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BRIEF DEFINITIVE REPORT

      Damage to the integrity of the vessel wall results 
in exposure of the subendothelial extracellular 
matrix, which triggers adhesion and aggregation 
of platelets ( 1, 2 ). The consequence of this pro-
cess is the formation of a thrombus that prevents 
blood loss at sites of injury or leads to occlusion 
and irreversible tissue damage or infarction in 
diseased vessels. Integrins play a central role in 
adhesion and aggregation of platelets ( 3 ). Integ-
rins are heterodimeric transmembrane receptors 
composed of an  �  and a  �  subunit that are ex-
pressed in a low affi  nity state in resting platelets. 
After activation, mediated by other platelet re-
ceptors, integrins shift to a high affi  nity state and 
effi  ciently bind their ligands ( 3 ). 

 Cellular control of integrin activation, which 
is crucial for numerous biological processes such 
as cell adhesion, motility, diff erentiation, and 
apoptosis ( 4 – 8 ), requires transmission of a signal 
from the small cytoplasmic tails to the large ex-
tracellular domains ( 9 ). Most of the seminal 
work on integrin activation was performed on 
 � IIb � 3 integrin, which is the principal integrin 
expressed on platelets and whose major ligands 

are fi brinogen, fi bronectin, and von Willebrand 
factor. The affi  nity of this integrin for ligands is 
highly modulatable, and upon activation, it me-
diates platelet adhesion, aggregation, and spread-
ing on the exposed extracellular matrix of 
injured vessel walls ( 3 ) as well as pathological 
thrombus formation ( 1 ). Because of the impor-
tance of  � IIb � 3 integrin in platelet aggregation, 
it has become an attractive pharmacological tar-
get for the prevention of ischemic cardiovascular 
events. Strategies to inhibit its function include 
antibodies (abciximab), cyclic peptides adapted 
from a snake venom disintegrin (eptifi bitide), 
and nonpeptide analogues of an RGD [Arg-
Gly-Asp] peptide (tirofi ban and lamifi ban) that 
inhibit ligand binding ( 10 ). Although these 
inhibitors are benefi cial for patients undergoing 
percutaneous coronary intervention, they do 
not have widespread clinical use because of their 
side eff ect of unwanted bleeding ( 10 ). Therefore, 
considerable eff ort has been made to identify the 
molecular mechanisms that regulate  � IIb � 3 acti-
vation to identify potential new targets to inhibit 
platelet aggregation. 
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 Platelet adhesion and aggregation at sites of vascular injury are essential for normal hemo-

stasis but may also lead to pathological thrombus formation, causing diseases such as 

myocardial infarction or stroke. Heterodimeric receptors of the integrin family play a 

central role in the adhesion and aggregation of platelets. In resting platelets, integrins 

exhibit a low affi nity state for their ligands, and they shift to a high affi nity state at sites 

of vascular injury. It has been proposed that direct binding of the cytoskeletal protein 

talin1 to the cytoplasmic domain of the integrin  �  subunits is necessary and suffi cient to 

trigger the activation of integrins to this high affi nity state, but direct in vivo evidence in 

support of this hypothesis is still lacking. Here, we show that platelets from mice lacking 

talin1 are unable to activate integrins in response to all known major platelet agonists 

while other cellular functions are still preserved. As a consequence, mice with talin-

defi cient platelets display a severe hemostatic defect and are completely resistant to 

arterial thrombosis. Collectively, these experiments demonstrate that talin is required for 

inside-out activation of platelet integrins in hemostasis and thrombosis. 
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 To test whether the hemostatic disorder was due to defec-
tive platelet formation, we assessed platelet counts, which were 
similar to controls ( Fig. 1 D ). Flow cytometric analysis dem-
onstrated normal expression levels of prominent surface recep-
tors in mutant platelets, except for  � IIb � 3 integrin, which was 
reduced by  � 15% ( Table I ).  Forward scatter/side scatter char-
acteristics were the same as control, suggesting normal size and 
shape of the mutant platelets. Thus, talin is not required for 
megakaryocyte diff erentiation and platelet production but regu-
lates the expression of some platelet surface receptors. 

 To determine whether the severe hemostatic defect is 
caused by impaired inside-out activation of  � IIb � 3, we in-
duced platelet aggregation using diff erent agonists. As shown 
in  Fig. 2 A ,  Tln1  � / �    platelets failed to aggregate in response 
to high concentrations of thrombin, ADP, the stable throm-
boxane A 2  analogue U46619, collagen, and the GPVI-spe-
cifi c agonist collagen-related peptide (CRP).  Interestingly, all 
agonists induced a comparable activation-dependent change 
from discoid to spherical shape in control and  Tln1  � / �    plate-
lets, which can be seen in aggregometry as a short decrease in 
light transmission after the addition of agonists. This suggests 
a selective defect in  � IIb � 3-dependent aggregation rather 
than a general impairment of activation of signaling pathways 
in  Tln1  � / �    platelets. 

 To assess integrin  � IIb � 3 function more directly, we 
measured agonist-induced binding of Alexa Fluor 488 – tagged 
fi brinogen by fl ow cytometry. Control platelets bound fi brin-
ogen, which was inhibited by an  � IIb � 3-blocking antibody 
(not depicted), in response to all agonists tested, whereas 

 At sites of vascular injury, platelet activation is triggered 
by exposed subendothelial collagens, thromboxane A 2  and 
ADP released from activated platelets, and thrombin gener-
ated by the coagulation cascade ( 2, 11 ). Although these dif-
ferent agonists activate diff erent signaling pathways, it has 
been proposed that the fi nal common step for  � IIb � 3 integ-
rin activation is the activation and binding of the cytoskeletal 
protein talin1 to integrin  �  tails ( 12 ). 

 Talin1 is an  � 270-kD ( 13 ) elongated dimeric actin-bind-
ing protein and is the only talin isoform expressed in hema-
topoietic cells ( 14 ). Talin1 colocalizes with activated integrins, 
is a component of focal adhesions, and links integrins with 
the actin cytoskeleton ( 15, 16 ). The best evidence for the re-
quirement of talin for integrin  � IIb � 3 activation came from 
studies with talin1-depleted, mouse embryonic stem cell –
 derived megakaryocytes, which revealed that diff erent agonists 
such as ADP or thrombin were unable to induce  � IIb � 3 ac-
tivation ( 17 ). Another study demonstrated that mice express-
ing the L746A mutation of  � 3 integrin, which is believed to 
be unable to bind talin, display impaired inside-out activation 
of  � IIb � 3 resulting in protection from thrombosis and a rela-
tively mild bleeding phenotype ( 18 ). Although these obser-
vations suggest an essential role for talin1 in the activation of 
 � IIb � 3 in platelets, direct in vivo evidence for this hypothesis 
is still lacking. 

  RESULTS AND DISCUSSION  

 We previously showed that disruption of the talin1 ( Tln1 ) 
gene in mice results in embryonic lethality around gastrula-
tion excluding the usage of  Tln1 -null animals for studies on 
platelet function ( 19 ). Therefore, we generated mice car-
rying a  Tln1  gene fl anked by loxP sites ( Tln1  fl  ;  Fig. 1 A ) and 
crossed them with transgenic mice expressing the Cre recom-
binase under the control of the inducible interferon-sensitive 
Mx promoter ( 20 ) ( Tln1  fl /fl  /Cre + ; referred to as  Tln1  � / �    mice) 
to induce effi  cient and permanent  Tln1  gene deletion in all 
hematopoietic cells including megakaryocytes by intraperito-
neal injection of polyinosinic-polycytidylic acid (pI-pC) ( 21 ).  
 Tln1  fl /fl   mice were used as controls and treated identically. 10 d 
after the last injection, the effi  ciency of talin deletion was 
confi rmed with Western blots from platelet lysates also show-
ing that the expression levels of other proteins, including fi la-
min A, integrin linked kinase,  � 1 integrin, c-src, and actin, 
were unaltered ( Fig. 1 B ). 

 To investigate the consequence of talin defi ciency on he-
mostasis, we performed tail bleeding experiments. To restrict 
the Cre-induced deletion of the  Tln1  gene to the hematopoi-
etic system, bone marrow derived from either  Tln1  fl /fl  /Cre +  
or  Tln1  fl /fl   mice was transferred into irradiated normal recipi-
ent mice. 3 wk after transfer, the  Tln1  gene was deleted by 
pI-pC injections and the functional absence of the protein in 
circulating platelets was confi rmed by fl ow cytometry (not 
depicted). Although control chimeras arrested bleeding within 
7.3  ±  2.2 min, all of the  Tln1  � / �    chimeras bled longer than 
15 min ( Fig. 1 C ). Thus, talin is essential to halt bleeding upon 
vessel injury. 

  Figure 1.     Prolonged bleeding times in  Tln  � / �    mice.  (A) Scheme of 

the targeted alleles. In the conditional allele (fl ) exons 1 – 4 are fl anked 

with loxP sites. Exposure of the conditional (fl ) allele to Cre results in the 

removal of the Tln1 fl oxed region (exons 1 – 4) and generates the deleted 

allele ( � ). RI, EcoRI. (B) Western blot analyses of platelet lysates from 

control  Tln1  (+/+) and  Tln1  � / �    ( � / � ) mice. (C) Tail bleeding times in wild-

type and  Tln1  � / �    chimeras. (D) Peripheral platelet counts in control and 

 Tln1  � / �    mice.   



JEM VOL. 204, December 24, 2007 3115

BRIEF DEFINITIVE REPORT

low thrombin concentrations and the weaker agonist, CRP 
( Fig. 2 D ). Collectively, these data show that the inside-out 
activation of  � IIb � 3 integrin is abrogated in  Tln1  � / �    platelets, 
but other cellular functions such as shape change and degran-
ulation are either not or slightly aff ected. 

  � IIb � 3 integrin is also important for fi rm platelet adhe-
sion to the extracellular matrix, where it acts in concert with 
 � 1 integrins, most notably the collagen-binding  � 2 � 1 integ-
rin ( 21, 25 ). Therefore, platelet adhesion to a collagen-coated 
surface was tested in whole blood perfusion assays under con-
ditions of low and high shear stress (150 and 1,000 s  � 1 , respec-
tively). Control platelets readily established fi rm adhesions on 
the collagen fi bers and rapidly built stable three-dimensional 
aggregates, both at high and low shear ( Fig. 3, A and B,  and 
not depicted), whereas virtually all  Tln1  � / �    platelets either 
detached within a few seconds or translocated along the fi bers 
before they were released.  As a consequence, virtually no 
 Tln1  � / �    platelets were attached to the collagen surface at the 
end of the experiment, whereas control platelets covered 
53.3  ±  8.6% of the surface area ( Fig. 3, A and B ). Furthermore, 
 Tln1  � / �    platelets failed to adhere to soluble type I collagen 
under static conditions, a process known to be mediated ex-
clusively by  � 2 � 1 integrin (unpublished data) ( 2, 21 ). Thus, 
activation of both  � IIb � 3 as well as  � 2 � 1 is abrogated in 
 Tln1  � / �    platelets ( 21, 25 ). 

 Ligand-occupied integrins transduce signals leading to the 
activation of Src family kinases resulting in cell spreading. 
The role of talin in this process was tested by analyzing the 
adhesion of washed control and  Tln1  � / �    platelets to fi brino-
gen under static conditions. As mouse platelets, in contrast to 
human platelets, do not spread well on immobilized fi brino-
gen without cellular activation ( 26 ), the experiments were 

 Tln1  � / �    platelets were unable to bind fi brinogen ( Fig. 2 B ). 
This defect was due to impaired inside-out activation of 
 � IIb � 3 as Mn 2+ , known to exogenously activate  � 1 and  � 3 
integrins ( 22, 23 ), induced fi brinogen binding in both control 
and  Tln1  � / �    platelets ( Fig. 2 B ). This binding was 24.1% 
lower in the mutant platelets as compared with the control 
(P  <  0.01), which corresponds well to the reduced surface ex-
pression of  � IIb � 3 in those cells (Table I). Similar results to 
those obtained with fi brinogen were seen with the JON/A-PE 
antibody, which selectively binds to activated  � IIb � 3 integ-
rins on mouse platelets ( Fig. 2 C ) ( 24 ). These results demon-
strate that  � IIb � 3 activation is abolished in  Tln1  � / �    platelets, 
even at high agonist concentrations. Surface expression of 
P-selectin was determined as a measure of agonist-induced de-
granulation. Although normal degranulation was observed in 
 Tln1  � / �    platelets in response to intermediate and high thrombin 
concentrations, a signifi cantly reduced response was seen with 

 Table I.   Glycoprotein expression on  Tln1  � / �    platelets 

Glycoprotein Wild-type  Tln1  � / �   

Integrin  � IIb � 3 561.3  ±  24.1 476.0  ±  22.6

Integrin  � 2 128.5  ±  6.2 123.3  ±  2.3

Integrin  � 1 141.0  ±  13.5 135.0  ±  13.9

Integrin  � 5 40.8  ±  2.9 38.0  ±  2.6

GPIb � 508  ±  23.5 476.3  ±  9.1

GPIX 544.5  ±  27.6 590.3  ±  14.2

GPV 336.8  ±  9.5 337.0  ±  9.6

GPVI 81.3  ±  2.5 72.0  ±  4.4

CD9 1528.8  ±  52.0 1544.0  ±  88.1

The data shown are mean  ±  SD fl uorescence intensities of six mice per group.

  Figure 2.     Impaired platelet function in  Tln1  � / �    mice.  (A) Platelet aggregation assay reveals impaired aggregation of  Tln1  � / �    platelets (gray lines) 

in response to ADP, U46619, thrombin, CRP, and collagen when compared with control platelets (black lines). Arrows denote the addition of agonist. 

(B) Wild-type (black bars), but not  Tln1  � / �    platelets (gray bars), bind fi brinogen in response to 10  μ M ADP, 10  μ M ADP plus 3  μ M U46619, or 10  μ g/ml CRP. 

Treatment with 3 mM MnCl 2  triggers comparable binding. (C and D)  Tln1  � / �    platelets (gray bars) reveal a complete block in activation of  � IIb � 3 after 

stimulation with 10  μ M ADP, 10  μ g/ml CRP, and different thrombin concentrations (0.001 – 0.1 U/ml), whereas platelet degranulation measured by the 

surface expression of P-selectin is not or mildly affected. Wild-type platelets (black bars) were used as a control. MFI, mean fl uorescence intensity.   



3116 INTEGRIN ACTIVATION IN TALIN-DEFICIENT PLATELETS | Nieswandt et al.

period in all analyzed vessels. Thus, talin is essential for platelet 
attachment to the injured vessel wall, a process mediated by 
the concerted action of  � 1 and  � 3 integrins ( 28 ). 

 The molecular mechanisms regulating the inside-out ac-
tivation of integrins have been studied intensively during the 
last two decades. One central result of these studies was the 
proposal that the cytoskeletal protein talin might be a central 
regulator of this process. Our study now provides unambigu-
ous in vivo evidence for the unique and essential role of talin 
for the activation of  � IIb � 3 and  � 2 � 1 integrins in mammals. 
This was not certain despite recent reports showing that mu-
tations of critical residues in the talin binding site of the  � 1 
and  � 3 integrin tails, respectively, abrogate integrin activa-
tion and lead to severe developmental and hemostatic defects 
in vivo ( 8, 18, 29 ). Integrin  �  tails bind a large number of focal 
adhesion proteins, and it was therefore impossible to clarify 
whether the mutations aff ect talin only or additional tail-binding 
proteins that contribute to integrin activation. 

 Interestingly, Mx-cre – induced loss of talin1 did not sig-
nifi cantly aff ect peripheral platelet counts. Because talin2, 
which is very similar to talin1, is not expressed in signifi cant 
amounts in hematopoietic cells ( 14 ), our fi ndings suggest that 
talin is dispensable for megakaryocyte maturation, pro-platelet 
formation, and platelet shedding. In addition, fl ow cytometric 
forward scatter/side scatter profi les of control and  Tln1   � / �   
platelets are indistinguishable, indicating that size and shape of 
the mutant cells are largely normal as is the expression profi le 
of prominent surface glycoproteins. The only exception is an 
 � 15% reduction in surface expression of integrin  � IIb � 3, 

performed in the presence of 0.01 U/ml thrombin. Compara-
ble adhesion of control and  Tln1  � / �    platelets to the fi brinogen 
matrix occurred, confi rming the previous observation that 
 � IIb � 3 activation is not required for static adhesion of platelets 
to fi brinogen ( 27 ). However, although control platelets readily 
formed lamellipodia and spread within 10 – 15 min,  Tln1  � / �    
platelets only formed fi lopodia, with occasional transient small 
lamellipodia, and completely failed to spread for up to 45 min 
( Fig. 3 C ). Thus, talin1 is also required for  � IIb � 3-dependent 
outside-in signaling. These results diff er from observations 
made with platelets expressing a talin binding – defi cient  � 3 
(L746A) integrin mutant, which spread on fi brinogen in the 
presence of agonists ( 18 ). A possible explanation for this dis-
crepancy is that the  � 3(L746A) mutation only partially disrupts 
the  � 3 and talin interaction. 

 Pathological thrombus formation in vivo was determined 
by intravital microscopy of injured mesenteric arterioles in 
bone marrow chimeric  Tln1  � / �    mice. For this, platelets were 
fl uorescently labeled in vivo and injury was induced by topi-
cal application of 20% FeCl 3 . In control mice, platelets rapidly 
interacted with the injured vessel wall and were fi rmly at-
tached 5 min after injury ( Fig. 4, A and D ), after which addi-
tional platelets were recruited from the circulation resulting in 
aggregate formation ( Fig. 4 B ) and complete vessel occlusion 
in all mice by 20 min (mean occlusion time, 15.3  ±  2.0 min; 
 Fig. 4, C and D ).  In contrast, in  Tln1  � / �    mice platelets only 
transiently attached to the site of injury, no thrombi were formed, 
and blood fl ow was maintained throughout the observation 

  Figure 3.     Defective adhesion and spreading of  Tln1  � / �    platelets. 

 Whole blood from control and talin1  � / �   mice was perfused over a collagen-

coated surface at a wall shear rate of 1,000 s  � 1 . Representative phase 

contrast images (A) and surface area coverage  ±  SD for four mice per 

group (B) taken at the end of the perfusion period (4 min). Bar, 30  μ m. 

(C) Washed wild-type and  Tln1  � / �    platelets were stimulated with 0.01 U/ml 

thrombin, and then allowed to adhere to immobilized fi brinogen for 45 min. 

The differential interference contrast images shown are representative of 

four individual experiments. Bar, 3  μ m.   

  Figure 4.     In vivo analysis of  Tln1  � / �    platelets in thrombosis.  

(A) Mesenteric arterioles were injured by FeCl 3 , and the number of attached 

fl uorescently labeled platelets per mm 2  was measured 5 min later. In par-

allel, the onset of thrombus formation (B) and the time when occlusion 

occurred (C) were determined. (D) In vivo video microscopy reveals the 

beginning of thrombus formation after  � 7 min, which then leads to

 vessel occlusion at  � 15 min. In contrast to wild-type platelets,  Tln1  � / �    

platelets did not adhere to the vessel wall and thombus formation did not 

occur. Bar, 30  μ m.   
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DNA hybridized with an external 5 �  cDNA probe. Mice were genotyped by 

PCR using forward primers 5 � -aagcaggaacaaaagtaggtctcc-3 �  (intron 1) and 

reverse primers 5 � -gcatcgtcttcaccacattcc-3 �  (exon 5). 

 To generate bone marrow chimeras, 4  ×  10 6  cells from the bone mar-

row of talin1 fl /fl  -Mx-Cre or talin1 fl /fl   mice were injected into the tail vein of 

lethally irradiated (10 Gray) recipient C57BL/6 mice. 3 – 4 wk after transfer, 

a single intraperitoneal injection of pI-pC (GE Healthcare) was performed to 

induce the knockout. Platelets were isolated from whole blood collected 

from the retro-orbital plexus. 

 Mice were housed in the animal facility of the Max-Planck Institute of 

Biochemistry. Mouse breeding and all experimental procedures were approved 

by the Regierung von Oberbayern and the Regierung von Unterfranken. 

 Chemicals.   Anesthetic drugs xylazine (Rompun) and ketamine (Imalgene 

1000) were from Bayer and M é rial, respectively. High molecular weight 

heparin and ADP (Sigma-Aldrich) and collagen (Kollagenreagent Horm; 

Nycomed) were purchased. Monoclonal antibodies conjugated to FITC or 

PE were from Emfret Analytics. 

 Western blot analysis.   Platelet lysates were subjected to a 5 – 15% gradient 

SDS-PAGE. After blotting, PVDF membranes were probed with anti-talin, 

anti-actin (both from Sigma-Aldrich), anti-integrin – linked kinase (Transduc-

tion Laboratories), anti –  � 1-integrin, anti-GAPDH (both from Chemicon), 

anti – c-src (Biosource), and anti – fi lamin A (Cell Signaling Technology). 

 Aggregometry.   To determine platelet aggregation, light transmission was 

measured using washed platelets (200  μ l with 0.5  ×  10 6  platelets/ μ l) in the 

presence of 70  μ g/ml human fi brinogen. Transmission was recorded on a 

Fibrintimer 4 channel aggregometer (APACT Laborger ä te und Analysensys-

teme) over 10 min and was expressed as arbitrary units with 100% transmis-

sion adjusted with buff er. 

 Flow cytometry.   Heparinized whole blood was diluted 1:20 with modi-

fi ed Tyrode-Hepes buff er (134 mM NaCl, 0.34 mM Na 2 HPO 4 , 2.9 mM 

KCl, 12 mM NaHCO 3 , 20 mM Hepes [ N -2-hydroxyethylpiperazine- N  ’ -2-

ethanesulfonic acid], pH 7.0) containing 5 mM glucose, 0.35% bovine serum 

albumin (BSA), and 1 mM CaCl 2 . For glycoprotein expression and platelet 

count, blood samples were incubated with appropriate fl uorophore-conju-

gated monoclonal antibodies for 15 min at room temperature and directly 

analyzed on a FACSCalibur (Becton Dickinson). Activation studies were 

performed with blood samples washed twice with modifi ed Tyrode-Hepes 

buff er, which then were activated with the indicated agonists for 15 min, 

stained with fl uorophore-labeled antibodies for 15 min at room temperature, 

and directly analyzed. 

 Adhesion under fl ow conditions.   Rectangular coverslips (24  ×  60 mm) 

were coated with 0.25 mg/ml fi brillar type I collagen (Nycomed) for 1 h at 

37 ° C and blocked with 1% BSA. Perfusion of heparinized whole blood was 

performed as described previously ( 21 ). In brief, transparent fl ow chambers 

with a slit depth of 50  μ m and equipped with the collagen-coated coverslips 

were rinsed with Hepes buff er and connected to a syringe fi lled with the anti-

coagulated blood. Perfusion was performed at room temperature using a 

pulse-free pump at low (150 s  � 1 ) and high shear stress (1,000 s  � 1 ). During per-

fusion, microscopic phase-contrast images were real-time recorded. There-

after, the chambers were rinsed by a 10-min perfusion with Hepes buff er, 

pH 7.45, at the same shear stress, and phase-contrast pictures were recorded from 

at least fi ve diff erent microscopic fi elds ( × 63). Image analysis was performed 

off -line using Metamorph software (Visitron). Thrombus formation results are 

expressed as the mean percentage of total area covered by thrombi. 

 Analysis of bleeding time.   Mice were anesthetized, and a 3-mm segment 

of the tail tip was cut off  with a scalpel. Tail bleeding was monitored by gently 

absorbing the bead of blood with a fi lter paper without contacting the wound 

site. When no blood was observed on the paper after 15-s intervals, bleeding 

was determined to have ceased. The experiment was stopped after 15 min. 

which, however, does not account for the hemostasis defect 
because mice carrying a heterozygous-null mutation in the 
 � 3 integrin express even less (50%)  � IIb � 3 integrin on their 
platelets without developing a bleeding defect ( 30 ). 

 This indicates that talin does neither make a signifi cant 
contribution to platelet shape, which has been proposed to 
depend on the integrity of the cortical cytoskeleton, nor to 
cytoskeletal rearrangements after cellular activation. However, 
at low thrombin concentrations or in response to the weaker 
agonist CRP,  Tln1  � / �    platelets displayed reduced degranula-
tion ( Fig. 2 D ), indicating that talin defi ciency either directly 
or indirectly impairs granule release. Further studies will be 
required to address this question. 

 Both our ex vivo fl ow adhesion studies as well as the 
in vivo analysis of platelet adhesion to the injured arterial wall 
indicate that loss of talin abrogates not only the activation of 
 � IIb � 3 integrin, but also the activation of  � 1 integrins, which 
are known to contribute to platelet adhesion to the extracel-
lular matrix in vitro and in vivo ( 25, 28 ). This complete abol-
ishment of integrin function resulted in a profound protection 
from arterial thrombosis but also in a complete loss of pri-
mary hemostasis as indicated by infi nite bleeding from a tail 
wound ( Fig. 1 D ). We did, however, not observe spontane-
ous intestinal or subcutaneous bleeding in  Tln1  � / �    chimeric 
mice, as recently reported in mice with a mutation in the  � 3 
integrin subunit ( � 3 [Y747A]) that abrogates interaction with 
several intracellular binding partners, including talin and 
fi lamin ( 18 ). This indicates that the loss of platelet integrin 
function alone is not suffi  cient to cause such a severe phenotype 
in mice, at least not when the defi ciency is induced in adult 
animals. It is possible that the severe spontaneous bleeding 
observed in  � 3 (Y747A) mice is caused by a combined defect 
in platelets and other cells of the vascular system that express 
 � 3, such as endothelial cells. Interestingly, another mutation 
( � 3 [L746A]) that is thought to only disrupt talin binding also 
abrogated inside-out activation of  � IIb � 3 in platelets but did 
not produce severe spontaneous bleedings ( 18 ). Interestingly, 
these platelets exhibited only partial defects in their ability to 
spread on fi brinogen in the presence of agonists or Mn 2 + , in-
dicating that outside-in signaling through  � IIb � 3 is intact in 
those cells. We found that Tln1  � / �   platelets were completely 
unable to spread on fi brinogen, suggesting that talin is essen-
tial for outside-in signaling. An explanation why outside-in 
signaling was not completely disrupted in  � 3 (L746A) plate-
lets could be that talin may still be able to weakly interact 
with talin. Thus, although reducing the interactions of talin 
and integrin tails may have promise as a therapeutic modality 
to reduce thrombus formation in patients with thrombotic 
disorders ( 18 ), complete inhibition of talin1 function results 
in catastrophic bleeding. These fi ndings have important im-
plications for the development of novel agents to prevent or 
treat ischemic cerebro- and cardiovascular diseases. 

 MATERIALS AND METHODS 
 Mice.   Conditional talin1-defi cient mice were generated by introducing 

loxP sites fl anking coding exons 1 – 4 by gene targeting. Targeting of the 

 Tln1  locus was confi rmed by Southern blot of EcoR1-digested genomic 
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 Intravital microscopy of thrombus formation in FeCl 3  injured mes-

enteric arterioles.   4 – 5-wk-old mice were anesthetized, and the mesentery 

was gently exteriorized through a midline abdominal incision. Arterioles 

(35 – 60  μ m diameter) were visualized with a Zeiss Axiovert 200 inverted micro-

scope ( × 10) equipped with a 100-W HBO fl uorescent lamp source and a 

CCD camera (CV-M300). Injury was induced by topical application of a 3-mm 2  

fi lter paper tip saturated with FeCl 3  (20%) for 10 s. Adhesion and aggregation 

of fl uorescently labeled platelets in arterioles was monitored for 40 min or 

until complete occlusion occurred (blood fl ow stopped for  > 1 min). 

 Spreading experiments.   Coverslips were coated overnight with 1 mg/ml 

human fi brinogen and then blocked for 1 h with 1% BSA in PBS. Washed 

platelets of mutant or wild-type mice were resuspended at a concentration of 

0.5  ×  10 6  platelets/ � l, and then further diluted 1:10 in Tyrodes-Hepes buf-

fer. Shortly before seeding platelets on the fi brinogen-coated coverslip, they 

were activated with 0.01 U/ml thrombin. Platelets were allowed to spread 

for 45 min and analyzed by diff erential interference contrast microscopy. 

At least 10 images of each sample were taken and analyzed using Metavue 

software (Visitron). 
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