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Abstract: Transition metal sulfides have attracted a lot of attention as potential oxygen evolution
reaction (OER) catalysts. Bimetallic sulfide possesses superior physicochemical properties due to
the synergistic effect between bimetallic cations. By introducing a metal-semiconductor interface,
the physicochemical properties of transition metal sulfide can be further improved. Using the
solvothermal method, Au@NiCo2S4 core-shell heterostructure nanoparticles (NPs) and bare NiCo2S4

NPs were prepared. The measurement of the OER catalytic performance showed that the catalytic
activity of Au@NiCo2S4 core-shell heterostructure was enhanced compared to bare NiCo2S4 NPs.
At the current density of 10 mA cm−2, the overpotential of Au@NiCo2S4 (299 mV) is lower than that
of bare NiCo2S4 (312 mV). The Tafel slope of Au@NiCo2S4 (44.5 mV dec−1) was reduced compared to
that of bare NiCo2S4 (49.1 mV dec−1), indicating its faster reaction kinetics. Detailed analysis of its
electronic structure, chemical state, and electrochemical impedance indicates that the enhanced OER
catalytic performances of bare Au@NiCo2S4 core-shell NPs were a result of its increased proportion
of high-valance Ni/Co cations, and its increased electronic conductivity. This work provides a
feasible method to improve OER catalytic performance by constructing a metal-semiconductor
core-shell heterostructure.
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1. Introduction

Due to the limited supply and the threat to the environment of fossil fuels, renewable and clean
energies need to be developed. Hydrogen is an ideal energy substitute, with high energy density and
zero carbon emission. Electrochemical water splitting is an environmentally friendly and promising
method for hydrogen production [1,2]. However, the working potential of electrochemical water
splitting is much higher than 1.23 V—the theoretical potential [3,4]. Reducing the overpotential and
enhancing the stability of catalytic materials are the main research goals of electrochemical water
splitting. OER as the anode of the electrochemical water splitting reaction is a multi-step reaction that
requires high energy to form O–O* bonds, leading to high overpotential and severely limiting hydrogen
production efficiency [5]. Therefore, efficient catalysts are necessary to reduce the overpotential and
enhance the OER reaction rate. IrO2 and RuO2 are recognized as the most effective OER catalysts,
but the low supply and high price of these catalysts seriously limit their commercial applications [6–8].

Transition metals—with their nitrides, phosphides, oxides, hydroxides, sulfides,
and selenides—are widely recognized as effective OER catalysts [4,9–14]. Transition metal sulfide is
widely used in the field of OER catalysis due to its abundant supply, low price, superior catalytic
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activity, and stable performance. Co/Ni sulfides have been considered as potential catalysts for
their multivalent properties and tunable electronical structure [15]. Compared with monometallic
sulfides, bimetallic sulfides exhibit outstanding OER activities because they have more active sites,
higher conductivity, larger electrochemical surface area, and higher structural stability [13,16–27].
Among the bimetallic catalysts, bimetallic nickel cobalt sulfides have become one of the most studied
bimetallic structure compounds, due to their advantages of high conductivity and the redox reaction in
which Ni and Co elements are more abundant in multi-valence than monometallic sulfides [22,28,29].
For example, (Ni, Co)S2 nanosheet has a lower overpotential of 270 mV, compared to CoS2 nanosheet
(350 mV), and NiS2 nanosheet (410 mV) at 10 mA cm−2, which is due to its good mass/electron transfer
properties, more catalytic active sites and facilitated adsorption to O* [30].

To further enhance the OER catalytic properties and promote the application of bimetallic sulfides,
designing heterostructures composed of bimetallic sulfide and metal is one of the most effective
methods [31–35]. The enhanced physicochemical properties of metal-semiconductor heterostructures
are mainly due to the interaction between metal and semiconductor [36,37]. Compared with yolk-shell
and oligomer-like heterostructures, the core-shell heterostructure has the maximum contact interface,
which can effectively enhance electron transmission along the interface, improve the electrical
conductivity, and optimize the electronic structure [9,37,38]. For example, Au@NiSx core-shell
heterostructure has higher HER activity than Au-NiSx yolk-shell and Au-NiSx oligomer-like NPs.
This is because the Au@NiSx core-shell heterostructure has a larger contact interface, leading to
promoted charge transfer and higher conductivity [39]. The OER activity of Au/Ni12P5 core-shell
heterostructure has also been demonstrated to be improved by the electron interaction between Au
and Ni12P5 [36].

Herein, Au@NiCo2S4 heterostructure and bare NiCo2S4 NPs were rationally designed and prepared
through solvothermal methods. Using time-dependent experiments, the evolution mechanism of
Au@NiCo2S4 NPs was studied. The measurements of the OER performance indicate that Au@NiCo2S4

core-shell heterostructure shows a high current density of 10 mA cm−2, at a lower overpotential of
299 mV, and a lower Tafel slope of 44.5 mV dec−1, compared with bare CoNi2S4 NPs.

2. Materials and Methods

2.1. Preparation of the Au@NiCo2S4 Core-Shell NPs

Au@NiCo2S4 core-shell heterostructure NPs were controllably synthesized using the seeded
growth method. The synthesis method is shown in Figure 1. Typically, 0.05 g Ni(acac)2 and 0.1 g
Co(acac)2 were dissolved in 16 mL oleylamine (OAm) in a three-necked flask. The solution was heated
to 100 ◦C to form a clear solution. An amount of 3 ml toluene solution containing 0.03 g HAuCl4·4H2O
was dropped into the solution afterwards. Au NPs were formed at 100 ◦C in the OAm by the reduction
of the Au precursor, which were used as seeds during the subsequent growth of NiCo2S4 shells.
The solution was kept at this temperature for 1 h and then heated to 210 ◦C. 0.123 g thiourea was added
to the solution at 210 ◦C to serve as a sulfur source. The solution was then heated to 230 ◦C, and held
at this temperature for 3 h. During this time, the NiCo2S4 shell formed and grew on the surface of the
Au seeds. Finally, the solution was cooled to room temperature. The prepared sample was washed
with a mixture of chloroform and acetone and collected by centrifugation. The solution was stirred
during the whole reaction, and Ar gas was injected as the protective gas.
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Figure 1. Diagram for the synthesis processes of Au@NiCo2S4 NPs. The core-shell structure was 
formed by the seeded growth of NiCo2S4 shells on Au NPs. 

2.2. Preparation of the Bare NiCo2S4 NPs 

The bare NiCo2S4 NPs were prepared by the typical solvothermal method. Amounts of 0.05 g 
Ni(acac)2 and 0.1 g Co(acac)2 were dissolved in 16 mL OAm in a three-necked flask. The solution was 
heated to 210 °C to form a clear solution. 0.123 g thiourea was added to the solution afterwards. The 
solution was then heated to 230 °C, and kept at this temperature for 3 h. After the solution was cooled 
to room temperature, the prepared sample was washed with a mixture of chloroform and acetone, 
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2.3. Material Characterization 

The crystal structures of the products were characterized by X-ray diffraction (XRD) using a 
Rigaku D/max 2200 PC diffractometer, with Cu Kα radiation (λ = 0.15406 nm). An Oxford X-Max80T 
energy dispersive X-ray spectrograph was used to measure the elemental composition and 
distribution of the products. A JEOL JEM-2200FS field emission transmission electron microscope 
(TEM, Tokyo, Japan, JEOL) was used to investigate the morphology of the samples. The atomic 
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catalytic performance, with a scan rate of 2 mV s−1, and 95% iR compensation. The electrochemical 
impedance spectroscopy (EIS) of the samples was carried out by AC impedance, with a frequency 
range from 100,000 to 0.1 Hz. The stability of the samples was characterized by a current-time curve. 

Figure 1. Diagram for the synthesis processes of Au@NiCo2S4 NPs. The core-shell structure was
formed by the seeded growth of NiCo2S4 shells on Au NPs.

2.2. Preparation of the Bare NiCo2S4 NPs

The bare NiCo2S4 NPs were prepared by the typical solvothermal method. Amounts of 0.05 g
Ni(acac)2 and 0.1 g Co(acac)2 were dissolved in 16 mL OAm in a three-necked flask. The solution
was heated to 210 ◦C to form a clear solution. 0.123 g thiourea was added to the solution afterwards.
The solution was then heated to 230 ◦C, and kept at this temperature for 3 h. After the solution was
cooled to room temperature, the prepared sample was washed with a mixture of chloroform and
acetone, and collected by centrifugation. The solution was stirred during the whole process, and Ar
gas was injected as a protective gas.

2.3. Material Characterization

The crystal structures of the products were characterized by X-ray diffraction (XRD) using a
Rigaku D/max 2200 PC diffractometer, with Cu Kα radiation (λ = 0.15406 nm). An Oxford X-Max80T
energy dispersive X-ray spectrograph was used to measure the elemental composition and distribution
of the products. A JEOL JEM-2200FS field emission transmission electron microscope (TEM, Tokyo,
Japan, JEOL) was used to investigate the morphology of the samples. The atomic arrangements and
microstructure of the as-grown samples were examined on a Titan ETEM G2 aberration-corrected
transmission electron microscope (AC-TEM). A ULVAC-PHI Phi5000 VersaProbe III X-ray photoelectron
spectrograph (XPS, Chigasaki, Japan, ULVAC-PHI) was used to measure the electronic structure and
valence of the elements.

2.4. OER Catalytic Measurements

A CHI 760E electrochemical workstation was used to measure the OER catalytic performance
of the as-prepared samples. The measurements were performed in a 1 M KOH solution, using a
three-electrodes system. To prepare the working electrodes, a 5 mg sample was dispersed into 1 mL
ethanol and stirred magnetically for 20 min. Then, 5 mg carbon black was added to the solution and
stirred for 20 min. 100 µL 5 wt % Nafion was added to the solution, and the homogeneous ink was
formed by stirred magnetically. 44 µL ink was dropped onto the surface of a piece of carbon paper
(1 cm2) and dried at room temperature to serve as the working electrode. About 0.2 mg of the sample
was loaded onto the working electrode. The Hg/HgO and Pt plate were used as the reference electrode
and counter electrode, respectively. Linear sweep voltammetry (LSV) was used to characterize OER
catalytic performance, with a scan rate of 2 mV s−1, and 95% iR compensation. The electrochemical
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impedance spectroscopy (EIS) of the samples was carried out by AC impedance, with a frequency
range from 100,000 to 0.1 Hz. The stability of the samples was characterized by a current-time curve.

3. Results and Discussion

Core-shell NPs with a single crystal structure are difficult to be prepare because of the big differences
in crystal structures and physicochemical properties between metal and sulfide [35]. Understanding the
growth mechanism is helpful for their preparation and controlling their electrocatalytic performance.
The time-dependent experiments were conducted in combination with with TEM and EDS analyses.
Samples were collected from 0 to 180 min after thiourea was added. Figure S1a–f shows the
morphologies of the collected samples. During the formation of Au@NiCo2S4 core-shell NPs, the Au
NPs kept a five-fold symmetric morphology, and the size of Au NPs was also maintained at 8~10 nm.
The shells gradually formed and thickened to about 10 nm. Table S1 shows the atomic ratios of Au to
Co gradually decrease from 1 to 0.21. From 10 to 30 min, the atomic ratios of Co to S changed from
0.49 to 0.42. From 30 to 180 min, the atomic ratios of Co to S barely changed. This indicates that the
sulfuration process has been completed at 30 min. The above process indicates that the evolution
mechanism of Au@NiCo2S4 NPs is a typical seeded growth of NiCo2S4 shells on the Au NPs.

Figure 2 shows the XRD spectra of Au@NiCo2S4 and bare NiCo2S4 NPs, which confirms that
the samples consist of cubic NiCo2S4 (JCPDS No. 43-1477) and cubic Au (JCPDS No. 99-0056).
The impurity phase was not detected in the XRD patterns, indicating the high purity of the as-grown
sample. Scherrer’s equation (d = 0.89λ/(β·cosθB), where λ is the X-ray wavelength, θB is the Bragg
diffraction angle and β is the full width at half maxima of the peak) was used to estimate the crystal
sizes of the products. The crystal size of NiCo2S4 was calculated to be about 11.8 nm, using the peak of
NiCo2S4 (311) at about 31.5◦, and that of the peak of Au was calculated to be about 8.8 nm, using the
peak of Au (111) at about 38.2◦.
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Figure 2. XRD patterns of as-prepared Au@NiCo2S4, and bare NiCo2S4 NPs.

The chemical composition of the synthesized samples was confirmed by the EDS measurements.
The EDS spectra of Au@NiCo2S4 and bare NiCo2S4 NPs show that the products were composed of S,
Co, Ni, and Au, as shown in Figure S2. The atomic ratio for S, Co, Ni, and Au for the Au@NiCo2S4 and
bare NiCo2S4 NPs is also illustrated in Table S2. The TEM specimen holder may cause the additional
signals of Si and Cu. The atomic percentages of Ni, Co, and S of the Au@NiCo2S4 heterostructure are
10.1%, 24.7%, and 59.9%, respectively. The atomic percentages of Ni, Co, and S of the bare NiCo2S4 NPs
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are 11.4%, 25.5%, and 63.1%, respectively. Compared with the stoichiometric proportion, the contents
of S are slightly higher, possibly due to the adsorption of additional S on the surface of the NPs.

The morphologies and microstructures of the Au@NiCo2S4 and the bare NiCo2S4 NPs were
characterized by TEM. As shown in Figure 3a, the interface between the darker Au cores and the
lighter NiCo2S4 of the NPs is clean and smooth, without impurity phases, pores, layers or amorphous
structure. The bonding between the Au cores and NiCo2S4 shells was good along the interface
because no additional diffraction contrast from the strain was detected. The diameter of the cores is
8.2± 1.5 nm. The shell with lighter contrast has a polyhedral structure, with dimensions of 21.9 ± 5.5 nm.
The morphologies of these NPs are mainly truncated octahedrons. In Figure S3a–e, the core-shell
heterostructure was further confirmed by rotating the TEM samples. Regardless of the viewing angle,
the Au NPs were always located at the center of the particles, indicating that the prepared sample was
core-shell structure rather than Au NPs supported on the surface of NiCo2S4 NPs [39]. The atomic
arrangements in the Au@NiCo2S4 NPs were investigated using AC-TEM. An Au@NiCo2S4 NP with a
typical truncated octahedron morphology is shown in Figure 3b. At the atomic scale, no amorphous
layer or impurity phase is observed, and the crystal lattice fringe of the NiCo2S4 shell layer is clear,
indicating that Au@NiCo2S4 NPs crystallize well. The diameter of the Au core is ~ 9 nm, and the
thickness of the NiCo2S4 shell is ~ 9 nm. The FFT pattern (Figure 3c) indicates that the shell of the NP
is a cubic phase NiCo2S4 single crystal. The lattice spacing is 0.285 nm, corresponding to the NiCo2S4

(311) planes. To confirm the element distribution of Au@NiCo2S4 NPs, EDS mapping spectra were
collected. The spectra shown in Figure S4 indicate that the Au element is only distributed in the core,
while the other three elements are distributed in the shell. The polyhedron NiCo2S4 NPs are exhibited
in Figure 3d for comparison. The size of bare NiCo2S4 NPs is 10.8 ± 2.1 nm. Figure 3e shows a typical
NiCo2S4 polyhedron NP with almost perfect facets. The crystal lattice of the bare NiCo2S4 NP is clear.
The FFT analysis (Figure 3f) demonstrates that the bare NiCo2S4 NP is a cubic phase NiCo2S4 single
crystal. The lattice spacing was measured to be 0.331 nm, corresponding to the NiCo2S4 (220) plane.
All the above results confirm that Au@NiCo2S4 NPs is core-shell structured, with single crystal shells.
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Figure 3. (a) Typical bright field TEM images of Au@NiCo2S4 NPs, (b) HRTEM images obtained by
AC-TEM of an Au@NiCo2S4 NP, (c) FFT pattern of a Au@NiCo2S4 NP, (d) Typical bright field TEM
images of NiCo2S4 NPs, (e) HRTEM images obtained by AC-TEM of a bare NiCo2S4 NP, (f) FFT pattern
of a bare NiCo2S4 NP. In the FFT pattern, the diffraction spots of Au and NiCo2S4 are marked by yellow
and purple circles, respectively.
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The XPS spectra were used to characterize the chemical states and electronic structures of
Au@NiCo2S4 and bare NiCo2S4 NPs. The full survey scan XPS spectra are shown in Figure S5.
By comparing the spectra, it can be confirmed that the full survey scan XPS spectrum of Au@NiCo2S4

is similar to that of bare NiCo2S4, except that the peak of Au 4f appears at 80–90 eV. Figure 4 and
Figure S6 show high-resolution spectra of the Ni, Co, S, and Au of Au@NiCo2S4 and bare NiCo2S4 NPs,
respectively. The Ni 2p high-resolution spectra are shown in Figure 4a. The fitting peaks positioned at
853.12–853.22 eV and 870.42–870.52 eV are assigned to Ni2+, while the peaks at 854.92–855.04 eV and
872.22–872.34 eV correspond to Ni3+ [19]. The Co 2p high-resolution spectra are shown in Figure 4b.
The fitting peaks positioned at 778.68–778.69 eV and 793.88–793.89 eV are assigned to Co3+, while the
peaks at 779.83–779.86 eV and 795.03–795.06 eV correspond to Co2+ [19]. Figure S5a shows the S 2p XPS
spectra. The peaks positioned at 161.54–161.58 eV and 162.46–162.53 eV are assigned to S2−, while the
peaks at 162.94–163.00 eV and 163.84–163.97 eV are assigned to S−. The peaks at 165.95–166.29 eV are
assigned to SO4

2−/SO3
2−, which may be caused by oxidation of the surface sulfur [40]. The Au 4f XPS

spectrum of the Au@NiCo2S4 is shown in Figure S5b.; the fitting peaks positioned at 84.16 eV and 87.81
eV are assigned to metallic Au, and the peaks at 85.19 eV and 88.74 eV can be assigned to Au+ [41].
These results indicate that Ni and Co atoms possess multi-valence in the bimetallic sulfides. The
ratios of valence states are shown in Table S3. Compared with bare NiCo2S4, the ratio of Ni3+:Ni2+ in
Au@NiCo2S4 was increased, which is similar to the trend of Co3+:Co2+. These results indicate that there
is strong electron interaction between Au and NiCo2S4. Due to the addition of Au NPs, the proportion
of Co3+ and Ni3+ in NiCo2S4 NPs increases, which is beneficial to their electrochemical performances,
because Ni3+/Co3+ have been considered as active sites during the oxygen evolution [6].
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The OER catalytic performances of the Au@NiCo2S4 heterostructure and bare NiCo2S4 NPs were
tested in alkaline solutions. The OER catalytic parameters are shown in Table S4. Figure 5a shows
the polarization curves of the as-prepared samples. The overpotential of Au@NiCo2S4 NPs
(299 mV) is lower than that of bare NiCo2S4 NPs (312 mV) at a current density of 10 mA cm−2.
The OER catalytic performance is improved by the interaction between Au NPs and NiCo2S4 shells.
The overpotential of Au@NiCo2S4 NPs is comparable to the value of previously reported catalysts such
as NiCo2S4@g-C3N4–CNT (320 mV, 10 mA cm−2) [19], NiCo2S4 nanoflakes (319 mV, 100 mA cm−2) [16],
and Au@CoFeOx (328 mV, 10 mA cm−2) [9]. The Tafel slopes of Au@NiCo2S4 NPs and NiCo2S4 NPs are
shown in Figure 5b. Compared with bare NiCo2S4 NPs (49.1 mV dec−1), the Tafel slope of Au@NiCo2S4

(44.5 mV dec−1) is lower, indicating that Au@NiCo2S4 NPs possess a superior reaction kinetic, and a
faster mass/electron transport rate. The Tafel slopes of these two samples are comparable or superior
to other OER catalysts such as NiCo2S4 nanoflakes (53.3 mV dec−1) [16], NiCo2S4 (54.9 mV dec−1) [6],
Ni3Se2 (40.2 mV dec−1) [13], NiCo2S4@NiFe LDH (46.3 mV dec−1) [23] and P-Co-Ni-S nanosheets
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(61.1 mV dec−1) [42]. All these results demonstrate that, due to the interaction between Au and
NiCo2S4, Au@NiCo2S4 NPs exhibit better OER catalytic activity than bare NiCo2S4 NPs.
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To further analyze the electronical factors affecting the OER activity of the samples, the EIS of
Au@NiCo2S4 and bare NiCo2S4 NPs were measured. The diameter of the Nyquist plots of Au@NiCo2S4

is smaller than that of bare NiCo2S4, as shown in Figure 5c. The equivalent circuit, fitted according
to the EIS, is shown in the inset of Figure 5c. The charge transfer resistance Rt corresponds to the
diameter of the Nyquist plot, and represents the resistance of mass transfer during the OER catalytic
reaction, which is the decisive parameter affecting OER catalytic efficiency [43]. It can be seen that
the Rt of Au@NiCo2S4 (1.6 Ω) is lower than that of bare NiCo2S4 (2.0 Ω). The decrease of Rt is due to
the interaction between the Au NP and the NiCo2S4 shell, which can enhance the conductivity and
shorten the length of charge diffusion [39]. The double-layer capacitance (Cd) of the NPs surface is
reflected by the Y0 value of the CPE, which represents the location of the absorbed molecules, and is
related to the electrochemical surface area [36]. The Y0 value of Au@NiCo2S4 NPs is much larger
than that of bare NiCo2S4 NPs, as shown in Table S4, indicating that its effective surface area is larger
than that of bare NiCo2S4 NPs, and that Au@NiCo2S4 core-shell NPs have more active sites and
exhibit better OER activity. In addition, as demonstrated by the XPS results, in Au@NiCo2S4 NPs,
the proportion of high-valance Ni and Co cations is increased. The high-valance Ni and Co cations are
the active sites for OER, so the Au@NiCo2S4 core-shell NPs possess better OER catalytic activity than
bare NiCo2S4 [6]. Therefore, benefiting from the lower Rt, larger effective surface area, the increased
proportion of high-valence Ni and Co cations, and the single crystal NiCo2S4 shells, the Au@NiCo2S4

NPs possess better OER activity than bare NiCo2S4. As shown in Figure 5d, to test the stability of
the materials, a current-time curve for the as-prepared NPs was characterized. Au@NiCo2S4 and
bare NiCo2S4 have relatively excellent OER catalytic stability, maintaining 98.9%, and 95.2% after 5 h,
respectively. This indicates that Au@NiCo2S4 and bare NiCo2S4 NPs have a superior stability over
a long period of OER catalysis. The stability of Au@NiCo2S4 core-shell NPs is superior to NoCo2S4
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NPs, which should be attributed to the following factors: (1) The introduction of Au cores reduced the
overpotential, thus reducing the driving force for the reconstruction of NiCo2S4 [9]. (2) The interface
interaction between Au and NiCo2S4 increased the proportion of Co3+ and Ni3+, thus enhancing the
charge density at the specific domains and increasing the number of active sites [44]. (3) The larger
effective surface area of Au@NiCo2S4 makes it easier for bubbles to detach from the electrode [45].

4. Conclusions

In summary, Au@NiCo2S4 and bare NiCo2S4 NPs were controllably prepared. The Au@NiCo2S4

sample exhibited a core-shell heterostructure with single crystal shells. The OER catalytic results
confirm that the core-shell structure exhibits superior OER catalytic performance to bare NiCo2S4 NPs,
which may be due to the interaction between Au and NiCo2S4. The XPS and EIS results demonstrated
that the electronic conductivity, and the ratio of high-valance Ni and Co, were improved with the
Au-NiCo2S4 interaction, which are beneficial to its electrocatalytic performance. The overpotential
and Tafel slope of the Au@NiCo2S4 heterostructure NPs is 299 mV at 10 mA cm−2 and 44.5 mV dec−1,
respectively. The construction of metal-semiconductor core-shell heterostructure will provide more
chances for its application in the field of electrochemical water splitting.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/4/611/s1,
Figure S1. TEM images of Au@NiCo2S4 NPs evolution experiment. Table S1. The ratios of elements at different
times of Au@NiCo2S4 NPs evolution experiment. Figure S2. EDS spectra of the Au@NiCo2S4 and bare NiCo2S4
NPs. Table S2. Atomic ratio of Au, Ni, Co and S of Au@NiCo2S4 and bare NiCo2S4 NPs calculated by EDS.
Figure S3. Angle-dependent TEM characterization of Au@NiCo2S4 NPs verifying the core-shell of the products.
The shells produced in the outer shell of the NP were reasoned from the carbon deposit induced by the long-time
high-energy electron irradiation. Scale bar 20 nm. Figure S4. HAADF-STEM images and STEM-EDS mappings
for the elements Au, Ni, Co, and S of Au@NiCo2S4 NPs. Figure S5. XPS survey spectra of Au@NiCo2S4 and
bare NiCo2S4 NPs. Figure S6. High resolution XPS spectra for the (a) S 2p, (b) Au 4f of Au@NiCo2S4 and bare
NiCo2S4 NPs. Table S3. XPS peaks area ratio of Ni, and Co of Au@NiCo2S4 and bare NiCo2S4 NPs. Table S4.
Electrochemical and equivalent circuit simulation parameters of the samples including Au@NiCo2S4, and bare
NiCo2S4 NPs.
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