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Abstract: The clinical parameters and the histological and immunohistochemical findings of a
prospective protocolized series of 27 prostate carcinoma patients with oligometastatic disease
followed homogeneously were analyzed. Lymph nodes (81.5%) and bones (18.5%) were the only
metastatic sites. Local control after metastatic directed treatment was achieved in 22 (81.5%) patients.
A total of 8 (29.6%) patients developed castration-resistant prostate cancer. Seventeen (63%) patients
presented with non-organ confined disease. The Gleason index 8–10 was the most frequently observed
(12 cases, 44.4%) combined grade. Positive immunostainings were detected with androgen receptor
(100%), PGP 9.5 (74%), ERG (40.7%), chromogranin A (29.6%), and synaptophysin (18.5%) antibodies.
The Ki-67 index value > 5% was observed in 15% of the cases. L1CAM immunostaining was negative
in all cases. Fisher exact test showed that successful local control of metastases was associated to
mild inflammation, organ confined disease, Ki-67 index < 5%, and Gleason index 3 + 3. A castration
resistant status was associated with severe inflammation, atrophy, a Gleason index higher than 3 + 3,
Ki-67 index ≥ 5%, and positive PGP 9.5, chromogranin A, and synaptophysin immunostainings.
In conclusion, oligometastatic prostate adenocarcinoma does not have a specific clinical-pathologic
profile. However, some histologic and immunohistochemical parameters of routine use may help
with making therapeutic decisions.
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1. Introduction

Prostate adenocarcinoma (PCa) is the most common neoplasm and a leading cause of mortality
in the male population in Western countries, with more than 191,000 new cases and 33,000 deaths
expected in the USA in 2020 [1]. The biology of this tumor is complex and sets forth very different
clinical contexts that are not always easy to manage in practice.

A high percentage of PCa are detected in an organ-confined stage, and radical surgery or
radiotherapy is the recommended treatment [2]. In this group of patients, however, the definition and
management of the so-called clinically insignificant disease remains controversial [3], as well as the
role of active surveillance [4,5] and focal therapy [6] as alternative options.

On the other side of the spectrum, a significant subset of patients presents with a disseminated
poly-metastatic status early in the clinical evolution, even at diagnosis. PCa in these patients
encompasses high levels of intratumor heterogeneity and a wide spectrum of genomic alterations [7],
with androgen-deprivation therapy as the main alternative with or without synchronous or
metachronous chemotherapy or second-line antiandrogen regimes [8].

In between these two clinical contexts, a group of PCa patients is characterized by developing
what it is called an oligometastatic status (OPCa), that is, a clinical situation in which a limited
number of metastases, usually between one and five, appear during the course of the disease [9].
Since OPCa still has not been morphologically, immunohistochemically, or genomically characterized,
this group of patients remains stratified simply under a clinical concept with unpredictable prognosis
and treatment that has not yet been established. In this particular context, there are no specific treatment
recommendations for limited metastatic disease. Different treatment approaches are currently used,
most of them focusing on local ablative modalities using surgery or radiation [10].

This prospective study aims to describe the clinical and pathologic characteristics of a
series of patients with OPCa initially treated with radical prostatectomy. The histological and
immunohistochemical features of 27 primary tumors which subsequently developed an oligometastatic
status have been evaluated.

2. Materials and Methods

This study was conducted under approval of the Cruces University Hospital Ethical Committee
(PI2019059) and is compliant with the principles outlined in the Declaration of Helsinki. All patients
agreed and signed a consent form.

A total of 27 patients initially treated with radical prostatectomy have been collected
at the Department of Radiotherapy Oncology, Cruces University Hospital, Barakaldo, Spain.
All patients developed an asymptomatic relapse with ≤5 metachronous metastases after surgery +/−

post-operative radiotherapy. The diagnosis and treatment protocol has been described elsewhere [11].
Briefly, oligometastases were diagnosed based on Choline PET/CT scans and were treated with
Stereotactic Ablative Radiotherapy (SABR) and/or Volumetric Modulated Arc Therapy (VMAT),
and/or Intensity-Modulated Radiation Therapy (IMRT) at our institution between December 2012 and
February 2017. Data for these patients were prospectively collected and analyzed.

Following the currently accepted criteria [9], patients were included in the study when they
developed up to five metastases during their clinical follow-up, either in the same or different organs.
Demographic data and the main clinical findings of all patients were annotated. The indication of
metastases directed treatment (MDT) was determined based on the following criteria: a previously
treated primary tumor and an apparent complete local response, more than 2 years from diagnosis
of the primary tumor to the metastatic recurrence, availability of Ch-PET/CT parameters at positive
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lymph node (LN) or bone metastases, and a maximum of 5 metastatic sites and LN with a diameter of
3 cm or less.

The nadir plus 2 ng/mL definition was used to define biochemical relapse, a clinical disease-free
survival (cDFS) event was defined as clinical evidence of disease by any clinical, pathological,
or radiological method. Finally, the time to castrate-resistant disease was also estimated.

Patients were followed-up with clinical examinations at 1, 3, and 6 months in all cases, and thereafter
every 1 to 3 months. Prostate-specific antigen (PSA) measurements were scheduled 3–6-monthly
during the first year and 6-monthly thereafter. Reassessment with Ch-PET/CT imaging was performed
in case of 3 rising PSA values after initial response and a PSA value higher than 2 ng/mL or if clinically
indicated to exclude local or distant metastatic progression. In the case of an oligometastatic recurrence
outside the previous SABR/IMRT field, retreatment with SABR/IMRT was offered.

Representative samples of the primary tumor fixed in formalin and embedded in paraffin
blocks following routine protocols were analyzed by three pathologists (CM, IZ, JIL) which blindly
evaluated the same pathologic criteria: histologic type, Gleason index, 2014 ISUP prognostic
grouping [12], UICC/AJCC staging system (8th edition) [13], the presence of intratumor inflammatory
cells [quantified as mild (occasional lymphoid aggregates), moderate (one lymphoid aggregate every
two high power fields), and intense (one or more lymphoid aggregates per high power field)],
and the presence of atrophic changes and stromal reaction in the same histological slides stained
with hematoxylin-eosin.

Immunomarkers related with tumor aggressiveness (neurogenesis, proliferative index,
neuroendocrine differentiation, and angiogenesis) have been tested in an attempt to delineate,
coupled with classical histologic features, any specific profile of this under-recognized clinical
presentation of PCa. For such a purpose, Androgen receptor (SP107, Ventana, 760-4605, ready to use,
nuclear staining), ERG (EPR3864, Ventana, 790-4576, ready to use, nuclear and cytoplasmic staining),
PGP 9.5 (Ventana, 760-4434, ready to use, cytoplasmic staining), Ki67 (30-9, Ventana, 790-4286, ready to
use, nuclear staining), chromogranin A (LK2H10, Ventana, 760-2519, ready to use, cytoplasmic staining),
synaptophysin (MRQ-40, Ventana, 760-4595, ready to use, cytoplasmic staining), and L1CAM (UJ127.11,
Sigma, L4543, dilution 1:100) staining were performed in automated immunostainers (BenchMark
Ultra, Ventana Medical Systems) following routine methods. Tris-EDTA was used for antigen retrieval.
Negative controls were slides not exposed to the primary antibody, and these were incubated in PBS
and then processed under the same conditions as the test slides.

Descriptive statistics were used to summarize patient, tumor, and treatment characteristics.
Chi-square and Fisher exact test was used to analyze the relation between histopathological features
and clinical outcomes.

3. Results

Twenty-seven patients treated with radical prostatectomy and prospectively followed were
included in the study. The average follow up was 54 months (range, 26–70). The clinical characteristics
are presented in Table 1.

At the time of biochemical relapse after radical prostatectomy, the average age of the patients
was 67 years (range, 56–78). Serum PSA levels oscillated between 1.03 and 12.3 ng/mL (average,
3.41 ng/mL). The average PSA doubling time was 4.5 months (range, 1–21). Metastases were located in
LN (22/27 cases, 81.5%) and bones (5/27 cases, 18.5%).

Local control after the MDT (SABR or VMAT) was successful in 22 cases (81.5%). At relapse after
initial MDT, 11 out of 27 patients (40.7%) developed oligometastatic disease and received subsequent
MDT. Of these, 3 patients developed OPCa and were also treated locally with MDT. The treatment in
all newly appearing metastases was always the same (SABR or VMAT).

Twenty-two patients (81.5%) developed biochemical failure after the first MDT. The average
of biochemical failure free survival was 21 months (95%, CI 52.20–57.79). Five patients (18.5%)
developed a local relapse of the treated metastases. The average clinical progression free was 55 months
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(95%, CI 10.82–31.17). Nine out of 27 (33.3%) patients developed a castration-resistant status during
the follow-up.

Table 1. Clinical data of 27 oligometastatic prostate adenocarcinomas.

Clinical Parameters n %

Patient age at MDT (mean, range) 67 (56–78)
Initial treatment

RP 7 25.9
RP + Salvage RT 20 74.1

PSA before first MDT (ng/mL) (mean, range) 3.41 (1.03–12.28
PSA doubling time in months (mean, range) 4.5 (1–21.5)

Follow-up (months) (mean, range) 54 (26–70)
First oligometastases location

Nodes 22 81.5
Bones 5 18.5

Total number of MDTs
One MDT 17 63

Multiple MDTs 10 37

MDT: Metastases directed therapy, RP: Radical prostatectomy, RT: Radiotherapy.

3.1. Pathological Data

The results are shown in Table 2. Pathological staging distribution showed 17 (63%) non-organ
confined (pT3a/b) versus 10 (37%) confined (pT2a/b/c) cases. Twenty-five cases (92.5%) were
conventional acinar adenocarcinomas and 2 (7.5%) were duct adenocarcinomas. Intratumor lymphoid
infiltrates were mild in 8 cases (29.6%), moderate in 10 cases (37%), and intense in 9 cases (33.3%).
Atrophic changes were detected in the adjacent benign prostate tissue in 18 cases (66.6%) and tumor
stromal fibroblastic reaction in 15 cases (55.5%). The Gleason score (GS) distribution was as follows:
GS = 6, 3 cases (11.1%); GS = 3 + 4, 9 cases (33.3%); GS = 4 + 3, 3 cases (11.1%); and GS = 8 to 10,
12 cases (44.4%).

Table 2. Pathological findings in 27 oligometastatic prostate adenocarcinomas.

n %

pT
Organ confined (pT2a/b/c) 9 33.3

Non-organ confined (pT3a/b) 18 66.6
Histology

Acinar 25 92.5
Ductal 2 7.5

Inflammatory infiltrates
Mild 8 29.6

Moderate 10 37.1
Severe 9 33.3

Atrophy 18 66.6
Stromal reaction 15 55.5
Gleason index

3 + 3 3 11.1
4 + 3 9 33.3
3 + 4 3 11.1

3 + 5, 4 + 4, 4 + 5, 5 + 4 12 44.4
Prognostic grouping (ISUP 2014)

1 + 2 12 44.4
3 + 4 + 5 15 55.6

Androgen receptor 27 100
ERG 11 40.7

PGP 9.5 20 74
Ki-67 (cut-off 5%)

≤5 23 85.2
>5 4 14.8

Chromogranin A 8 29.6
Synaptophysin 5 18.5

L1CAM 0 0
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Immunohistochemistry displayed positivity for the androgen receptor in 27/27 cases (100%),
ERG in 11/27 cases (40.7%), PGP 9.5 in 20/27 cases (74%), chromogranin A in 8/27 cases (29.6%),
and synaptophysin in 5/27 cases (18.5%). Ki67 expression was ≤ 5% in 23/27 cases (85.1%). L1CAM was
negative in all cases.

3.2. Statistical Analysis

The results of the Chi-square (Fisher exact test) are summarized in Table 3. They showed that
local control after MDT was associated to non-organ confined tumor category, low Gleason index,
stromal reaction, mild inflammation, atrophy, Ki67 > 5% and ≥ 5%, ERG, PGP 9.5, CRG, and SYN
immunostainings. Non-organ confined disease at diagnosis was associated to mild inflammation,
Ki-67 index > 5% and ≥ 5%, chromogranin A and synaptophysin expression. The development of
castration-resistant tumors, mild inflammation, atrophy, low Gleason index, CRG, SYN, PGP 9.5,
Ki-67 index > 5% and ≥ 5% were shown to be dependent variables.

Table 3. Dependent parameters for successful local control, non-organ confined staging, and castration
resistance status in 27 oligometastatic prostate adenocarcinomas (Fisher exact test).

p Value

Successful local control

Low inflammation 0.0003
No atrophy 0.0008

No stromal reaction 0.0103
Organ-confined tumor 0.002

Gleason index 3 + 3 0.00001
Gleason index (first pattern 3) 0.0214

Ki67 < 5% 0.00001
Ki67 ≤ 5% 0.0003

ERG negative (IHC) 0.0047
PGP 9.5 negative (IHC) 0.0001

Chromogranin A negative (IHC) 0.0001
Synaptophysin negative (IHC) 0.00001

Non-organ confined tumor

High inflammation 0.028
Ki67 > 5% 0.00006
Ki67 ≥ 5% 0.0281

Chromogranin A positive (IHC) 0.01
Synaptophysin positive (IHC) 0.002

Castration resistant tumor

High inflammation 0.006
Atrophy 0.006

Gleason index other than 3+3 0.00001
Ki67 > 5% 0.0001
Ki67 ≥ 5% 0.006

PGP 9.5 positive (IHC) 0.0024
Chromogranin A positive (IHC) 0.0024
Synaptophysin positive (IHC) 0.05

4. Discussion

OPCa is a tumor category strictly defined by clinical-radiological criteria [9,14,15]. Most series
classify as OPCa those cases that develop less than 3–5 metastases during the follow up of the disease [9].
These cases are considered as an intermediate clinical status between localized, organ-confined,
and polymetastatic diseases. Either active surveillance [16] or metastasis-directed therapies [17] may
be good options to delay systemic treatments in these patients. Hence, the interest generated to identify
such cases early at the pre-metastatic phase of the disease. Up to now, however, no distinctive features
have been detected at the microscopic level. Oligometastases are usually asymptomatic, so their
detection needs close follow up protocols and precise imaging methodologies due to the potential
benefit of local therapies in these patients [18].
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Little is known about the biological reasons for which a tumor may develop either none, few,
or many metastases along its evolution. So far, there is no specific histological, immunohistochemical,
or molecular feature linked to this clinical behavior in PCa. Metastasis development is a complex
stepwise process of adaptation in which tumor cells and the local microenvironment interplay [19].
Speaking in quantitative terms, metastasis is not an efficient process. It has been calculated that only
around 0.02% of circulating tumor cells succeed developing a distant metastasis [20]. For such a
purpose, a subset of tumor cells in the primary tumor acquire a specific tropism that includes the
secretion of cytokines and growth factors to create the successful local conditions in the target organ for
posterior colonization following the Paget’s hypothesis [21]. These favorable environmental conditions
are site-specific and conform what is called the pre-metastatic niche [22]. Latterly, once arrived in the
niche, the metastatic seed needs to initiate immune evasion processes to survive to the local innate
immunity transforming macrophages, NK cells, and other elements in allied conspirators. Then arrives
an unprecise period of dormancy followed by epigenetic reprogramming processes that will allow PCa
metastatic cells to survive and escape therapies, particularly the androgen receptor signaling blockade,
thus converting the neoplasm in a castration-resistant cancer, the common final pathway in the clinical
evolution of PCa.

Chronic inflammation, atrophy, and stromal fibroblastic induction [23,24] have been classically
associated with prostate cancer initiation and progression. The current findings show that the
microbiome associated with chronic inflammation and atrophy allows the development of a specific
microenvironment promoting prostate carcinogenesis [24]. Stromal matrix remodeling replaces the
prostate fibromuscular stroma and evolves during prostate cancer evolution through transforming
growth factor β1 regulation [23]. Besides, a very recent study demonstrates that collagen production
and accumulation are driven by the activation of PI3K in the prostate epithelium [25]. In this
sense, prominent chronic inflammation has been detected in the present series in 33.3% of the cases,
and atrophy and stromal induction in 66.6% and 55.5%, respectively.

Androgen receptor (AR) blockade evasion is the most common form of therapeutic resistance in
PCa and represents an example of tumor adaptation that develops uncontrolled castration-resistant
clones [26]. Interestingly, a specific pattern of DNA hypermethylation predicts the development of
castration-resistant cancer [27]. All the cases in the present series showed positive immunostaining for
AR in the primary tumor but up to 29.6% of them achieved in the last contact a castration-resistant status.

ERG overexpression promotes the development of androgen independent PCa clones disrupting
the androgen receptor [28]. In the clinical practice, the protein tested is generated by the TMPRSS2-ERG
fusion genes being positive in a significant percentage of PCa [29]. This series of OPCa expressed this
protein in the primary tumor of more than 40% of the cases.

The importanceofneurogenesis incancerhasbeenveryrecentlyreviewed [30]. Axonogenesis identified
with PGP 9.5 immunostaining is a predictor of biochemical relapse in the univariate test of PCa and
shows a positive correlation with LN status in a series of 640 patients analyzed with computerized
digital image analysis [31]. In the present series, up to 74% of the cases showed evident positive
intratumor PGP 9.5 staining.

Several studies have confirmed the positive correlation between Ki-67 high index and bad
prognosis in prostate cancer [26,32–34]. This finding is especially interesting in localized prostate
cancer, where it is associated with poor disease-specific survival, biochemical failure-free survival,
and other parameters of bad prognosis [34]. Also, a high Ki67 index is associated with increased risk
of metastases [33] and a bad prognosticator in prostate adenocarcinomas with hormonal blockade [26].

True neuroendocrine differentiation (NED) is rare (0.5–2%) in PCa before the androgen deprivation
therapy is administered but it is significantly increased thereafter (17–30%) [35]. Several types of
NED are associated with a highly aggressive form of PCa, with rapid progression and metastases
mainly to visceral organs [36]. After Epstein et al.’s classification [37], it seems that usual prostate
adenocarcinomas with focal NED are quite common in the pre-androgen blockade period. Interestingly,
this finding does not worsen the prognosis of patients [38].
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The L1 cellular adhesion molecule (L1CAM) has been implicated in the development of metastases
in a wide range of malignant tumors [38]. L1CAM expression has been rarely analyzed in prostate
cancer, where it has been associated with androgen-insensitive prostate cancer and high metastatic
potential [39]. Since inactivating L1CAM in prostate cancer inhibits metastases [39], this strategy
could be an additional potential targeted therapy to be applied in tumors with known aggressive
potential. However, the negative immunostaining in the present series suggest that this protein is not
an actionable target in OPCa.

To our knowledge, this is the first study looking specifically at pathologic characteristics of
OPCa patients. Here, we have found that routine pathological parameters like inflammation, atrophy,
Ki-67 index, Gleason index, pathologic staging, and PGP 9.5, chromogranin A, and synaptophysin
immunostaining may be relevant in order to achieve better local control rates and to detect castrate
resistant disease.

To date, the decision to administrate local ablative treatments in OPCa patients is based only
on the clinical characteristics of the patients. Research is being conducted nowadays looking at
molecular biomarkers that could help to predict outcomes. Preliminary data suggest that tissue
miRNAs may drive metastatic competence by adaptative communication processes between cancer
cells and their microenvironment [40]. In this regard, our group has started to investigate the role
of the transcriptional co-activator peroxisome proliferator-activated receptor gamma co-activator 1α
(PGC1α) in these patients and its association with disease progression.

5. Conclusions

OPCa is a category of prostate carcinomas with increasing interest in clinics since the
application of local MDT has proven to be very useful in recent years. The initial identification
of prostate cancer patients belonging to this category is difficult because of the lack of specific
clinical, histological, and immunohistochemical markers. In this study, we have seen that some
histological (inflammation and atrophy) and immunohistochemical (Ki-67, PGP 9.5, chromogranin A,
and synaptophysin) data are associated with a successful local control of disease and non-organ
confined disease, thus helping to make therapeutic decisions. However, further studies are needed to
define more precise prognostic identifiers in these patients.
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