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Abstract

Antibiotic combinations are increasingly used to combat bacterial infections. Multidrug ther-

apies are a particularly important treatment option for E. faecalis, an opportunistic pathogen

that contributes to high-inoculum infections such as infective endocarditis. While numerous

synergistic drug combinations for E. faecalis have been identified, much less is known about

how different combinations impact the rate of resistance evolution. In this work, we use

high-throughput laboratory evolution experiments to quantify adaptation in growth rate and

drug resistance of E. faecalis exposed to drug combinations exhibiting different classes of

interactions, ranging from synergistic to suppressive. We identify a wide range of evolution-

ary behavior, including both increased and decreased rates of growth adaptation, depend-

ing on the specific interplay between drug interaction and drug resistance profiles. For

example, selection in a dual β-lactam combination leads to accelerated growth adaptation

compared to selection with the individual drugs, even though the resulting resistance profiles

are nearly identical. On the other hand, populations evolved in an aminoglycoside and β-lac-

tam combination exhibit decreased growth adaptation and resistant profiles that depend on

the specific drug concentrations. We show that the main qualitative features of these evolu-

tionary trajectories can be explained by simple rescaling arguments that correspond to geo-

metric transformations of the two-drug growth response surfaces measured in ancestral

cells. The analysis also reveals multiple examples where resistance profiles selected by

drug combinations are nearly growth-optimized along a contour connecting profiles selected

by the component drugs. Our results highlight trade-offs between drug interactions and

resistance profiles during the evolution of multi-drug resistance and emphasize evolutionary

benefits and disadvantages of particular drug pairs targeting enterococci.

Author summary

Antibiotics are increasingly used in combinations to combat difficult bacterial infections,

including those caused by the opportunistic pathogen E. faecalis. Some pairs of drugs

exhibit particularly strong inhibitory effects when used simultaneously, as each drug mag-

nifies the effects of the other, a phenomenon known as synergy. Other drug combinations

may counteract one another, an effect called antagonism. These antibiotic “interactions”
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form the basis of powerful antimicrobial therapies, but they may also impact the emer-

gence of drug resistance in surprising ways. In this work, we studied the evolution of anti-

biotic resistance using laboratory evolution of E. faecalis populations exposed to different

two-drug combinations. We found that cells adapt more rapidly to certain drug combina-

tions, while other antibiotic pairs markedly slow resistance. The modulated adaptation

results from the interplay of drug interactions and the evolved resistance to each individ-

ual drug. Despite a wide range of observed evolutionary behavior, we find that our results

can be intuitively understood using simple rescaling arguments that describe how resis-

tance mutations impact the effective concentration of each drug. These findings highlight

trade-offs between drug interactions and resistance profiles during the evolution of multi-

drug resistance and emphasize evolutionary benefits and disadvantages of particular drug

pairs targeting enterococci.

Introduction

The rapid rise of antibiotic resistance poses a growing threat to public health [1, 2]. The discov-

ery of new antimicrobial agents is a long and difficult process, underscoring the need for new

approaches that optimize the use of currently available drugs. In recent years, significant

efforts have been devoted to designing evolutionarily sound strategies that balance short-term

drug efficacy with the long-term potential to develop resistance. These approaches describe a

number of different factors that could modulate resistance evolution, including interactions

between bacterial cells [3–8], synergy with the immune system [9], spatial heterogeneity [10–

15], epistasis between resistance mutations [16, 17], precise temporal scheduling [18–21], and

statistical correlations between resistance profiles for different drugs [22–31].

Drug combinations are an especially promising and widely used strategy for slowing resis-

tance [32], and there has been significant work devoted to identifying and predicting the

effects of different drug cocktails [33–39]. From a clinical perspective, synergistic interactions–

where the combined effect of the drugs is greater than expected based on the effects of the

drugs alone [33]–have long been considered desirable because they provide strong antimicro-

bial effects at reduced concentrations. By contrast, drug pairs that interact antagonistically–

effectively weakening one another in combination–have been traditionally avoided. Work

over the last decade has challenged this conventional wisdom by demonstrating that synergis-

tic interactions have a potentially serious drawback: they may accelerate the evolution of resis-

tance [40–42]. Similarly, antagonistic interactions can slow or even reverse the evolution of

resistance [43]. These results indicate that drug interactions underlie a natural trade-off

between short-term efficacy and long-term evolutionary potential [44]. In addition, recent

work has shown that cross-resistance (or collateral sensitivity) between drugs in a combination

may also significantly modulate resistance evolution [26, 27, 45]. As a whole, these studies

show that drug interactions and collateral effects may combine in complex ways to influence

evolution of resistance in multi-drug environments.

Antibiotic combinations are often the most effective therapies for enterococcal infections,

which lead to significant morbidity and mortality [46–51]. E. faecalis is among the most com-

monly isolated enterococcal species and underlies a host of human infections, including infec-

tive endocarditis, infections of the urinary tract or blood stream, and infections related to

surgical devices and medical implants. Multiple combination therapies have been proposed or

are currently in use for E. faecalis infections [46, 52, 53]. While synergistic combinations are
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the standard–particularly for high inoculum infections–relatively little is known about how

different combinations affect the potential for, and rate of, resistance evolution.

To address these questions, we use large scale laboratory evolution to measure growth adap-

tation and phenotypic resistance in populations of E. faecalis exposed to four different two-

drug combinations over multiple days. The drug pairs include several clinically relevant com-

binations–for example, two β-lactams or a β-lactam and an amimoglycoside–and exhibit a

range of interactions, from synergistic to strongly antagonistic (suppressive). Our results reveal

rich and at times surprising evolutionary behavior. In all cases, we find that different dosing

combinations lead to significantly different rates of growth adaptation, even when the level of

inhibition is constant. In some cases, differences in growth adaptation appear to be driven by

selection for distinct cross-resistance profiles, while in other cases, strong interactions between

the drugs lead to different adaption rates but highly similar profiles. Despite this apparent

diversity, we show that qualitative features of these evolutionary trajectories can be understood

using simple rescaling arguments that link resistance profiles in evolving populations to geo-

metric transformations of the two-drug response surface in ancestral cells. Our results repre-

sent a quantitative case study in the evolution of multidrug resistance in an opportunistic

pathogen and highlight both potential limitations and unappreciated evolutionary benefits of

different drug combinations.

Results

Selection of antibiotic pairs with different interactions

We first set out to identify a set of two-drug combinations that include a range of interaction

types: synergistic, antagonistic, and suppressive (i.e. strongly antagonistic so that the effect of

the combination is less than that of one of the drugs alone). To do so, we measured the per cap-

ita growth rate of E. faecalis V583 populations in liquid cultures exposed to multiple drug pairs

at 90-100 dosage combinations per pair. We estimated per capita growth rate in early exponen-

tial phase from optical density (OD) time series acquired using an automated microplate

reader and plate stacker (Methods). The type of interaction for each drug pair is defined by the

shape of the contours of constant growth (“isoboles”) describing the growth response surface g
(D1, D2), where Di is the concentration of drug i. Linear contours of constant growth represent

additive (non-interacting) pairs–for example, the effect of one unit of drug 1 or drug 2 alone is

the same as that of a combination with half a unit of each drug. Deviations from additivity

include synergy (antagonism), which corresponds to contours with increased concavity (con-

vexity), rendering an equal mixture of the two drugs more (less) effective than in the non-

interacting scenario. While other metrics exist for quantifying drug interactions (see, for

example, [33]), we choose this Loewe null model [54] because, as we will see, its simple geo-

metric interpretation provides useful intuition for interpreting evolutionary trajectories [41,

43]. Based on these interaction measures and with an eye towards choosing clinically relevant

combinations when possible, we decided to focus on 4 drug combinations: ceftriaxone (CRO)

and ampicillin (AMP); ampicillin and streptomycin (STR); ceftriaxone and ciprofloxacin

(CIP); and tigecycline (TGC) and ciprofloxacin. We describe these combinations in more

detail below.

Laboratory evolution across iso-inhibitory dosage combinations

Our goal was to compare evolutionary adaptation for different dosage combinations of each

drug pair. The rate of adaptation is expected to depend heavily on the level of growth inhibi-

tion in the initial cultures, which sets the selection pressure favoring resistant mutants. To con-

trol for initial inhibition levels, we chose four dosage combinations for each drug pair—two
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corresponding to single drug treatments and two to drug combinations—that lie (approxi-

mately) along a contour of constant inhibition (i.e. constant per capita growth rate). We then

evolved 24 replicate populations in each dosage combination for 3-4 days (20-30 generations)

with daily dilutions into fresh media and drug. The evolution experiments were performed in

microwell plates, allowing us to measure time series of cell density (OD) for each population

over the course of the adaptation. In addition, we characterized the phenotypic resistance of 6

randomly chosen populations per condition by measuring standard dose-response curves and

estimating the half-maximal inhibitory concentration (IC50) of each drug in the combination.

Together, these measurements provide a detailed quantitative picture of both growth adapta-

tion and changes in phenotypic resistance to each drug over the course of the evolution

experiment.

Dual β-lactam combination accelerates growth adaption but selects for

similar resistance profiles as adaption to component drugs

Cell wall synthesis inhibitors, including β-lactams, are among the most frequently used

antibiotics for E. faecalis infections [55]. While E. faecalis often exhibit sensitivity to amino-

pencillins, such as ampicillin (AMP), they are intrinsically resistant to cephalosporins (e.g. cef-

triaxone (CRO)). Despite the limited utility of ceftriaxone alone, it combines with ampicillin

to form a powerful synergistic pair, making it an attractive option for E. faecalis harboring

high-level aminoglycoside resistance. Dual β-lactam combinations like CRO-AMP have been

particularly effective in treatment of endocarditis infections in the clinical setting [46, 52].

As expected, we found that the CRO-AMP combination is strongly synergistic in the ances-

tral V583 E. faecalis strain (Fig 1a, left panel). We selected four dosage combinations (labeled

A-D) along the concave contour of constant inhibition and evolved replicate populations to

each condition. Growth curves on day 0, the first day of evolution, show similar levels of inhi-

bition for each combination, with growth initially increasing but later collapsing or plateauing.

The growth curves on later days sometimes differ between replicates and between conditions

(Fig 1a, right panels; S1 Fig). To quantify growth, we estimated the effective growth rate during

an intermediate range of OD (0.1< OD<0.4) for each day and each condition using nonlinear

least squares fitting to an exponential function (Fig 1b, left panels). For ancestor cells in the

absence of drug, this regime corresponds to exponential growth (Fig 1a, right panels; S1 Fig)

and this metric estimates the per capita growth rate. In cases where growth over this region is

non-monotonic, this metric instead provides an effective measure of growth that decreases

when population density declines, even if initial growth is rapid.

In all four conditions, growth increases significantly by day 2. Notably, late stage (days 2-3)

growth rate is higher, on average, when both drugs are present (conditions B and C) than it is

for the single-drug conditions (A and D). To further quantify these trends, we estimated the

average adaptation rate for each population using linear regression for each growth rate

time series (Fig 1b, right panel). While the 24 replicate populations in each condition show

considerable variability–as expected, perhaps, for a stochastic evolutionary process–growth

adaptation is significantly faster for the two combinations (B and C) than for the single drug

treatments (A and D). These qualitative results do not depend sensitively on the specific OD

window used to estimate growth (S2 and S3 Figs) and also hold when adaptation is estimated

with a nonlinear function (S4 and S5 Figs). As an alternate way to visualize this adaptation, we

also plotted the median growth curve (on final day of adaptation) calculated across all popula-

tions exposed to the same condition. The trends from this simple analysis are consistent with

those from adaptation rate calculations–specifically, growth following adaptation to the drug

combos is faster than growth following adaptation to the individual drugs (S6 Fig).
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Fig 1. Dual β-lactam combination accelerates growth adaption but selects for similar resistance levels to

component drugs. a) Left panel: per capita growth rate of ancestral populations as a function of ampicillin (AMP) and

ceftriaxone (CRO) concentrations. Circles correspond to different selecting conditions along a contour of constant

inhibition. Drug concentrations (AMP,CRO) are (0, 48) (red, A); (0.05, 2.6) (magenta, B); (0.10, 1.3) (cyan, C); and

(0.43, 0) (blue, D). The latter point is shifted for visualization. Right panels: growth curves for the first (black) and last

(green) days of evolution for each condition. Dashed lines are drug-free growth curves in ancestor strains. Shaded

region is OD range over which per capita growth rate is estimated. b) Left panels: per capita growth rate over time for

each condition. Right panel: average rate of growth adaptation over the course of the evolution. Adaptation rate in

the single drug conditions (red and blue conditions, combined) is less than that in the combined drug conditions

(magenta and cyan, combined), 1-sided t-test (unequal variance), p< 10−4. Error bars are ± standard error of the
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One might naively expect that increased growth adaption in the drug combination indicates

that populations in these conditions evolve higher levels of resistance to one or both drugs. To

test this hypothesis, we used replicate dose-response measurements to estimate the half-maxi-

mal inhibitory concentration (IC50) of both CRO and AMP in 6 randomly selected popula-

tions for each condition at the end of each day (see S7–S14 Figs for dose-response curves and

S15 Fig for estimates of relative error). We then quantified resistance as the (log2-scaled) fold

change in IC50 between the evolved and ancestral populations; positive values indicate

increased resistance and negative values indicate increased sensitivity relative to the ancestral

strain (Fig 1c). Note that resistance measured at the end of day 0 is considered to be resistance

on day 1, as it is the expected resistance of the population at the start of day 1. Populations

evolved under all four conditions exhibit similar patterns of phenotypic resistance, with IC50’s

to each drug rising rapidly and plateauing after 1-2 days. We note in passing that the growth

of the population in condition D is near 0 on day 1, even though resistance to ampicillin is

already seen in the IC50 measurements; this peculiar finding may suggest that the population is

heterogeneous, with resistant subpopulations comprising only a small fraction of the popula-

tion on day 1. In all conditions, populations tend to show higher increases in CRO resistance

than AMP resistance. These results are initially surprising because they indicate that mutants

with nearly identical phenotypic resistance profiles nevertheless exhibit markedly different pat-

terns of growth adaptation that depend on the specific dosage combination.

Aminoglycoside/ β-lactam and β-lactam/fluoroquinolone combinations

slow growth adaptation and select for resistant profiles distinct from those

evolved to the component drugs

In addition to dual β-lactam therapies, combinations involving an aminoglycoside with a cell

wall inhibiting antibiotic are commonly used for treating drug resistant E. faecalis [46]. In par-

ticular, the ampicillin and streptomycin (STR) combination has been used as a first line of

treatment for E. faecalis infective endocarditis [46, 55]. Unfortunately, enterococci isolates are

increasingly exhibiting high-level resistance to aminoglycosides, which has been shown to

reduce the synergistic effect of the combination therapy [55]. While aminoglycoside resistance

is a growing problem, the adaptation of aminoglycoside-resistant E. faecalis to combination

therapies remains poorly understood.

Consistent with previous findings, we did not observe synergy between AMP and STR in

the ancestral V583 strain, which exhibits considerable aminoglycoside resistance. In fact, the

drug pair exhibits marked antagonism, as evidenced by the convex growth contours on the

response surface (Fig 2a, left panel). Growth curves from populations evolved to four different

conditions along a growth contour show considerable differences at day 2 between the single-

drug conditions (conditions A and D) and the two-drug conditions (B and C, Fig 2a, right

panel; S16 Fig), with single-drug populations reaching a higher growth rate (Fig 2b, left panels)

and a dramatically increased rate of adaptation (Fig 2a, right panel; S17 Fig). At the end of the

experiment (after day 2 of adaptation), populations grown in single drugs tend to show resis-

tance to the selecting drug but little cross resistance to the other drug (Fig 2c, red and blue

curves). Populations grown in a combination of both drugs show similar resistance profiles to

those selected by the single drug that is dominant within the mixture. For example, the day 3

mean (SEM). c. Resistance to CRO (top panels) and AMP (bottom panels) over time for isolates from different

conditions. Resistance is defined as the log2-scaled fold change in IC50 of the resistant isolate relative to ancestral cells

(positive is increased resistance, negative is increased sensitivity). In all plots, light transparent lines correspond to

individual populations and darker lines to the mean across populations.

https://doi.org/10.1371/journal.ppat.1008278.g001
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Fig 2. Antagonistic β-lactam and aminoglycoside combination slows adaptation with little cross-resistance. a) Left

panel: per capita growth rate of ancestral populations as a function of ampicillin (AMP) and streptomycin (STR)

concentrations. Circles correspond to different selecting conditions along a contour of constant inhibition. Drug

concentrations (AMP,STR) are (0.3, 0) (red, A); (0.3, 1000) (magenta, B); (0.19, 1800) (cyan, C); and (0, 1800) (blue,

D). Right panels: growth curves for the first (black) and last (green) days of evolution for each condition. b) Left panels:

per capita growth rate over time for each condition. Dashed lines are drug-free growth curves in ancestor strains.

Shaded region is OD range over which per capita growth rate is estimated. Right panel: average rate of growth

adaptation over the course of the evolution. Adaptation rate in the single drug conditions (red and blue conditions,

combined) is greater than that in the combined drug conditions (magenta and cyan, combined), 1-sided t-test

(unequal variance), p< 10−4. Error bars are ± standard error of the mean (SEM). c. Resistance to AMP (top panels)
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resistance profiles for condition B are similar to those from condition A (dominated by AMP),

while those for condition C are similar to condition D (dominated by STR). It is interesting to

note that the temporal dynamics (i.e. change in resistance over time for each drug) for all four

conditions do show different qualitative trends, even when the final resistance profiles are sim-

ilar (Fig 2c).

We observed qualitatively similar behavior in a combination of a β-lactam and fluoroquino-

lone (ciprofloxacin). Ciprofloxacin (CIP) is not typically used in the treatment of enterococci,

though it has been used with β-lactams in the treatment of enterococcal endocarditis with

high-level aminoglycoside resistance [56]. In vitro studies also demonstrate efficacy of cipro-

floxacin in multiple combinations against E. faecalis biofilms [57]. We investigated resistance

evolution in a combination of CIP with CRO, which is not a clinically used combination but

exhibits less dramatic antagonism than the AMP-STR combination (Fig 3a, left panel), making

it a potentially interesting proof-of-principle example of resistance involving

fluoroquinolones.

As with the AMP-STR combination, we observe slowed growth adaptation in combinations

of CRO-CIP relative to that in the component drugs alone (Fig 3b; S18 and S19 Figs). Adapta-

tion to CRO alone leads to strong CRO resistance and slight CIP sensitivity (Fig 3c, red). On

the other hand, adaptation to CIP alone leads to CIP resistance along with significant increases

in CRO sensitivity (Fig 3c, blue). Populations evolved to combinations show different resis-

tance profiles at different concentrations, though for both mixtures the collateral sensitivities

are eliminated (Fig 3c, magenta and cyan).

Tigecycline suppresses growth adaptation and eliminates evolution of

fluoroquinolone resistance

The fourth combination we investigated was comprised of a protein synthesis inhibitor (tige-

cycline, TGC) and fluoroquinolone (CIP). TGC is a relatively new broad-spectrum antibiotic

used for soft-tissue infections [58]; it also shows in-vitro synergy in combination with multiple

antibiotics [59, 60]. We found that the TGC-CIP combination exhibits a particularly interest-

ing type of interaction known as suppression (Fig 4a, left panel), where the combined effect of

both drugs can be smaller than the effect of one drug (in this case, TGC) alone at the same con-

centration. Suppressive interactions between protein and DNA synthesis inhibitors in E. coli
have been previously linked to sub-optimal regulation of ribosomal genes [61] as well as

inverted selection for sensitive cells [43]. Because the growth contours in this case show non-

monotonic behavior, we performed evolution experiments in replicates of 8 for 11 different

concentration combinations that fall along the isobole (Fig 4a; S20 and S21 Figs). We find that

growth adaptation decreases approximately monotonically as TGC concentration is increased,

eventually approaching a minimum as TGC eclipses a critical concentration TGCcrit� 0.03

μg/mL (Fig 4c). Furthermore, while we observed TGC resistance only in rare cases, popula-

tions adapted to TGC below the critical concentration show approximately constant levels of

CIP resistance, while those at higher concentrations show essentially no CIP resistance (Fig

4d). It is particularly striking that populations evolved in conditions A (red) and I (light blue)

exhibit such different evolutionary behavior, as both are exposed to nearly identical CIP con-

centrations and, by design, start at similar levels of inhibition. Yet evolution in condition A

and STR (bottom panels) over time for isolates from different conditions. Resistance is defined as the log2-scaled fold

change in IC50 of the resistant isolate relative to ancestral cells (positive is increased resistance, negative is increased

sensitivity). In all plots, light transparent lines correspond to individual populations and darker lines to the mean

across populations.

https://doi.org/10.1371/journal.ppat.1008278.g002
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Fig 3. Antagonistic β-lactam and fluoroquinolone combination slows adaptation and selects for populations

lacking observed collateral sensitivity of single-drug isolates. a) Left panel: per capita growth rate of ancestral

populations as a function of ceftriaxone (CRO) and ciprofloxacin (CIP) concentrations. Circles correspond to different

selecting conditions along a contour of constant inhibition. Drug concentrations (CRO, CIP) are (48.5, 0) (red, A);

(34.7, 0.21) (magenta, B); (6.93, 0.34) (cyan, C); and (0, 0.46) (blue, D). The latter point is shifted for visualization.

Right panels: growth curves for the first (black) and last (green) days of evolution for each condition. Dashed lines are

drug-free growth curves in ancestor strains. Shaded region is OD range over which per capita growth rate is estimated.

b) Left panels: per capita growth rate over time for each condition. Right panel: average rate of growth adaptation over

the course of the evolution. Adaptation rate in the single drug conditions (red and blue conditions, combined) is

greater than that in the combined drug conditions (magenta and cyan, combined), 1-sided t-test (unequal variance),
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leads to fast growth adaptation and strong CIP resistance, while evolution in condition I (light

blue) leads to little adaptation and no CIP resistance. In effect, the addition of TGC eliminates

CIP resistance without modulating the overall efficacy of the (initial) combination.

Geometric rescaling of ancestral growth surface explains condition-

dependent growth adaptation when resistant profiles are unchanged

To interpret the observed evolutionary dynamics, we hypothesized that mutations conferring

resistance modulate the effective drug concentration experienced by the population. In some

cases–for example, resistance due to efflux pumps–this effective concentration change

p< 10−4. Error bars are ± standard error of the mean (SEM). c. Resistance to CRO (top panels) and CIP (bottom

panels) over time for isolates from different conditions. Resistance is defined as the log2-scaled fold change in IC50 of

the resistant isolate relative to ancestral cells (positive is increased resistance, negative is increased sensitivity). In all

plots, light transparent lines correspond to individual populations and darker lines to the mean across populations.

https://doi.org/10.1371/journal.ppat.1008278.g003

Fig 4. Tigecycline eliminates fluoroquinolone resistance above a critical concentration. a) Left panel: per capita growth

rate of ancestral populations as a function of tigecycline (TGC) and ciprofloxacin (CIP) concentrations. Circles correspond to

different selecting conditions along a contour of constant inhibition. b) growth curves for the first (black) and last (green)

days of evolution for six of the 11 selecting conditions. c) Average rate of growth adaptation over the course of the evolution

for each condition. d. Resistance to CIP (left) and TGC (right) for isolates on the final day of evolution. Resistance is defined

as the log2-scaled fold change in IC50 of the resistant isolate relative to ancestral cells (positive is increased resistance, negative

is increased sensitivity). In all plots, light transparent lines or small points correspond to individual populations. Darker lines

and larger circles represent means taken across populations. Error bars are ± standard error of the mean (SEM).

https://doi.org/10.1371/journal.ppat.1008278.g004
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corresponds to a genuine physical change in intracellular drug concentration. More generally,

though, this hypothesis assumes that resistant cells growing in external drug concentration C

behave similarly to wild type (drug-sensitive) cells experiencing a reduced effective concentra-

tion C’< C. Similar rescaling arguments were pioneered in [41, 43], where they were used to

predict correlations between the rate of resistance evolution and the type of drug interaction.

Our results indicate that adaptation rates in CRO-AMP (Fig 1) and TGC-CIP (Fig 4) com-

binations can vary significantly across dosage combinations, even when resistance profiles are

essentially unchanged. For example, populations adapted to CRO-AMP combinations show

an average increase in IC50 for CRO and AMP of about 23.5� 11.6 fold and 21.3� 2.5 fold,

respectively. To understand how this level of resistance might be expected to impact growth,

we rescaled the concentrations of CRO and AMP that lie along the contour of constant growth

that passes through the four experimental dosage combinations (A-D). For each point on the

contour, the concentrations of CRO and AMP are reduced by factors of 11.6 and 2.5, respec-

tively. For example, the points corresponding to conditions A-D are mapped to the points

shown in Fig 5a (squares). The new rescaled contour, which includes the rescaled locations of

the original points A-D, does not in general correspond to a contour of constant growth on

the original growth surface; therefore, growth of the adapted cells is expected to differ along

the contour. More specifically, to predict growth of mutants selected along the original contour

Fig 5. Geometric rescaling of growth surface in ancestral strain explains growth differences between different conditions even when

resistance profiles are identical. Main panels: contour plots show growth in ancestral (WT) strain as function of drug concentrations for

AMP-CRO (a, left) and TGC-CIP (b, right). Circles indicate selecting conditions (note that for visualization purposes, several selecting

conditions are outside of the axis limits). Squares indicate effective concentrations achieved by rescaling true concentrations by the observed

(mean) fold change in IC50 for each drug. All arrows in a single panel correspond to the same rescaling: AMP! AMP/2.5, CRO! CRO/

11.6 (panel a) and CIP! CIP/3.0, TGC! TCG (panel b). The rescaling factors correspond to cross resistance to AMP and CRO, with CRO

resistance larger than AMP resistance (panel a) and to CIP resistance with no change in TGC resistance (panel b), which correspond to the

mean values observed experimentally over all populations in AMP-CRO (see Fig 1) and the CIP-resistant populations in TGC-CIP (see Fig

4). Upper panels: predicted change in growth (relative to condition A) as one moves along the original contour, starting at condition A (one

drug only). Predicted growth rate is calculated using 2d interpolation to estimate the growth along the rescaled contour on the ancestral

growth surface.

https://doi.org/10.1371/journal.ppat.1008278.g005
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of constant growth, one simply needs to find the rescaled contour, plot it atop the original

(ancestral) growth surface, and read off the values of growth along that rescaled contour. In

the CRO-AMP combination, this rescaling approach predicts that growth is slightly (approxi-

mately 10 percent or less) higher when the drugs are combined (e.g. conditions B and C) than

when they are used individually (Fig 5a, top panel), in qualitative agreement with our experi-

ments (Fig 1). More generally, the rescaling suggests that adaptation in all conditions should

lead to dramatically increased growth, a consequence of the steep dose-dependence of the syn-

ergistic response surface.

Similarly, populations adapted in TGC-CIP show an increase in CIP IC50 of approximately

21.6� 3 fold, but only when adaptation occurs below a critical TGC concentration. If we apply

the same rescaling approach–that is, we reduce the concentration of CIP by 3-fold for all points

along the contour–we again get a series of new points that no longer fall on a single growth

contour (Fig 5b, squares). Furthermore, the predicted growth for points on the new contour

decreases monotonically with TGC concentration before plateauing near point G, near the

critical concentration where experimental growth adaptation approaches its minimum value

(Fig 5b). Intuitively, then, it becomes clear why selection for ciprofloxacin resistance is only

favored below this critical concentration: for higher concentrations of TGC, the rescaled points

fall very nearly on the same contour as the original point. That is, when the original contour

becomes approximately vertical, rescaling the CIP concentration is no longer expected to

increase growth (see, for example, point I).

Resistance profiles selected in different AMP-STR and CRO-CIP

combinations are (nearly) growth-optimized along contours connecting the

profiles selected by component drugs

Rescaling arguments may also help us to understand why particular resistance profiles appear

to be preferentially selected under different initial conditions, as we observed with AMP-STR

and CRO-CIP. The resistance profiles on the final day of adaptation fall at different points in

the two dimensional space describing resistance to each drug (Fig 6a and 6b, left panels).

When profiles arising from adaptation to the same condition are averaged together, the result-

ing profiles (large circles) fall approximately on a smooth contour. We set out to determine

how profiles at different points along these contours would be expected–based on rescaling–to

impact growth in each of the four selecting conditions used experimentally.

To approximate these contours, we used a line segment (for AMP-STR) or a quadratic con-

tour (for CRO-CIP) that connects conditions with extreme resistance. In both cases, the con-

tours approximately run between red and blue points, corresponding to adaptation in the

single drug conditions. To investigate how different resistance levels along these contours are

expected to affect growth in each selecting condition, we rescaled the drug concentrations cor-

responding to each selecting condition by a range of rescaling factors that lie along the con-

tours connecting their end points (labeled X and Y). As a result, each of the original selecting

conditions (more specifically the points defined by the drug concentrations describing each

condition) is mapped to a smooth curve in the two-drug concentration space. Points along

that curve indicate how the original selecting concentrations are mapped to rescaled drug con-

centrations by the resistance profiles lying along the contour connecting X and Y. From that

new curve, then, one can read off the corresponding growth rates from the ancestral growth

surface, leading to predicted growth rates for mutants with any particular profile along the

contour.

For each selecting condition, there is an optimal resistance profile (along the contour) that

leads to the maximum possible expected growth. Not surprisingly, in the case of AMP-STR,
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maximum growth in condition A (AMP only) occurs at point X, where AMP resistance is

highest. Similarly, maximum growth in conditions D (STR only) and C occur at point Y,

which has the largest STR resistance. On the other hand, the optimal resistance profile for con-

dition B lies just short of the midpoint on the line segment connecting X and Y (Fig 6a, right

panel). Interestingly, the (mean) resistance profiles observed experimentally (circles) are pre-

dicted to give growth rates within approximately 15% of the optimal value.

In the case of the CRO-CIP combination, the optimal resistance profiles (along the contour)

for conditions A (CRO only) and D (CIP only) lie at the endpoints X and Y, respectively (Fig

6b, right panel), which have the highest resistance levels to the component drugs. By contrast,

the optimal profiles for conditions B (magenta) and C (cyan) fall at different points along the

contour, reflecting trade-offs between resistance levels and collateral sensitivities to the

Fig 6. Resistance profiles observed in different AMP-STR and CRO-CIP dosage combinations are (nearly) growth-optimized along the

contour separating profiles selected by component drugs. a: AMP-STR, b. CRO-CIP. Left panels: resistance profiles for individual

populations (small circles) and the mean across populations (large filled circles) for each selecting condition. Color scheme is the same as in

previous figures (i.e. red is condition A, magenta condition B, cyan condition C, and blue condition D). Solid black lines are linear (a) or

quadratic (b) fits to the averaged resistance profiles, which create smooth contours in the 2-d resistance space. Right panels: each curve

shows the predicted growth for populations with a range of resistance profiles (falling on the contours, left panels) grown at one specific

selecting condition (A, red; B, magenta; C, cyan; D, blue). The horizontal axis corresponds to position along the contours (left panels). Filled

circles correspond to the locations of experimentally observed (mean) resistance profiles.

https://doi.org/10.1371/journal.ppat.1008278.g006
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component drugs. Once again, the observed (mean) resistance profiles are predicted to give

growth rates near the optimal values for each condition (particularly for conditions A, B, and

D). Given that there is a finite number of genetic mutations possible under these short-term

conditions, one would not expect that phenotypic profiles exist for all points along the con-

tours. Nevertheless, these results suggest that for these two drug pairs, the resistant profiles

selected in the combinations are expected to give growth benefits that are nearly optimal

among all those possible along the contour.

Discussion

Using laboratory evolution, we have shown that adaptation of E. faecalis populations to drug

combinations can differ substantially from adaptation to the component drugs. While the evo-

lutionary trajectory of any particular population is difficult to predict, the results as a whole

point to simple trends that can be explained with rescaling arguments linking growth of

adapted populations to growth of the ancestral population at properly rescaled drug dosages.

These arguments show, for example, how identical resistance profiles yield different growth

rates for different selecting conditions. The analysis also suggests that, in multiple cases, the

profiles selected by different dosage combinations are very nearly growth-optimized along the

contour connecting profiles selected by the individual component drugs. Given the inherent

stochasticity of individual evolutionary trajectories, it is remarkable that such simple principles

can be used to understand the mean behavior across large experimental ensembles.

It is important to point out several limitations to our study. First, our goal was not to inves-

tigate the specific molecular mechanisms involved in drug adaption, but instead to provide a

quantitative picture of resistance evolution that does not require extensive molecular-level

knowledge, which many times is not available. However, the richness of the observed pheno-

types points to complex and potentially interesting genetic changes that can be partially

resolved with modern sequencing technologies. For example, cross-resistance observed

between ceftriaxone and ampicillin may be due to mutations in penicillin-binding proteins,

which are common resistance determinants for both drugs [55]. We also note that our experi-

ments were performed just below the minimum inhibitory drug concentrations, allowing for

slowed but nonzero rates of proliferation. Previous work indicates that drug interactions may

modulate evolution in different ways at higher drug concentrations [27]. In addition, our

experiments were performed in planktonic populations, while many of the high-inoculum

infections requiring combination treatment are likely to involve surface-associated biofilms,

where spatial heterogeneity and complex community dynamics can dramatically alter the

response to antibiotics. In E. faecalis, for example, population density can significantly modu-

late growth dynamics [8], while sub-inhibitory doses of cell wall inhibitors may actually pro-

mote biofilm growth [62]. Recent work in other bacterial species also shows that evolutionary

adaptation may differ between biofilm and planktonic communities [63, 64]. Investigating

adaptation to drug combinations in these different regimes, both at clinically-relevant concen-

trations and in biofilms, remains an interesting avenue for future work.

There are also several notable technical limitations. To minimize batch effects due to day-

to-day variability (due to small changes in, for example, drug stock, media composition or

temperature), we perform all experiments for a given drug pair together during the same

3-day period using the same reagent batches. We do see considerable variability between evo-

lutionary replicates, even when they are performed side-by-side during the same period, with

the same batch of media, and under the same selection conditions, giving us hope that these

conditions capture at least some of the complexity of the possible evolutionary outcomes.

However, it is possible that additional trajectories could arise, and perhaps even dominate, if
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the experiments were repeated multiple times across different days or different growth condi-

tions. In addition, it is clear that all growth curves are not purely exponential, and in fact the

per capita growth rate can change with time. Our growth rate estimates should therefore be

thought of as an effective growth rate that reduces the population dynamics each day to a sin-

gle number. Similarly, the rescaling analysis assumes that the drug resistance in the population

can be captured by a single IC50 (for each drug), essentially neglecting clonal interference in

favor of a single dominant resistant phenotype. In addition, the rescaling analysis does not

incorporate fitness cost (which we did not measure). As a result of these limitations, the trends

predicted by rescaling can only be evaluated qualitatively, though these limitations could

potentially be overcome with significantly more experimental data, leading to more quantita-

tive rescaling predictions. For example, resistance phenotyping of individual isolates from

each population could provide insight into population heterogeneity during adaptation. Nev-

ertheless, given the potential complexity of evolutionary trajectories, it is encouraging that sim-

ple rescaling arguments can qualitatively capture the coarse-grained features we measured.

Future studies that aim to overcome the technical limitations of this work may be able to fur-

ther evaluate quantitative agreement between specific evolutionary trajectories and the predic-

tions of rescaling.

Most importantly, we stress that our results are based on in vitro laboratory experiments,

which provide a well-controlled but potentially artificial–and certainly simplified–environ-

ment for evolutionary selection. While in vitro studies form the basis for many pharmacologi-

cal regimens, the ultimate success or failure of new therapies must be evaluated using in vivo

model systems and, ultimately, controlled clinical trials. We hope the results presented here

offer a provocative look at evolution of E. faecalis in multidrug environments, but it is clear

that these findings are not directly transferable to the clinic. Our results do include some clini-

cally relevant antibiotic combinations, though we also sought a wide range of drug interaction

types, including multiple antagonistic combinations that are unlikely a priori choices for clini-

cal use. In addition, the relatively high levels of resistance of the ancestor strain to some drugs–

such as aminoglycosides–would make them unlikely clinical choices to these populations. It is

notable, however, that the resulting non-synergistic combinations often produced consider-

ably slower growth adaptation, consistent with previous results that highlight potential benefits

for non-standard combinations [40, 41, 43].

Finally, our results reveal that simple rescaling arguments—similar to those originally intro-

duced in [41, 43]—can be used to understand many features of evolution in two-drug environ-

ments. Extending and formalizing these qualitative findings using stochastic models where fast

evolutionary dynamics are coupled to geometric rescaling on adiabatically changing interac-

tion landscapes is an exciting avenue for theoretical work that may provide both general

insight as well as specific, experimentally testable predictions for how resistance evolves in

multi-drug environments.

Materials and methods

Strains, media, and growth conditions

All experiments were performed on the V583 strain of E. faecalis, a fully sequenced clinical iso-

late. Overnight seed cultures were inoculated from a single colony and grown in sterilized

brain heart infusion (BHI) medium at 37C with no shaking. Antibiotic stock solutions

(Table 1) were prepared using sterilized Millipore water, diluted and aliquoted into single use

micro-centrifuge tubes and stored at -20C or -80C. All drugs and media were purchased from

Dot Scientific, Sigma-Aldrich or Fisher Scientific.
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Laboratory evolution and growth measurement

Evolution experiments were seeded by diluting overnight cultures of ancestral V583 cells 400x

into individual wells of a 96-well microplate containing appropriate drug concentrations. All

plates for a multi-day evolution experiment were prepared in advance by adding appropriate

drug concentrations to 200 μL BHI and storing at -20C for not more than 4 days. Each day, a

new plate was thawed and inoculated with 2 μL (100X dilution) from the previous day’s cul-

ture. Plates were then sealed with BIO-RAD Microseal film to minimize evaporation and pre-

vent cross contamination. Optical density at 600 nm (OD) was measured for each population

every 20-25 minutes using an EnSpire Multimode Plate Reader with multi-plate stacker

attachment located in a temperature-controlled (30C) warm room. Control wells containing

ancestral cells and BHI medium were included on each plate as a growth control and for back-

ground subtraction, respectively. All dilutions and daily transfers were performed inside a

ThermoFisher 1300 Series A2 safety cabinet to minimize contamination. Samples from each

population were stocked in 15 percent glycerol and stored at -80C.

Estimating per capita growth rate and drug response surfaces

We estimated per capita growth rate (g) from OD time series by fitting the early exponential

phase portion of the background subtracted curves (0.1<OD<0.4) to an exponential function

(OD* egt) using nonlinear least squares (MATLAB 7.6.0 curve fitting toolbox, Mathworks).

The OD range [0.1, 0.4] was chosen because it spans a large region of early exponential phase

growth in ancestor cells grown without drug. If the growth rate was estimated to be negative or

the growth curve did not reach 0.1 over the course of the experiment, growth was set to 0. See

S22 Fig for examples, including those where growth is clearly not exponential and therefore g
should be interpreted as an effective growth parameter, not the true per capita growth. We

normalized all growth rates by the growth rate of ancestral cells in the absence of drugs per-

formed on the same day, with one exception: ancestor growth curves for CRO-AMP and

CRO-CIP were shared between the two experiments, which were performed on consecutive

days. Ancestor growth rates varied slightly day-to-day, with a minimum of 0.74 and a maxi-

mum of 0.88 hr−1 (doubling times of 47 and 56 mins, respectively). We visualized two-drug

growth response surfaces by smoothing (2-d cubic spline interpolation) to reduce experimen-

tal noise and displaying smoothed surfaces as two-dimensional heat maps. When relevant–for

example, for rescaling analysis–growth in unsampled regions of the growth surface was esti-

mated with 2d interpolation.

Phenotypic resistance profiling

Experiments to estimate the half-maximal inhibitory concentration (IC50) for each population

were performed in replicates of 3 in 96-well plates. Prior to IC50 testing, frozen stocks for each

population were swabbed and grown overnight in drug-free medium. These overnight cultures

Table 1. Antibiotics used in this study.

Antibiotic Class Mechanism

Ampicillin (AMP) β-lactam (penicillins) cell wall synthesis inhibitor

Ceftriaxone (CRO) β-lactam (cephalosporin) cell wall synthesis inhibitor

Ciprofloxacin (CIP) fluoroquinolone DNA synthesis inhibitor

Streptomycin (STR) aminoglycoside protein synthesis inhibitor

Tigecycline (TGC) glycylcycline protein synthesis inhibitor

https://doi.org/10.1371/journal.ppat.1008278.t001
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were then diluted 100X into new plates containing fresh media and a gradient of 8 drug con-

centrations. We chose linearly spaced drug concentrations (rather than the more conventional

2-fold dilutions [65]) to increase precision of IC50 estimates. After 20 hours of growth the opti-

cal density at 600 nm (OD600) was again measured and used to create a dose response curve.

To quantify drug resistance, the resulting dose response curve was fit to a Hill-like function f
(x) = (1+ (x/K)h)−1 using nonlinear least squares fitting, where K is the half-maximal inhibitory

concentration (IC50) and h is a Hill coefficient describing the steepness of the dose-response

relationship. To reduce day-to-day fluctuations, control dose response curves (in replicates of

6) in ancestral cells were measured side-by-side each day with dose response curves of the

adapted populations. The IC50’s from these controls were used as the normalizing factor in cal-

culating resistance relative to ancestor (i.e. log2-scaled fold change). See S7–S14 Figs for exam-

ples. Relative error (standard error of mean / mean) for IC50 is typically on the order of ten

percent and often much smaller (S15 Fig).

Estimated growth surfaces for ancestral cells as well as all estimated growth rates and IC50

values are available in ref [66].

Supporting information

S1 Fig. Growth curves for adaptation in AMP-CRO combinations. OD time series for popu-

lations grown in conditions A (top 2 rows, red), B (magenta), C (cyan), and D (last 2 rows,

blue) for combinations of ceftriaxone (CRO) and ampicillin (AMP). Light gray curve is ances-

tor control in absence of drug. Days are green (0), blue (1), red (2), and magenta (3). Shaded

region corresponds to OD range [0.1,0.4] over which growth rate is estimated.

(EPS)

S2 Fig. Adaptation rate trends do not depend sensitively on choice of OD windows for

growth rate fits. Adaptation rates for populations grown in conditions A (red), B (magenta),

C (cyan), and D (blue) for combinations of ceftriaxone (CRO) and ampicillin (AMP). Upper

insets show the OD time series of ancestor strains in the absence of drug, with shaded region

the OD range over which exponential growth rate is estimated (OD = [0.1,0.4], upper left;

OD = [0.05,0.3], upper right; OD = [0.15,0.35], lower left; OD = [0.15,0.5], lower right). In all

cases, adaptation rate in the single drug conditions (red and blue conditions, combined) is less

than that in the combined drug conditions (magenta and cyan, combined), 1-sided t-test

(unequal variance), p< 0.05.

(EPS)

S3 Fig. Growth rate time series do not depend sensitively on choice of OD windows for

growth rate fits. Per capita growth rate over time for each condition, A (red), B (magenta), C

(cyan), and D (blue), for combinations of ceftriaxone (CRO) and ampicillin (AMP). Rows 1-4

correspond to the four choices of OD windows in S2 Fig.

(EPS)

S4 Fig. Growth rate time series and fits to linear and saturating functions. Growth rate

time series (circles) and both linear and saturating fits to determine mean adaptation rate

(lines) for populations grown in conditions A (top 3 rows, red), B (magenta), C (cyan), and D

(last 3 rows, blue) for combinations of ceftriaxone (CRO) and ampicillin (AMP). Saturating

fits correspond to a functional form y = ymax x/(x+ Kinv), where ymax is the maximum possible

growth rate (set to 1.2, slightly higher than 1 to allow for potential increases in growth relative

to ancestor) and Kinv is defined as the inverse adaptation rate.

(EPS)
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S5 Fig. Adaptation rate trends do not depend sensitively on linear or saturating fits to

growth rate time series. Adaptation rates for populations grown in conditions A (red), B

(magenta), C (cyan), and D (blue) for combinations of ceftriaxone (CRO) and ampicillin

(AMP) for linear fits (left) and saturating fits (right). Note that the vertical axis scales differ, as

do the definition of adaptation rate. In the linear case, adaptation rate is in units of growth rate

per unit time, while in the saturating case adaptation rate is in units of inverse time. In all

cases, adaptation rate in the single drug conditions (red and blue conditions, combined) is less

than that in the combined drug conditions (magenta and cyan, combined), 1-sided t-test

(unequal variance), p< 10−3.

(EPS)

S6 Fig. Median growth curves within each condition capture qualitative trends of

growth rate adaptation. Median growth curves–which consist of the median OD across

all populations within a given condition at each time point–for the four drug combinations

on the final day of adaptation. Color scheme is same as in the main text: red and blue are sin-

gle drug conditions, magenta and cyan correspond to drug combinations. Shaded region

corresponds to OD range over which exponential growth rates are estimated in the main

text.

(EPS)

S7 Fig. Dose response curves to estimate AMP resistance following CRO adaptation. Dose

response curves for six populations (”mutants”, rows) over 3 days (columns) for populations

adapted to condition A (CRO-only). Dots are measurements (3 technical replicates), lines are

estimated fits to Hill-like dose response function. Shaded region indicates mean IC50 ± 2 stan-

dard errors across replicates. Light gray curves and x symbols correspond to ancestor strain

control.

(EPS)

S8 Fig. Dose response curves to estimate AMP resistance following AMP-CRO adaptation.

Dose response curves for six populations (”mutants”, rows) over 3 days (columns) for popula-

tions adapted to condition B (AMP-CRO). Dots are measurements (3 technical replicates),

lines are estimated fits to Hill-like dose response function. Shaded region indicates mean

IC50 ± 2 standard errors across replicates. Light gray curves and x symbols correspond to

ancestor strain control.

(EPS)

S9 Fig. Dose response curves to estimate AMP resistance following AMP-CRO adaptation.

Dose response curves for six populations (”mutants”, rows) over 3 days (columns) for popula-

tions adapted to condition C (AMP-CRO). Dots are measurements (3 technical replicates),

lines are estimated fits to Hill-like dose response function. Shaded region indicates mean

IC50 ± 2 standard errors across replicates. Light gray curves and x symbols correspond to

ancestor strain control.

(EPS)

S10 Fig. Dose response curves to estimate AMP resistance following AMP adaptation.

Dose response curves for six populations (”mutants”, rows) over 3 days (columns) for popula-

tions adapted to condition D (AMP-only). Dots are measurements (3 technical replicates),

lines are estimated fits to Hill-like dose response function. Shaded region indicates mean

IC50 ± 2 standard errors across replicates. Light gray curves and x symbols correspond to

ancestor strain control.

(EPS)
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S11 Fig. Dose response curves to estimate CRO resistance following CRO adaptation. Dose

response curves for six populations (”mutants”, rows) over 3 days (columns) for populations

adapted to condition A (CRO-only). Dots are measurements (3 technical replicates), lines are

estimated fits to Hill-like dose response function. Shaded region indicates mean IC50 ± 2 stan-

dard errors across replicates. Light gray curves and x symbols correspond to ancestor strain

control.

(EPS)

S12 Fig. Dose response curves to estimate CRO resistance following AMP-CRO adapta-

tion. Dose response curves for six populations (”mutants”, rows) over 3 days (columns) for

populations adapted to condition B (AMP-CRO). Dots are measurements (3 technical repli-

cates), lines are estimated fits to Hill-like dose response function. Shaded region indicates

mean IC50 ± 2 standard errors across replicates. Light gray curves and x symbols correspond

to ancestor strain control.

(EPS)

S13 Fig. Dose response curves to estimate CRO resistance following AMP-CRO adapta-

tion. Dose response curves for six populations (”mutants”, rows) over 3 days (columns) for

populations adapted to condition C (AMP-CRO). Dots are measurements (3 technical repli-

cates), lines are estimated fits to Hill-like dose response function. Shaded region indicates

mean IC50 ± 2 standard errors across replicates. Light gray curves and x symbols correspond

to ancestor strain control.

(EPS)

S14 Fig. Dose response curves to estimate CRO resistance following AMP adaptation.

Dose response curves for six populations (”mutants”, rows) over 3 days (columns) for popula-

tions adapted to condition A (AMP-only). Dots are measurements (3 technical replicates),

lines are estimated fits to Hill-like dose response function. Shaded region indicates mean

IC50 ± 2 standard errors across replicates. Light gray curves and x symbols correspond to

ancestor strain control.

(EPS)

S15 Fig. Relative error in resistance measurements for AMP and CRO. Histogram of rela-

tive error, defined as the standard error of the mean divided by the mean, for IC50 estimates

from 72 populations (6 examples per condition, 4 conditions, 3 days) per drug adapted to

AMP-CRO conditions. In each case, standard error is calculated over three technical repli-

cates.

(EPS)

S16 Fig. Growth curves for adaptation in AMP-STR combinations. OD time series for pop-

ulations grown in conditions A (top 2 rows, red), B (magenta), C (cyan), and D (last 2 rows,

blue) for combinations of ampicillin (AMP) and streptinomycin (STR). Light gray curve is

ancestor control in absence of drug. Days are green (0), blue (1), and red (2). Shaded region

corresponds to OD range [0.1,0.4] over which growth rate is estimated.

(EPS)

S17 Fig. Growth rate time series for adaptation in AMP-STR combinations. Growth rate

time series (circles) and linear fits to determine mean adaptation rate (lines) for populations

grown in conditions A (top 3 rows, red), B (magenta), C (cyan), and D (last 3 rows, blue) for

combinations of ampicillin (AMP) and streptinomycin (STR).

(EPS)
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S18 Fig. Growth curves for adaptation in CRO-CIP combinations. OD time series for popu-

lations grown in conditions A (top 2 rows, red), B (magenta), C (cyan), and D (last 2 rows,

blue) for combinations of ceftriaxone (CRO) and ampicillin (AMP). Light gray curve is ances-

tor control in absence of drug. Days are green (0), blue (1), red (2), and magenta (3). Shaded

region corresponds to OD range [0.1,0.4] over which growth rate is estimated.

(EPS)

S19 Fig. Growth rate time series for adaptation in CRO-CIP combinations. Growth rate

time series (circles) and linear fits to determine mean adaptation rate (lines) for populations

grown in conditions A (top 2 rows, red), B (magenta), C (cyan), and D (last 2 rows, blue) for

combinations of ceftriaxone (CRO) and ciprofloxacin (CIP).

(EPS)

S20 Fig. Growth curves for adaptation in TGC-CIP combinations. OD time series for popu-

lations grown in conditions A-K (11 rows, 8 replicates per condition). Light gray curve is

ancestor control in absence of drug. Days are green (0), blue (1), and red (2). Shaded region

corresponds to OD range [0.1,0.4] over which growth rate is estimated.

(EPS)

S21 Fig. Growth rate time series for adaptation in TGC-CIP combinations. Growth rate

time series for each population (light lines) and the mean across populations for a given condi-

tion (A-K) for combinations of tigecycline (TGC) and ciprofloxacin (CIP).

(EPS)

S22 Fig. Example exponential fits to growth curves. OD time series for populations grown in

conditions A (top 2 rows), B (rows 3-4), C (rows 5-6), and D (last 2 rows) for combinations of

ampicillin (AMP) and streptinomycin (STR). Light gray curve is ancestor control in absence of

drug. Days are green (0), blue (1), and red (2). Lines show fits to exponential functions. Shaded

region corresponds to OD range [0.1,0.4] over which growth rate is estimated. Note that

growth rates less than zero (see several examples on top row) were set to 0 for all subsequent

analysis.

(EPS)
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