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Abstract
Background: The Gleason grading system has been the most effective prediction for prostate cancer 
patients. This grading system provides this possibility to assess prostate cancer’s aggressiveness and 
then constitutes an important factor for stratification and therapeutic decisions. However, determining 
Gleason grade requires highly‑trained pathologists and is time‑consuming and tedious, and suffers 
from inter‑pathologist variability. To remedy these limitations, this paper introduces an automatic 
methodology based on transfer learning with pretrained convolutional neural networks (CNNs) 
for automatic Gleason grading of prostate cancer tissue microarray (TMA). Methods: Fifteen 
pretrained (CNNs): Efficient Nets (B0‑B5), NasNetLarge, NasNetMobile, InceptionV3, ResNet‑50, 
SeResnet 50, Xception, DenseNet121, ResNext50, and inception_resnet_v2 were fine‑tuned on 
a dataset of prostate carcinoma TMA images. Six pathologists separately identified benign and 
cancerous areas for each prostate TMA image by allocating benign, 3, 4, or 5 Gleason grade for 
244 patients. The dataset was labeled by these pathologists and majority vote was applied on 
pixel‑wise annotations to obtain a unified label. Results: Results showed the NasnetLarge architecture 
is the best model among them in the classification of prostate TMA images of 244 patients with 
accuracy of 0.93 and area under the curve of 0.98. Conclusion: Our study can act as a highly trained 
pathologist to categorize the prostate cancer stages with more objective and reproducible results.
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Introduction
Prostate cancer is the second leading 
cause of cancer death in men.[1] While 
some forms of prostate cancer are slow 
to grow and may need limited or even no 
care, other types are aggressive and can 
spread rapidly. Early diagnosis of prostate 
cancer has a better chance of being treated 
successfully. A commonly used method 
of diagnosis is based on histopathological 
data obtained from the tumor found 
in the biopsy of the prostate. Prostatic 
carcinomas are graded in accordance 
with the Gleason scoring system which 
Gleason and Mellinger first developed in 
1966 known as the Gleason score.[2] The 
Gleason scoring system is acknowledged 
by the World Health Organization (WHO) 
and the International Society of Urological 
Pathology (ISUP).[3] The histological 
Gleason scoring system‑based assessment 
on the architectural pattern of the tumor 

is the most powerful prognostic tool 
in the clinical diagnosis of prostate 
cancer.[4] The Gleason method segregates 
prostate carcinoma schemas into five groups 
based on different histological patterns, 
ranging from 1 (low risk) to 5 (high risk). 
The final Gleason score is reported as the 
sum of the most prominent and second 
most prominent patterns. As an example 
4 + 3 means the two most predominant 
Grade is 4 and 3, and the Gleason score is 
7.[5] Pathologists use several examination 
methodologies based on architectural 
patterns to identify the complex histology 
of the prostate tumor in a qualitative 
manner.

The final Gleason score determination is 
based on microscopy‑based evaluation 
of nontrivial cellular and morphological 
patterns and is dependent on the 
histological assessment of the respective 
pathologist. However, this work is 
time‑consuming and often has a high 
degree of inter‑observer variability that 
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results in grading uncertainty.[6‑9] Hence, prognosis and 
therapeutic options based on the Gleason score recorded 
may be disagreeable.[10] For prostate cancer in particular, 
intermediate‑risk Gleason patterns 3 and 4 can be very 
difficult to assign unambiguously. Specialized pathologists 
have been shown to have higher rates of conformity,[11] but 
such highly‑trained specialists are not commonly accessible. 
Thus to overcome the above‑mentioned limitations and to 
prevent unsuitable therapies,[12,13] an automatic, reliable and 
reproducible approach using advanced machine learning 
method like this paper for Gleason score determination 
on digital pathology images is required. This system can 
overcome these limitations and can be utilized everywhere 
with no need to highly‑trained pathologists.

Earlier machine learning methods developed for prostate 
carcinomas are based on hand‑made feature extraction, 
perform feature selection, and finally employ conventional 
classification methods.[14‑19] In recent years, deep learning 
systems relying on multi‑layered neural networks have 
emerged as a disruptive alternative to the aforementioned 
feature‑based methods. Deep learning methods, instead 
of using handcrafted features are able to extract and 
learn increasingly complex, task‑related features directly 
from the data. These methods imitate the workings of the 
human brain in data processing and generating patterns 
of decision‑making usage. Recent developments in neural 
network architecture design and training have enabled 
researchers to solve previously intractable learning tasks 
of deep learning methods. As a result, several researches 
in recent years have focused on the application of deep 
learning as the state‑of‑the‑art in machine learning 
especially convolutional neural networks (CNN) in a 
wide range of biomedical image analysis tasks with 
very success,[20‑23] especially in skin cancer,[24] lung 
cancer,[25] cardiovascular,[26] ophthalmology,[27] and 
musculoskeletal.[28] Some studies have been recently 
accomplished in histopathological images using deep 
learning to detect malignancies.[29‑31]

One of the first studies on automatic Gleason grading 
assessment based on deep learning is the work of Källén 
et al.[32] Tissue slides with homogeneous Gleason grading 
ignoring heterogeneous Gleason pattern regions are the 
main restriction of this work. In another study, Zhou et al. 
worked on an intermediate Gleason score of 7.[33] They 
tried to distinguish Gleason 3 + 4 from Gleason 4 + 3 on 
whole slide images. del Toro et al. developed a binary 
classifier to differentiate low (7 or lower) versus high (8 
or higher) Gleason score from whole slide images.[34] Other 
recent works on Gleason grading are to train a patch‑based 
classifier and differentiating patches into benign and 
Gleason Grades 3, 4, 5.[35‑37] In Leyh‑Bannurah et al.,[38] 
a custom limited pretrained CNN model was used to 
determine only Benign vs. prostate cancer tissue in a 
tissue microarray (TMA) images and in Abbasi et al.,[39] 
a deep learning CNN is employed to determine cancer or 

noncancer in MRI database. Some authors have used the 
different versions of UNet for the segmentation of nuclei 
in histopathological images for the Gleason grading of 
prostate cancer.[40] Bulten et al.[41] proposed an extended 
version of UNet named CycleGan. Ren et al.,[42] their CNN 
architecture consists of an encoding and decoding network. 
The above studies suggest that automated Gleason grading 
via deep learning is a feasible task.

In this study, we try to develop a new patch‑based classifier 
using deep transfer learning outputs based on a more 
recent and powerful set of pretrained CNNs architectures 
without the need for image segmentation and predict the 
label of each patch to determine the Gleason score of the 
TMA images into three classes: Benign, Gleason Grade 3 
and Gleason Grade 4, 5. The rest of the paper is organized 
as follows. The material and method are presented in 
the next section including database explanation, patch 
creation, CNN introduction, transfer learning concept and 
special architectures, and finally evaluation metrics. In the 
following, the results of this study are presented. Finally, 
the discussion and conclusion are presented.

Materials and Methods
Database

Data used in this study consists of a set of prostate 
cancer TMA images of 244 patients.[43,44] The TMAs were 
prepared at the Vancouver Prostate Centre in Vancouver, 
Canada. The study was approved by the institutional 
Clinical Research Ethics Board (CREB No. H15‑01064). 
The prostate TMA spots were annotated by each 
pathologist by delineating cancerous regions and assigning 
a Gleason score of 1 (low risk) to 5 (high risk) based on 
observable histological patterns according to the WHO/
ISUP criteria. TMA spots without any cancerous pattern 
and containing only benign tissue were marked as benign. 
The schematic of these five groups were illustrated in 
Figure 1. Gleason pattern 3 describes well‑formed and 
separated glands. Gleason pattern 4 includes fused glands 
and poorly formed glands. Gleason pattern 5 involves 

Figure 1: Schematic of Gleason Grades 1 to 5[45]
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poorly differentiated individual cells, cords, and linear 
arrays.

The prostate TMA sots are annotated by six expert 
pathologists separately on their knowledge and experience 
and then the majority voting on six ground truth labels 
was done for further process as the final label. Using the 
expertise of six specialists in the automated classification 
of prostate cancer, we can develop a system to be more 
accurate in the test data and not dependent on a special 
pathologist. It should be noted, with regard to even number 
of the pathologists, the majority voting may be equal and 
not reach a single label. In this situation, the decision of 
the first pathologist considered the winner.

The final Gleason score for each TMA image is reported as 
the sum of the most prominent and second most prominent 
patterns, for example, a Gleason score of 4 + 3 will have a 
tissue with the most prominent pattern of Gleason Grade of 
4 and the second most prominent pattern of Gleason Grade 
of 3. In our clinical dataset, the pathologist‑annotated do not 
contain 1 and 2 grades and therefore the score is between 
6 (3 + 3) and 10 (5 + 5). The subimages contain Grade of 
3, 4, 5, and benign labels are illustrated in Figure 2.

Patch creation

The original image resolution of TMA was 5120 × 5120 
pixels. For better model training, we need small image 
regions. Thus, we divided the original images into smaller 
ones called patches. Image patches with size 750 × 750 
pixels were created from each full image using a step 
size of half of patch size, i.e., 375 pixels. Hence, each 
original image turns into 169 image patches considering 
step size equal to half of the patch size. Each patch was 
labeled according to the annotation in its central 250 × 250 
region. Patches containing no or multiple annotations in the 
central region were discarded. Accordingly, 23,901 image 
patches are determined. The number of image patches 
which have benign (11,806), 3 (4703), 4 (7245), and 
5 (147) grades were explicitly determined in Table 1. The 
collected images, for each of the pathological conditions, 
have different numbers. This difference can cause a weight 
bias for a class with more members in the process of 
learning the network, which, as a result, causes the test set 
of other classes to face errors. Therefore, it is necessary to 
use augmentation algorithms. Data augmentation methods 
actually refer to algorithms that create artificial additional 
data based on real members of classes, without imposing 

new information on the model. In other words, for 
grading classes with less data, a new data with the general 
characteristics of the main members are reproduced to 
make the data of that class competitive with other classes. 
Different algorithms have been proposed to implement 
this approach, which can be done in the simplest case by 
changing the color, rotation angle, cropping, noise level, 
spatial shift, etc., In this work, for greater simplicity, we 
only used the increase of the number of members of the 
classes by rotation and shift methods. Data augmentation 
was used during training with up to 10° rotation and 10% 
height shifts. The number of members of classes with more 
members was considered as a reference and the number of 
members of other classes was increased according to the 
difference with that class. Hence, the image patches are 
prepared to feed into the models in subsequent processing.

Convolutional neural networks

Deep learning algorithms compared with other conventional 
machine learning methods have become particularly popular 
for the identification and diagnosis of diseases in medical 
imaging with considerable performance improvements. One of 
the most popular deep‑learning methods in the field of medical 
imaging is CNN.[46] It is the state‑of‑the‑art deep learning 
methodology consisting of many stacked convolutional 
layers. The CNN structure comprises a convolutional layer, 
a maximum or average pooling layer, a nonlinear layer, 
batch normalization, fully connected (FC) layers, and finally 
a softmax layer. Pooling layers are frequently used among 
convolutional layers to boost translational invariance and 
lessen feature map extent. Nonlinear layers (mostly ReLU 
function) are used to strengthen the network for solving 
nonlinear problems. Finally, FC layers prepare extracted 
features to be classified by the softmax layer.

Pretrained convolutional neural network and transfer 
learning

The number of parameters in the model increase as 
networks gets deeper for improved learning efficiency. The 
deeper networks lead to the more complicated computations 
and the more demanding training data. We have only 

Table 1: The number of benign, Grade 3, Grade 4 and 
Grade 5 patches in our clinical dataset

Benign Grade 3 Grade 4, 5
Number of patches 11,806 4703 7392

Figure 2: Benign and Grades 3, 4 and 5 from left to right
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244 patients with 23,901 image patches to train, validate 
and test data. It seems too small to train a deep CNN and 
we need the transfer learning concept. Transfer learning 
employs take advantage of a pretrained model (CNN 
model) on a huge database.[47] The pretrained model is 
then fine‑tuned on our new dataset with lesser number of 
training images as compared to formerly trained datasets. It 
means we transfer the information (the learned parameters) 
to our problem to train own model with an insufficient 
database.[48] In other words, pretrained CNN structures are 
modified to suit our task. This procedure is usually much 
faster than the conventional training of the CNN model 
with random weights. To train enormous parameters of 
a CNN model adequately, too much data is needed. We 
use transfer learning to compensate lack of much dataset 
and achieving better outcomes. The several special CNN 
architectures are trained on very large amounts of images 
with many categories and then named pretrained CNNs 
model. There are trained on ImageNet contains 14 million 
images of 1000 different categories from animals (dogs, 
cats, lions,…) to objects (desks, pens, chairs,…).[49] 
EfficientNets (B0‑B5),[50] NasNetLarge,[51] NasNetMobile,[51] 
InceptionV3,[52] ResNet‑50,[53] SeResnet50,[54] xception,[55] 
DenseNet121,[56] ResNext50,[57] and inception_resnet_v2[58] 
are popular pretrained CNNs. These networks have benefits 
for researchers such as lower training time, weaker and 
cheaper hardware requirement, lower computational load, 
and fewer images for training.

Multiple pretrained CNN models are utilized in this work 
and each one looks at input images in its special way and 
the way of processing information in hierarchical layers of 
these models makes some differences in extracted features. 
VGG16 model uses a simple cascaded architecture made 
of multiple convolutional layers, and can selectively extract 
optimal classificatory patterns from input images. The 
Xception model used channel‑wise separable convolutions 
besides spatially separable convolutions for defragmentation 
of input images to best discriminative features in a stack 
of layers. InceptionResNetV2 combines the idea of a 
split, transform and merge within layer from inception 
modules and the idea of residual networks which believe 
deeper networks can provide better results. DenseNet121 
uses multilayer connectivity to overcome problems due 
to overfitting by feeding each convolutional layer with 
multiple abstraction features obtained in previous layers. 
EfficientNet models utilize multiple tricks including model 
scaling and limitation over the shape of the input image to 
gain superior efficiency by better classification accuracy in 
the company of a lower number of parameters and fewer 
computational demands. All of these advantages made these 
models a proper choice for transfer learning applications.

Training details

We evaluated pretrained CNNs by fine‑tuning them on our 
clinical dataset, separately. For this reason, we adopted 15 

pretrained CNNs: EfficientNets (B0‑B5), NasNetLarge, 
NasNetMobile, InceptionV3, ResNet‑50, SeResnet50, 
xception, DenseNet121, ResNext50, and inception_resnet_
v2. In order to fine‑tune all networks, we only used the 
convolutional part of each model’s architecture, removing 
all fully‑connected layers. On top of the last convolutional 
layer, we added a global average pooling layer, followed 
by the final classification layer that uses softmax 
nonlinearity. For fine‑tuning the networks, all models 
were fine‑tuned for 50 epochs using Stochastic gradient 
descent (SGD) optimization with learning rate 0.0001, 
Nesterov momentum 0.9 and the batch size equal to 32. In 
all cases, the categorical cross‑entropy loss was used as a 
minimization objective function. It should be noted that the 
input of each network is of a different size. Hence, in the 
first step of data preparation, according to different sizes of 
model inputs, all images were resized to proper sizes and 
stored in separate folders. Table 2 shows the input size of 
each pretrained CNN model. These models were trained 
using the same initialization and learning rate policies.

Evaluation metrics

Independently, 15 versions of the pretrained CNNs model 
were fine‑tuned and prediction was used to score the 
probability of three classes: Benign, Gleason Grade 3, 
and Gleason Grade 4, 5 on the test set. Five‑fold 
cross‑validation is used to show a better vision of our 
network’s capabilities. Common classification metrics 
named: Accuracy and area under the curve (AUC) 
were also used for the evaluation of proposed method. 
AUC/receiver operator characteristic (ROC) curve is a 
performance measurement for classification problems at 
various thresholds settings. ROC is a probability curve and 
AUC represents the degree of separability and tells how 
much model is capable of distinguishing between classes.

Results
Independently, 15 versions of pretrained CNNs model: 
EfficientNets (B0‑B5), NasNetLarge, NasNetMobile, 
InceptionV3, ResNet‑50, SeResnet50, Xception, 
DenseNet121, ResNext50 and inception_resnet_v2 
were fine‑tuned on a well‑annotated dataset of prostate 

Table 2: Different input size of pretrained convolutional 
neural networks

Model name Input shape
EfficientNetB0, DenseNet121, NasNetMobile, 
ResNet50, ResNext50, Seresnet50 and Xception

224×224

EfficientNetB1 240×240
EfficientNetB2 260×260
inception_resnet_v2, and inception_v3 299×299
EfficientNetB3 300×300
NasnetLarge 331×331
EfficientNetB4 380×380
EfficientNetB5 456×456
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carcinoma TMA images for 244 patients with 23,901 
image patches. Deep learning was performed using Python 
version 3.5 programming language (Python Software 
Foundation, Beaverton, Oregon) with Keras version 2.1.5 
software (GitHub, San Francisco, California) using a 
graphics processing unit (GeForce GTX 1080 Ti, NVIDIA, 
Santa Clara, California). Figures 3 and 4 show the value 
of the accuracy and loss function in the training and 
validation sets for fine‑tuning of different pretrained CNN 
models respectively. As shown in these figures, the model 
converges in the training process after 50th epoch, and the 
data distribution ranges were narrow. Hence, after 50 steps 
of training, diagnostic accuracy was calculated using 
the test set. In Table 3, common classification metrics, 
accuracy per classes and AUC on test dataset in five folds 
are illustrated. The NasnetLarge framework gives higher 
accuracy (0.93) and AUC (0.98) in the classification of 
prostate TMA images as compared to other architectures. 
The deep learning architecture with the largest AUC was 
NasnetLarge (AUC: 0.98), inception_resnet_v2 (AUC: 
0.96) and Xception (AUC: 0.95). Finally, the confusion 
matrix for the NASNetLarge was calculated and presented 
in Tables 4‑8 for the classification of the prostate TMA 
images in three classes (benign, Grade 3, Grade 4, 5) on 
the test data set in five folds.

Discussion
In this research, we demonstrated the feasibility of 
15 state‑of‑the‑art pretrained CNNs to perform as 
Gleason‑grade predictor on a well‑annotated dataset of 
prostate carcinoma TMA images. To choose a suitable 
classifier, we explored different pretrained CNN 
architectures which have shown excellent performance 
on the ImageNet dataset, namely EfficientNets (B0‑B5), 
NasNetLarge, NasNetMobile, InceptionV3, ResNet‑50, 

SeResnet50, Xception, DenseNet121, ResNext50, and 
inception_resnet_v2. We observe that in terms of Accuracy 

Table 3: Average classification metrics on test dataset 
using pretrained convolutional neural networks models 

in five folds
Model Accuracy 

of three 
classes

Accuracy 
of benign

Accuracy 
of Grade 

3

Accuracy 
of Grade 

4, 5

AUC

EfficientNetB0 0.81 0.85 0.73 0.79 0.83
EfficientNetB1 0.79 0.83 0.71 0.77 0.82
EfficientNetB2 0.78 0.81 0.70 0.76 0.80
EfficientNetB3 0.66 0.69 0.59 0.64 0.68
EfficientNetB4 0.71 0.75 0.63 0.70 0.70
EfficientNetB5 0.68 0.72 0.60 0.68 0.69
inception_
resnet_v2

0.91 0.96 0.84 0.91 0.96

InceptionV3 0.78 0.81 0.70 0.76 0.84
NASNetLarge 0.93 0.95 0.89 0.92 0.98
NASNetMobile 0.80 0.85 0.73 0.76 0.86
ResNet50 0.89 0.91 0.85 0.88 0.90
Xception 0.90 0.95 0.85 0.90 0.95
DenseNet121 0.79 0.83 0.71 0.77 0.82
SeResnet50 0.80 0.85 0.73 0.76 0.86
ResNext50 0.79 0.83 0.71 0.77 0.82
AUC – Area under the curve

Table 4: Confusion matrix obtained for the NasNetLarge 
for classification of the prostate tissue microarray images 

in three classes (benign, Grade 3, Grade 4, 5) on the 
test data set in fold 1

Reference Estimated labels by the proposed method
Benign Grade 3 Grade 4, 5

Benign 2241 66 54
Grade 3 22 842 76
Grade 4, 5 24 88 1367

Figure 4: The cross‑entropy loss function for different pretrained CNN 
models. CNN: Convolutional neural network

Figure 3: The train accuracy for different pretrained CNN models. CNN: 
Convolutional neural network
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and AUC metrics, the NasnetLarge architecture is the best 
model among them. Table 9 compares the results of our 
work with other studies[43,44] which use the same database 
in the classification of the prostate TMA images in three 
classes.

It is possible to minimize prostate cancer fatality when 
patients are diagnosed and treated early. Screening is 
momentous for early diagnosed. However, the lack of 
specialists in some areas and high expenses are some 
restrictions on screening. Artificial intelligence methods like 
this paper can overcome this limitation and can be utilized 
everywhere with no need to highly‑trained pathologist.

The histopathologic images of this paper were labeled by 
six pathologists and majority vote was applied on pixel‑wise 
annotations to obtain a unified label. In other words, the 
trained model made a profit of experience and expertise 
blend of all six pathologists and compact the knowledge 
of them. Some researches on Gleason grading have 
used a single expert dataset to train and test their models 
overlooking many reports of reproducibility obstacle.[16‑19]

There are two main reasons why image patches (169 
image patches from each image) are generated from the 
original TMA image. First, as previously stated, there are 
5120 × 5120 pixels in the TMA images and this is high 
resolution. Consequently, different regions of image may 
have different labels and cannot be viewed as a single 
label. Another evidence for patch formation is that the 
entire image cannot be inserted into the pretrained CNN 
models even if we disregard the first mentioned point. 
For example, ResNet50 model requires 224 × 224‑pixel 
images as input. If we compress the 5120 × 5120 image to 
224 × 224, most of image information will be lost and the 
classification will not be efficient.

Conclusion
We actually use a method based on transfer learning 
with CNNs model as a highly trained pathologist to 
categorize the prostate cancer stages based on the Gleason 
grading system. This system distinguishes the histological 
structures by allocating the Grades from 3, Grades from 4, 
5, and benign. The NasnetLarge framework gives higher 
accuracy (0.93) and AUC (0.98) in the classification of 
prostate TMA images as compared to other architectures.
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Table 8: Confusion matrix obtained for the NasNetLarge 
for classification of the prostate tissue microarray images 
in three classes (benign, Grade 3, Grade 4, 5) on the test 

data set in fold 5
Reference Estimated labels by the proposed method

Benign Grade 3 Grade 4, 5
Benign 2233 69 59
Grade 3 18 849 74
Grade 4, 5 20 92 1366

Table 9: Comparison of classification results of our work 
with other studies in classification of the prostate tissue 

microarray images in four classes
Study Methods or features Results
Karimi 
et al.[43]

CNNs combined 
using a logistic 
regression model

Low‑versus high grade 
(Grade 3 vs. Grades 4, 5)
Accuracy=86%

Nir et al.[44] Random forest 
classifier

Low‑versus high grade 
(Grade 3 vs. Grades 4, 5)
Accuracy=79.4%

Our work Patch‑based 
classifier using deep 
transfer learning by 
NasNetLarge

Three classes 
(benign, Grade 3, Grade 4, 5)
Accuracy=93%

CNNs – Convolutional neural networks

Table 5: Confusion matrix obtained for the NasNetLarge 
for classification of the prostate tissue microarray images 

in three classes (benign, Grade 3, Grade 4, 5) on the 
test data set in fold 2

Reference Estimated labels by the proposed method
Benign Grade 3 Grade 4, 5

Benign 2237 68 56
Grade 3 26 837 78
Grade 4, 5 26 92 1360

Table 6: Confusion matrix obtained for the 
NASNetLarge for classification of the prostate tissue 
microarray images in three classes (benign, grade 3, 

grade 4, 5) on the test data set in fold 3
Reference Estimated labels by the proposed method

Benign Grade 3 Grade 4, 5
Benign 2248 62 51
Grade 3 20 846 75
Grade 4, 5 21 84 1373

Table 7: Confusion matrix obtained for the NasNetLarge 
for classification of the prostate tissue microarray images 

in three classes (benign, Grade 3, Grade 4, 5) on the 
test data set in fold 4

Reference Estimated labels by the proposed method
Benign Grade 3 Grade 4, 5

Benign 2243 65 54
Grade 3 20 844 76
Grade 4, 5 20 85 1374
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