this guide. For example, all
14′′ thin crust cheese pizza choices were grouped. The a priori
choice for this food item was designated by averaging the energy
for each choice in the group and selecting the item closest to
the mean. For example, the mean energy content of the 14′′
thin crust cheese pizza slices was 244 kcals, and the closest
item among all nutrient databases was Pizza Hut 14′′ Thin
N Crispy Crust pizza at 242 kcals/14′′ slices. This was then
selected as the default option for any slice of thin crust cheese
pizza, regardless of if the brand was visible in the photo or not
(Supplementary Table 2).

Nutrient Database Hierarchy
The AIM Image Annotation Software includes the USDA,
FNDDS, and BFPD databases. The Standard Reference
USDA Food Database contains over 8,000 food items,
including foods and beverages that are primarily consumed
by minority groups which provides easier food selection in
free-living conditions although lacking the specific cooking
and other food preparation methods contained in the FNDDS
database (24). The FNDDS database contains over 7,000
food items and approximately 30,000 portion weights, as
data from the National Health and Nutrition Examination
Survey (27).

Published by the USDA Agriculture Research Service, the
BFPD Database contains many commonly purchased branded
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FIGURE 1 | Comparison of inter-nutritionist agreement for total energy and macronutrient intake pre- and post-best practices implementation. Total energy (A,B),
protein (C,D), CHO (E,F), and fat intake (G,H) were compared via Bland–Altman plots (n = 24 pairs of measures assessed by two different nutritionists).The solid line
in the center indicates 100% agreement, i.e., zero difference between nutritionists. The outer reference lines represent the upper and lower bound limits of
agreement (LOA).

and store branded items, such as Tyson chicken products,
Stouffers frozen meals, and Wal-Mart store branded foods
(26). The strength of this database is that store-bought brands
are registered in the database, so it allows for very specific

selection of branded foods that may not be available in other
nutrient databases.

Access to multiple reference databases, each with multiple
choices for a single food item, creates a plethora of choices for one
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TABLE 1 | Intraclass correlation coefficients (95% confidence interval)
between operators.

Outcome Pre-best
practices

Post-best
practices

Difference in
intraclass
correlation

coefficient (95%)
CI between two

methods1

Total energy (kcal) 0.6 (0.14, 0.83) 0.99 (0.92, 0.99) 0.39 (0.14, 0.85)*

Carbohydrate (g) 0.79 (0.14, 0.91) 0.98 (0.95, 0.99) 0.18 (0.07, 0.85)*

Fat (g) 0.56 (0.23, 0.81) 0.99 (0.94, 0.99) 0.43 (0.14, 0.75)*

Protein (g) 0.44 (−0.05,
0.68)

0.96 (0.86, 0.98) 0.52 (0.25, 0.98)*

Fiber (g) 0.09 (−0.06,
0.56)

0.91 (0.82, 0.97) 0.82 (0.35, 0.98)*

Sodium (mg) 0.36 (−0.02,
0.72)

0.92 (0.80, 0.97) 0.56 (0.17, 0.94)*

195% CI is based on 5,000 bootstrap analysis.
*p < 0.05.

specific food item. Therefore, two nutritionists can both pick the
same food item and serving size but have a large variance in EI.
For example, in the BFPD, there are over 80 choices for chicken
nuggets. One nutritionist could choose Tyson breaded chicken
nuggets (one nugget) and a second nutritionist could choose
Applegate Farms chicken nuggets (one nugget). The difference in
calories between the two chicken nugget brands is 23.4 kcal per
nugget. This difference is compounded by the fact that more than
one chicken nugget is consumed per meal.

Pre-best practices, the USDA database was selected as the
default nutrient database because it contains the highest number
of individual food items. During best practices implementation,
the FNDDS database was chosen as the default because it
includes more detailed choices for cooking and preparation
options that can affect the energy content of food items. For
example, for chicken, whether it is coated or not, whether skin
is consumed, or the actual item was baked vs fried can markedly
alter the energy content. Although this is estimated by each
nutritionist for USDA food item entry, specific choices that
include these options in the FNDDS database help to reduce
inter-nutritionist variability.

To determine if switching to the FNDDS database would
affect EI, nutritionists reanalyzed 31 pre-best practices food
items by entering the exact same item in the FNDDS database
compared to original item in the USDA or BFPD databases
(Supplementary Table 3). For example, the USDA database
for scrambled eggs is listed as “two large cooked scrambled
eggs” and the FNDDS database is listed as “egg omelet
or scrambled egg with no specification as to fat added in
cooking.”

Increase of Images Around Eating Episodes
Pre-best practices implementation, the average images/eating
episode was 5 ± 0.23 (n = 88 total eating episodes).
This did not provide enough images for nutritionists to
see definitive before and after eating images and or to
see when participants made multiple reaches into opaque

food containers such as a potato chip bag. The AIM was
reprogrammed by engineers at the University of Alabama to
capture more images during and around eating episodes and,
for post-best practices implementation, the average number of
images/eating episode increased to 11 ± 0.41 (n = 92 total
eating episodes).

The higher number of images during eating episodes allowed
nutritionists to see food preparation methods, ingredients, brand
names, and, after the meal, leftovers, desserts, or smaller single
sips or bites during clean up that were not previously seen in
pre-best practices images. This is beneficial when participants
consume mixed dishes, such as soups, salads, or sandwiches so
that all the ingredients and condiments, not easily visible in a
photo of the food as consumed, can be identified and quantitated.

More images during eating episodes facilitates observation
of the actual amount of food consumed, particularly when
a participant is snacking from a container or bag and is
advantageous for identifying liquid in an opaque mug or
container. Being able to view more images of the beverage and
its preparation, nutritionists can see important details such as
whether sugar or zero calorie sweetener was added, or the type
of milk in tea or coffee.

Statistical Analysis
Separate analysis was conducted for pre- and post-best practices
cohorts, respectively. Bland–Altman analysis was used to
descriptively and graphically describe the agreement of measures
by two different nutritionists. The SD of the between-nutritionist
difference was estimated by a linear mixed model with the
individual difference as the dependent variable, intercept as the
independent variable, and a compound symmetry covariance
structure to account for the correlation of repeated measures
of the same participant on three different days. The percent
difference in estimates of EI for the database selection for
the same food items before and after the best practices was
tested using a two-sided t-test. The percent difference analysis
was the only analysis done on single food items, all other
analyses were performed for daily intake. Inter-rater reliability
was evaluated using ICC (Table 1). Inter-rater repeatability
was assessed using repeatability coefficient (RC; Table 2). RC
is defined as 1.96 ×

√
2 × (within-subject SD). ICC and RC

were all estimated based on the linear mixed effects model
with the outcome assessed by either nutritionist as dependent
variable and an intercept only as the independent variable
as well as a compound symmetry structure to model the
variance of two measures assessed by two nutritionists. Using
5,000 bootstrap samples and the percentile method, the 95%
confidence interval for ICC and RC at pre- and post-best
practice implementation and the post-best practice change were
estimated. Statistical inferences for the post-best practices change
in ICC and RC were made based on the confidence interval.
Followed Landis and Koch (28), ICC was interpreted as ≤ 0
(poor), 0.0–0.2 (slight), 0.2–0.4 (fair), 0.4–0.6 (moderate), 0.6–
0.8 (substantial), and 0.8–1.0 (excellent). The change was deemed
to be statistically significant (p < 0.05) if the 95% CI did
not include zero. SAS 9.4 (SAS institute, Cary, NC) was used
for all analyses.
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RESULTS

Of 18 participants, 16 were used for three-day passive capture
nutritional analyses. Two participants were excluded because
they did not have enough days of compliant AIM wear time.

For every dietary outcome measure, daily EI and
macronutrient intake, implementation of best practices improved
the limits of agreement (LOA) between nutritionists (Figure 1).
The post-standardization LOA was remarkably narrower as
compared to the LOA prior to standardization. LOA for EI was
−278.4 ± 114.4 kcal/d pre-best practices and −39.5 ± (32.9)
kcal/d post-best practices; carbohydrates 38.6 ± (15.9) g/d
pre-best practices and −4.3 ± (4.6) g/d post-best practices; fat
11.5 ± (6.3) g/day pre-best practices and −1.6 ± (2.1) g/day
post-best practices; protein 6.1 ± (7.1) g/day pre-best practices
and−1.9± (1.5) g/day post-best practices; fiber 2.4± (3.3) g/day
pre-best practices and−0.4± (0.5) g/day post-best practices; and
sodium 484.5 ± (230.1) pre-best practices and −168.4 ± (124.2)
post-best practices.

Interrater reliability (Table 2) as assessed by ICC improved
significantly for daily total EI (1, 0.39 (95% CI: 0.14, 0.85),
protein (1 = 0.18;95% CI: 0.07, 0.85), fat (1 = 0.43; 95%
CI:0.14, 0.75), carbohydrate (1 = 0.52; 95% CI: 0.25, 0.98), fiber
(1= 0.82; 95% CI: 0.35, 0.98), and sodium intake (1= 0.56; 95%
CI: 0.17, 0.94). The post-standardization reliability as assessed
by ICC was in the excellent range (ICC ≥ 0.90) for every
measured outcome whereas pre-standardization ICCs varied
between the poor and substantial categories. Similarly, significant
improvement in repeatability coefficients were seen for all the
outcome measures (Table 2).

Post-best practice implementation, nutritionists used the
a priori food selection guide 100% of the time when a food item
appeared in an eating episode.

The difference in EI for nutrient database hierarchy pre- and
post-best practices implementation, that is, defaulting to the
FNDDS vs USDA, is 64.4kcal± 91.2.2kcal (40%; Supplementary
Table 3). Supplementary Table 3 shows the percent difference in
the same foods entered similarly into different databases. The use
of the two databases for the same foods highlights the possible
variation when database selection is not standardized. The initial
energy measure represents the use of the USDA nutrient database
as the default. In the a priori food selection guide were excluded
from this Figure.

DISCUSSION

To our knowledge, this is the first study that has sought
to implement best-practices for manual nutritional analysis
of passive image capture images in free living conditions.
Gemming et al. (29) discussed that wearable cameras offer the
opportunity for secondary analysis, increasing the usefulness of
data obtained but does not detail what training or best practices
can be implemented.

Previous studies that use passive methods to estimate EI
and macronutrient composition in free-living environments
have encountered similar challenges to this study. Cooking
methods that affect EI and nutrient composition in passive
image capture methods are a common obstacle (30), as are
low quality images that make it difficult for nutritionists
to accurately estimate EI (8, 29, 31, 32). Beltran et al.,
Schrempft et al., and Martin et al. showed low ICC between
nutritionists for portion size estimates in free-living conditions
(32–34) as opposed to other traditional digital photography
methods (35).

For analysis of passive capture device food records, CCTSI
Nutrition Core nutritionists are required to have a 0.85
ICC inter-operator reliability which is repeated quarterly (23).
However, images used for training and ongoing competency
assessments were from AIM-acquired images in a lab setting,
not in a free-living environment. All food in these images
came from a university cafeteria with a limited menu rotation.
Additionally, participants consumed food at a table in a
well-lit environment, and nutritionists could easily identify
which food items the participants consumed. In a free-
living environment, participants have exponentially more food
choices, preparation methods, are not eating in a controlled
environment, and have food/beverages in their vicinity that
may or may not be part of their meal, especially when eating
in a communal or family setting. The lab-setting passive
device food images are useful to help nutritionists navigate
the analysis software and to analyze food photographs at
different angles and in different light conditions than traditional
photographic food records, but implementing additional best
practices is necessary to obtain reproducible results in a free-
living environment.

The a priori food selection guide reduced variability in
all outcome measures for high energy density, commonly

TABLE 2 | Repeatability coefficients (95% confidence interval) between operators.

Outcome Pre-best practices Post-best practices Difference in repeatability coefficient (95%) CI
between two methods1

Total energy (kcal) 1205.6 (813.4, 1512.6) 281.5 (201, 383.4) −924.0 (−1302.6, −551.9)*

Carbohydrate (g) 167.8 (122.7, 222.5) 44.1 (28.0, 55.7) −123.6 (−167.7, −78.8)*

Fat (g) 63 (38.2, 89.4) 15.6 (10.2, 21.3) −47.4 (−75.9, −19.8)*

Protein (g) 48.3 (35.7, 60.1) 15 (9.7, 18.9) −33.3 (−43.9, −18.4)*

Fiber (g) 31.2 (11.7, 46.9) 4.9 (2.2, 6.5) −26.3 (−42.4, −6.8)*

Sodium (mg) 2361.8 (1579.1, 3140.5) 1213.2 (641.0, 1707.9) −1148.7 (−2196.2, −135.6)*

195% CI is based on 5,000 bootstrap analysis.
*p < 0.05.
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consumed food items as nutritionists selected the same choice
consistently. Many participants consumed non-branded food
items from local stores or restaurants, so having a priori food
choices minimizes overall bias between participants. By using
the a priori food selection guide, nutritionists can independently
select the correct food within the database, without searching
for an appropriate brand, selecting a brand that is not listed,
or decide best fit on a per-nutritionist basis. It should be
noted that the a priori food selection guide will evolve
over time. As analysis continues with passive device images,
nutritionists will identify more items that are deemed to need
a priori selections.

Following best practices implementation, nutritionists used
the FNDDS database as the default when searching for and
selecting foods for analysis, unless otherwise indicated by the
a priori food selection guide or if a food is not available in
FNDDS. For example, the Pizza Hut 14′′ thin crust cheese pizza
slice is found in the USDA database, and is the a priori choice for
any thin crust cheese pizza.

The advantages of using an a priori food selection guide
for nutritional analysis may depend on the nature of the
research. Using a priori food selections and defaulting to the
FNDDS database may contribute to small inaccuracies of EI
and macronutrient intake at the participant level, but these
are minimized at the group level. For individual data, such
as providing personalized, real time dietary intake feedback
during weight loss, using the a priori food selection guide
as a default may not be appropriate as one would require
accurate data for that individual. For group level data, such
as a randomized, controlled dietary intervention study, using
the a priori food selection guide would be appropriate as
the data would be reproducible for the overall group or
population and, when data are presented as means, small
differences in accuracy between participants will be minimized
(36, 37).

Increasing the frequency of images taken around eating
episodes to include meal or snack preparation methods allowed
nutritionists to both see the ingredients in mixed dishes, such
as soups and salads, and the cooking methods of foods such as
meats and eggs. Pre-best practices, a certain amount of estimation
was involved but additional photographs that show preparation
and cleanup helps to mitigate assumptions by providing more
opportunity to view clear images for analysis. The limitations to
the addition of more images is shorter device battery life and
an increased amount of data storage necessary to capture and
store all images.

In addition to food preparation information, increased
frequency of images also gives more opportunity to identify
foods in opaque containers, low light settings, or any instance
where the camera may be partially obscured, such as by clothing
or hair. With a wearable capture device, participants are also
often in motion, resulting in blurry or partially obscured images,
without the full range of food items visible in a single image (8,
29, 31, 32). More images provides nutritionists with a higher
likelihood of identifying a clear picture that contains all or
most foods.

Implementation of database standardization, the a priori
food selection guide, and image frequency improved LOA
between nutritionists greatly. The percent difference for LOA
for EI pre- and post- best practices was 150.3%, carbohydrates
159.9%, protein 105%, and fats 151.1%, indicating significant
difference after best practices implementation. All post-
best practice numbers contained a much narrower limit of
agreement, indicating that implementing best practices for this
dataset decreased inter-nutritionist variability in energy and
macronutrient intake for these analyses.

The main strengths of the study were that images were
captured in a free-living environment, use of experienced
nutritionists trained in photographic dietary intake assessment,
and the diversity of the participants. Limitations of this
study include the relatively small sample size, an unequal
number of eating episodes between pre- and post-best practice
implementation, and that no weighed food records or doubly-
labeled water was used in this study so, although reproducibility
was measured, we were unable to measure accuracy. Future
investigation in a variety of free-living environments is necessary
to determine the effects of these best practices on the
accuracy of manually estimating dietary intake from passive
capture devices.

CONCLUSION

Implementation of three best practices: standardizing food
selection, nutrient database hierarchy, and increase of images
around eating episodes, improves the reproducibility of
manual dietary analysis of images from wearable passive
capture device images.
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